Imperial College London

K. Long, 19 January, 2006

MICE, in preparation for the Neutrino Factory

Neutrinos in the Standard Model

- Standard Model neutrino:
 - Mass = 0
 - Dirac spinor
 - v_L and \overline{v}_R present (v_R and \overline{v}_L *not* present)
 - Quantum numbers:
 - Weak isospin 1/2

No conserved quantum numbers

Only v_L and \bar{v}_R interact
 Quantum numbers such that v_R and \bar{v}_L are sterile

Standard neutrino Model (SvM)?

- The observation of neutrino oscillations implies:
 - Mass ≠ 0 and neutrino masses not equal
 - v_L and v_R present
 and can interact
 - No conserved quantum numbers and mass ≠ 0

CP violation

- Dirac spinor
- Majorana spinor
 - Neutrino could be its own antiparticle

Mass states mix to produce flavour states

 $\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$

Motivation

Sources for era of precision & sensitivity

Neutrino Factory R&D

Conclusions

Motivation: understanding the mixing matrix

Present knowledge of the parameters:

 $\delta m^2 = 7.92 \left(1^{+0.09}_{-0.09} \right) \times 10^{-5} \text{ eV}^2$ $\Delta m^2 = 2.4 \left(1^{+0.21}_{-0.26} \right) \times 10^{-3} \text{ eV}^2$ $\sin^2 \theta_{12} = 0.314 \left(1^{+0.18}_{-0.15} \right)$ $\sin^2 \theta_{23} = 0.44 \left(1^{+0.41}_{-0.22} \right)$ $\sin^2 \theta_{13} < 3.2 \times 10^{-2}$ Lisi

Presently unknown:

- Sign of Δm_{23}^2 discovery
- Precision determination of θ_{13}
- Search for non-zero δ discovery
- As important as study of CKM matrix ...

Motivation: key issues in particle physics

The origin of mass

Neutrino mass very small

Different origin to quark and lepton mass?

Motivation: key issues in particle physics

The origin of mass

- Neutrino mass very small
 - Different origin to quark and lepton mass?
- The origin of flavour
 - Neutrino mixing different from quark mixing
 - 'Natural' explanation in 'see-saw' models?

$$V_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} V_{V}$$

 $|(V_{MNS})_{e3}| < 0.2]$

de Gouvea

Motivation: key issues in particle physics

The origin of mass

- Neutrino mass very small
 - Different origin to quark and lepton mass?

The origin of flavour

- Neutrino mixing different from quark mixing
 - 'Natural' explanation in 'see-saw' models?

The quest for unification

- 'Unified' theories relate quarks to leptons
 - Generating relationships between quark and lepton mixing angles

Motivation: key issues in cosmology

The origin of dark matter & dark energy

- ~96% of matter/energy is not understood
- Neutrinos:
 - Contribution as large as baryonic matter?
 - In some models neutrinos impact on dark energy

The absence of anti-matter

- CP violation in lepton sector underpins removal of antimatter
 - 'Dirac' phase, δ, not directly responsible, but,
 - Relationship of relevant (Majorana) phases to δ is model dependent

Explanation of (absence of) large-scale structure

- Neutrino interacts only weakly possible means of communication across large distances?
- In some models, super-symmetric partner to neutrino may be responsible for inflation

Motivation: the next generation

Motivation: timescales

equire

6

eneration fac

Neutrino source – options:

- Second generation super-beam
 CERN, FNAL, BNL,
 - J-PARC II

Neutrino Factory

Beta-beam

Super-beams: SPL-Frejus

New optimisation: 4 MW; 440 kTon H₂O

- Energy: 3.5 GeV
- Particle production

- Horn/target
- Decay tunnel

SPL-Frejus: performance Campagne

Rates Rates and energy spectrum

'Old' (2.2 GeV)

Assumes 2% systematic uncertainties

Neutrino Factory: sensitivity

 Neutrino Factory: 10²¹ decays/year; 50 GeV
 50 kTon magnetised iron calorimeter 3000 km base line

P.Huber et al., hep-ph/0412199

Neutrino Factory: sensitivity

2nd L at MB=Magic Base Line(7500km)

P.Huber et al., hep-ph/0412199

Beta-beam

Optimisation

Beam energy (γ)

Detector:
 H₂O Ckov
 TASD
 considered

Neutrino Factory / beta-beam

Super-beam/beta-beam/Neutrino Factory

Neutrino Factory offers best performance

- Best sensitivity to δ
 - Unless sin²2θ₁₃ is large
 - NF optimisation for large sin²20₁₃ to be reviewed
- Best 'discovery reach' in sin²2θ₁₃
- High-γ beta-beam competitive
 - γ ~ 350 requires '1 TeV proton machine'
- High-performance super-beam has $\delta \neq 0$ discovery potential if sin²2 θ_{13} is large
 - Multi-megawatt class proton source
 - Megaton scale H₂O Cherenkov

The challenge: time-scales

Optimum schedule

- Science driven
- Potential match to funding window

Challenge:

- To make the case!
- International scoping study
 - 1-year study of Neutrino Factory and super-beam facility
 - ... a step on the way?

Neutrino Factory - concept

Neutrino Factory – concept

Neutrino Factory R&D: highlights

Proton driver & its front end

- Proton labs all have proton-driver plans
 - too much detail to cover here!
- Importance to inject 'good' beam:
 - Parallel front-end developments (in Europe):
 - CERN: 3 MeV test place; Linac 4; SPL
 - CCLRC: Front-end test stand; 180 MeV linac
 - CEA: SPES-1
 - INFN: Incipit
 - CNRS, IPN, IN2P3, Eurotrans: PDS-XADS
 - Eurisol, HIPPI
 - ••••
 - Synergy!
 - Breadth of applications is a great strength

Target and capture

Two schemes:

Horn: good match to super-beam

Tapered solenoid: possible to capture μ⁺ and μ⁻ simultaneously (US Study IIa)

Target: evaluation of options

Solid target:

- Lifetime: beam-induced shock leads to fracture
- Irradiation tests:
 - Exposure of various candidate materials to pulsed proton beam at BNL and at CERN
 - Annealing of target material through 'baking' also being studied
- Shock test (UKNF):
 - Current pulse to simulate heating
 - Thin (tantalum wire)
 - Numerical models (LS-Dyna) being studied

Schematic diagram of the test chamber and heater oven.

Target: evaluation of options

Liquid-mercury jet:

- To date, have tested:
 - Effect of beam on jet without magnetic field
 - Development of jet in a solenoidal magnetic field
- Progress in modelling results

Samulyak

Cavitation, surface ripples

High-power target experiment

High-power target experiment Proposal to CERN ISOLDE/nTOF committee Studies of a target system for a 4 MW, 24 GeV proton beam Spokespersons: H.Kirk (BNL), K.McDonald (Princeton) **APPROVED! MERIT** (nTOF11) Participating institutes: BNL, CERN, KEK, ORL, Princeton, RAL Mercury jet: 1 cm diameter; 20 m/s PS delivers: 10¹² – 10¹³ protons per 2 μs spill in 4 bunches Beam spot ~3 mm diameter

MERIT: objectives

Effect of increasing charge density:

- 7×10¹² 28×10¹² protons per spill
- Effect of magnetic field on jet dispersal:
 0 15 T
 Cavitation:

Beam Profile Pump Probe

50 Hz operation

MERIT: preparations

Target:

Viewing system under development
 Mercury pump system under development

MERIT: preparations

Magnet:

- LN₂ Operation
- 15 T (5.5 MW pulsed power)
- 15 cm warm bore
- 1 m long beam pipe

nTOF11: schedule

2005

- March
- Spring
- Summer
- Winter

2006

- April solenoid test finished
- June
- autumn
- December fully ready for beam
- **2007**
 - April

final run at PS start-up

nToF11 approved

solenoid tests

solenoid construction completed

construction of Hg system

solenoid shipped to CERN

integrated test at CERN

Cooling and the Neutrino Factory

H ⁻ linac	Ionisation cooling survey				
↓ Proton driver	Design	Number of cooling cells	Gain factor	Cooling per cell (%)	Comment
	US Study II	26	6	7	Increase in phase-space density in acceptance of downstream accelertor
Target and capture	US Study IIa	26	2	2	Increased acceptance in muon acceleration section; use of FFAGS. Lithium-hydride absorber.
and bunching	CERN	36	10	7	Increase in muon yield at 2 GeV over optimised NF without cooling
lonisation cooling	Japan	-	> 1.5 - 2		Acceleration based on FFAGs. Performance improvement may be possible with cooling. Possible transverse and longitudinal cooling using FFAGs.
→ Muon accelera	ation	Muon storage			

Ionisation cooling

Principle

re-acceleration

MICE:

- Design, build, commission and operate a realistic section of cooling channel
- Measure its performance in a variety of modes of operation and beam conditions

i.e. results will allow NuFact complex to be optimised

 p_t

MICE collaboration

Universite Catholique de Louvain Belgium

INFN: Bari, Frascati, Genova, Legnaro, Milano, Napoli, Padova, Trieste ROMA TRE university, **Italy**

KEK, Osaka University Japan	
NIKHEF The Netherlands	THE MICE COLLABORATION 3 continents 7 countries
CERNY CERN	40 institute members 140 individual members
Geneva PSI Switzerland	- Engineers & physicists (part. & accel.)

MICE on ISIS at RAL

MICE Target

Concept:

- Target dips into halo of ISIS beam
 On demand
 - 1 3 Hz operation

Engineering:

 Require to separate vacuum surrounding target mechanism from ISIS machine vacuum

MICE Muon Beam: target

Pre-prototype:

Gain experience with construction and operation

MICE Hall: hydrogen-system R&D

MICE Hall: hydrogen-system R&D

absorber and cryostat

Muon Ionisation Cooling Experiment

MICE: cooling performance

Transverse emittance:

 $\varepsilon_T = \frac{1}{m_{\mu}}^4 \sqrt{V}$

Cooling effect:
 Cooling term
 Heating term

 $\frac{d\varepsilon_T}{dz} = \frac{-\varepsilon_T}{\beta^2 E} \left\langle \frac{dE}{dz} \right\rangle + \frac{\beta_T (0.014 \text{ GeV})^2}{2\beta^3 E m_\mu X_0}$

For MICE:

Liquid hydrogen only:

Initial emittance	Final emittance			
6π mm	πmm	%		
One absorber	5.7	94.9		
Full MICE	5.1	84.6		

Cooling Measurement

Cooling Measurement

Cooling Measurement Resolution

Spectrometer: solenoid

LBNL

Spectrometer: tracker

Spectrometer: tracker; electronics

- Two VLPC cassettes borrowed from DØ
- Prototype AFE II boards borrowed from DØ
 - Some MICE specific interface boards
- Cryostat design/built for MICE
 - Cryocooler for refrigeration
- Commissioning of AFE II – FNAL experts:
 - Require expertise in tracker team

Spectrometer: tracke

Prototypes:

Upstream Cherenkov

Mississippi

- Upstream Ckov
 - C₆F₁₄ radiator with n=1.25
 - 4 PMTs
 - 2 on top, 2 on bottom.
 - Threshold cherenkov:
 - 0.7 MeV for electrons
 - 140 MeV for muons
 - 190 MeV for pions

Time-of-flight/trigger

Milan/Pavia

ToF/trigger

Prototype development/performance tests

QUANTA

Issues:

- Rate (especially ToF0)
- Operation in magnetic field

Downstream Cherenkov

Exploded view seen from downstre

Louvain

The support frame is not longitudinally thicker than CKOV2

Muon calorimeter:

Task: μ/e separation

Rome III, Trieste

Scintillating fibers embedded in grooved lead layers

Muon calorimeter: development

 Base line design complete
 Testing of components underway

MICE: cooling channel

Focus-coil module:

Focus-coils:

- **5** T
- Field flip (focus)
- Conceptual & now
 detailed
 design of
 magnets
- Safety analysis

KEK, IIT, FNAL, RAL, Oxford, Missippi

201 MHz Cavity Ingredients

- Cavity body + water cooling lines
- Ports and flanges
- RF loop couplers
- Cavity support structure
- Cavity tuners
- Ceramic RF windows (~4")
- Curved Be windows
- MICE specifics
 - Tuners
 - Integration
 - * joints and flanges
 - Possible LN₂ operation

LBNL

Cavity prototype: MuCool

- ✓ E-beam welding
- ✓ Ports
- ✓ Water cooling lines
- Couplers assembled first time (mid-April-2005)
- First low power measurement
 - frequency ~ 199.5 MHz
 - coupling ~ 5 (max)
 - Q ~ 5000

Now, preparing to condition in MTA at FNAL

FNAL

Curved Be windows

- Each cavity will require a pair of 0.38 mm thick precurved beryllium windows with Ti-N coating
- Double-curved shape prevents buckling caused by thermal expansion due to RF heating
- Thermally induced deflections are predictable
- A die is applied at high temperature to form window
- Copper frames are brazed to beryllium windows in a subsequent process

MICE Collaboration Meeting at RAL October 22 ~ 24, 2005

Cooling channel: RF power

Require 1 MW/cavity to produce 8 MV/m

- Will use 4 × 2.5 MW amplifiers
 - 2 circuits from LBNL
 - 2 circuits being negotiated from CERN

Cooling channel: RF power

Refurbishment has begun:

Risk: supply of components

MICE Phase I on ISIS at RAL

FFAG R&D

PRISM: culmination of Japanese scaling-FFAG

R&D

- Built on success of
 POP machines
- International activity developing non-scaling FFAG concept
 - Electron model:
 - POP machine for non-scaling FFAG

Comments and conclusions Several studies at the turn of the century US Studies I and II ECFA/CERN Study NuFact-J Study established feasibility & R&D programme R&D programme is now maturing: International Muon Ionisation Cooling Experiment International high-power targetry experiment International rapid acceleration (FFAG) programme In parallel, continued concept development

Desirable timescale

2005 MINOS, MiniBOONE, CNGS, KamLAND, SK, T2K, ...

Era of precision and sensitivity

Era of precision and sensitivity

Conclusion:

Clear programme:

Present experiments to:

- Tie down $\theta_{12}, \theta_{23}, \Delta m_{12}^2, \Delta m_{23}^2$
- Next generation of experiments to:
 - Make first measurement of θ₁₃ (or set limit)
 - Begin search for leptonic CP violation
- Energetic programme of R&D by which to:
 - Arrive at a consensus programme for the era of precision and sensitivity
 - Options:
 - Second-generation super-beam
 - Beta-beam
 - Neutrino Factory
 - alone or in combination

A fantastic programme!

Backup slides

BNL-VLBL

Viren

Upgraded AGS at 28 GeV Replace booster with 1.2 GeV SC linac

 $0\, {\rm ccober}\, 1,\, 2004$

BNL-73210-2004-IR

The AGS-Based Super Neutrino Beam Facility Conceptual Design Report

Editor: W. T. Weng, M. Diwan, and D. Raparia

Contributors and Participants

J. Alessi, D. Barton, D. Beavis, S. Bellavia, I. Ben-Zvi, J. Brennan, M. Diwan,
P. K. Feng, J. Gallardo, D. Gassner, R. Hahn, D. Hseuh, S.Kahn, H. Kirk,
Y. Y. Lee, E. Lessard, D. Lowenstein, H. Ludewig, K. Mirabella,
W. Marciano, I. Marneris, T. Nehring, C. Pearson, A. Pendzick,
P. Pile, D. Raparia, T. Roser, A. Ruggiero, N. P. Samios,
N. Simos, J. Sandberg, N. Tsoupas, J. Tuozzolo, B. Viren,
J. Beebe-Wang, J. Wei, W. T. Weng, N. Williams,
P. Yamin, K. C. Wu, A. Zaltsman,
S. Y. Zhang, Wu Zhang

Brookhaven National Laboratory Upton, NY 11973 October 1, 2004

Assume UNO: 500 kTon H₂O
 Running assumptions:

 v: 1 MW, 5 yrs
 ⊽: 2 MW, 5 yrs

 Performance updated:

 Example only →

BNL-VLBL: sensitivity

Viren

Very long baseline: Sensitivity to △m₂₃² from matter effects

Super-NOvA

Winter

Supa-NOvA: sensitivity

Winter

Hyper-Kamiokande

T2K II sensitivity

