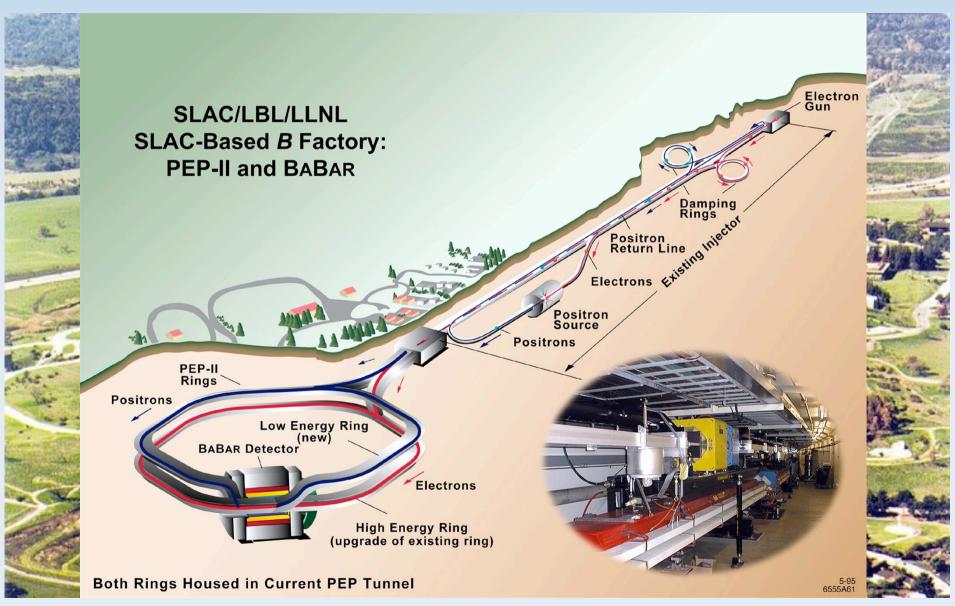
Investigating $B \to \tau \nu_{\tau}$ at BaBar with New Statistical Techniques

Matthew Barrett

Dept of Electronic and Computer Engineering

Brunel University



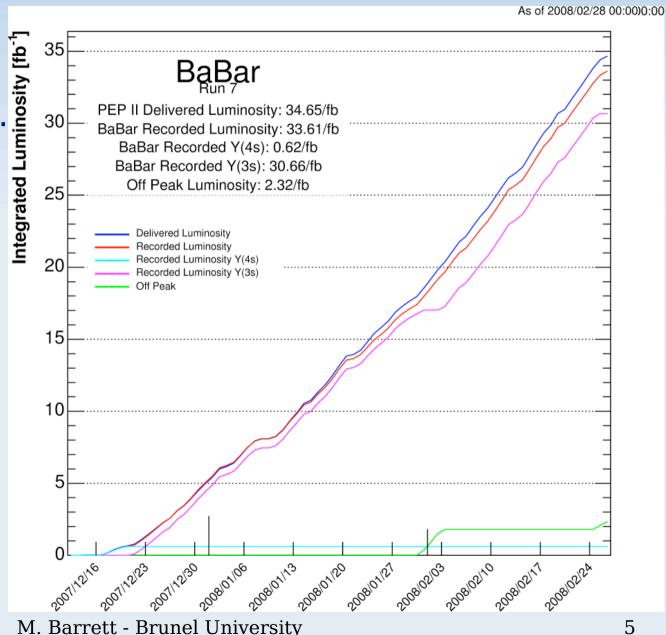
Outline of Talk

- The BaBar Experiment.
- $B \rightarrow \tau v$ Why is it interesting?
- How to study $B \rightarrow \tau v$.
- Current Measurements from BaBar and Belle.
- Improving the measurements with new statistical techniques.
- The future for BaBar and beyond...

The BABAR Experiment

BABAR Experiment

IFR - Instrumented Flux Return DIRC - Detector of SVT - Silicon Internally Reflected Vertex Tracker Cherenkov radiation DCH - Drift CHamber 3.1**GeV** 9.0 GeV EMC -Electromagnetic 1.5T Calorimeter magnet 29th February 2008 M. Barrett - Brunel University


- Centre of Mass Energy = 10.58GeV.
- Mass of Y(4S).

- Just above threshold for BB production.
- B mesons almost at rest.
- $\beta \gamma = 0.56$

anti B

The BABAR Experiment

- BaBar started data taking: 1999
- Will finish on April 7 2008.
- After running on Y(3S) and Y(2S).
- Off Peak: 40 MeV below Y(4S).
- No B mesons produced.
- Mass of Y(3S) =10.355GeV/c².

Why Study $B \rightarrow \tau v$?

Physics motivated by one equation:

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Parameters of Note:
 - $f_B B$ meson decay constant.
 - Can only access via purely leptonic B decays.
 - Current value from Lattice QCD:

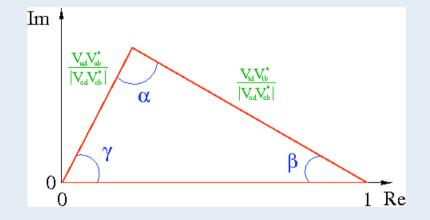
$$f_{\rm B} = (189 \pm 27) \text{ MeV}$$

Why Study $B \rightarrow \tau v$?

Physics motivated by one equation:

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Parameters of Note:
 - Mass of daughter lepton m_c
 - Leads to helicity suppression:


```
\tau : \mu : e
1:5 \times 10^{-3} : 10^{-7}
```

Why Study $B \rightarrow \tau v$?

Physics motivated by one equation:

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Parameters of Note:
 - V_{ub} CKM matrix element.
 - Current PDG value: $|V_{ub}| = (4.31 \pm 0.30) \times 10^{-3}$.

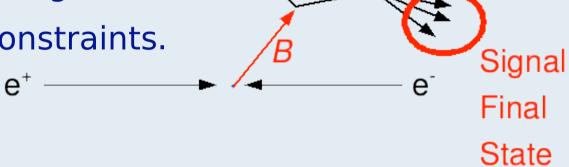
- *B* meson oscillation frequency: $\Delta m_d \propto f_B^2 |V_{td}|^2$.
- $\mathcal{B}(B \to \tau \nu)/\Delta m_d \propto |V_{ub}|^2/|V_{td}|^2$

And Beyond the Standard Model?

Additional Feynman diagram from Higgs boson:

And Beyond the Standard Model?

Additional Feynman diagram from Higgs boson:



 Two Higgs Doublet Model (2HDM) and Minimal Supersymmetry (MSSM) lead to modified Branching fraction:

$$\mathcal{B}^{2HDM}=\mathcal{B}^{SM}\left(1-rac{m_B^2 an^2eta}{m_{H^\pm}^2}
ight)^2$$
 W.S.Hou PRD 48 2342 (1993) $\mathcal{B}^{MSSM}=\mathcal{B}^{SM}\left(1-\left(rac{m_B^2 an^2eta}{m_{H^\pm}^2}
ight)rac{ an^2eta}{1+\epsilon aneta}
ight)^2$

• tan β – ratio of vacuum expectation values.

- Experimentally challenging:
 - Two or Three neutrinos in final state.
 - Only reconstruct τ daughters.
 - Lack of kinematic constraints.

Recoil Analysis technique:

■ Fully Reconstruct the other B – B_{reco}.

This constrains the signal B – B_{recoil}.

• Hadronic tag: $B \rightarrow DX$ (X = Hadrons $-\pi^{\pm}, \pi^{0}, K^{\pm}, K_{s}$)

SemiLeptonic tag*:

$$B \rightarrow D \ell \nu X$$
 ($X = \gamma$, π^0 , or nothing)

Signal

Final

State

recoil

Fully Reconstruct

^{*}fully reconstruct except the neutrino.

Recoil Analysis technique:

■ Fully Reconstruct the other B – B_{reco}.

■ This constrains the signal B – B_{recoil}.

Two different types:

• Hadronic tag: $B \rightarrow DX$ (X = Hadrons $-\pi^{\pm}, \pi^{0}, K^{\pm}, K_{s}$)

SemiLeptonic tag*:

$$B \rightarrow D \ell \nu X$$
 ($X = \gamma$, π^0 , or nothing)

Signal

Final

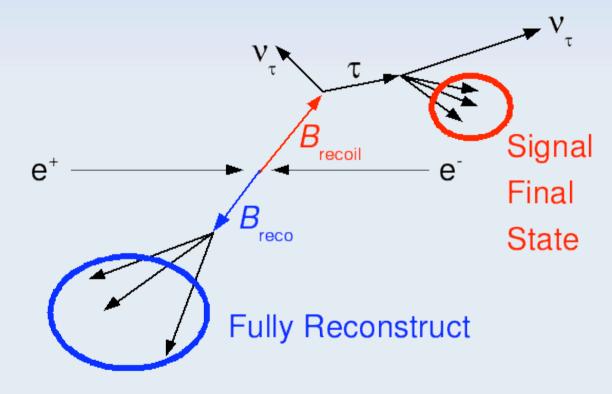
State

recoil

Fully Reconstruct

^{*}fully reconstruct except the neutrino.

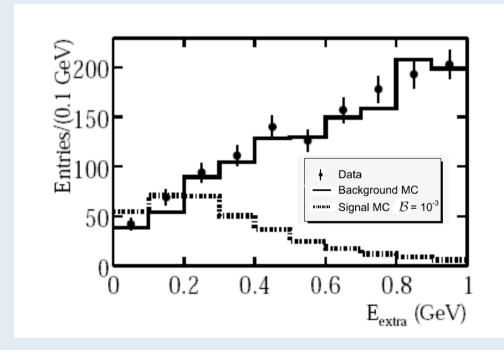
τ is reconstructed in five modes:


$$\quad \tau^- {\rightarrow} e^- v_e v_\tau$$

$$\bullet \quad \tau^- {\longrightarrow} \mu^- \nu_\mu \nu_\tau$$

$$\bullet$$
 $\tau^- \rightarrow \pi^- V_{\tau}$

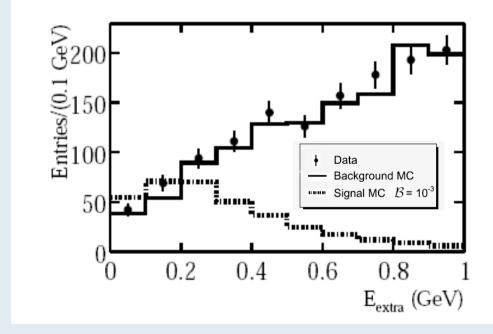
$$\bullet \quad \tau^- \rightarrow \rho^- (\pi^- \pi^0) V_{\tau}$$


•
$$(\tau^- \rightarrow a_1^- (\pi^+ \pi^- \pi^-) v_{\tau})$$

a₁ is only used in most recent analysis.

The $\mathcal{E}_{\mathcal{E}\chi tra}$ Variable

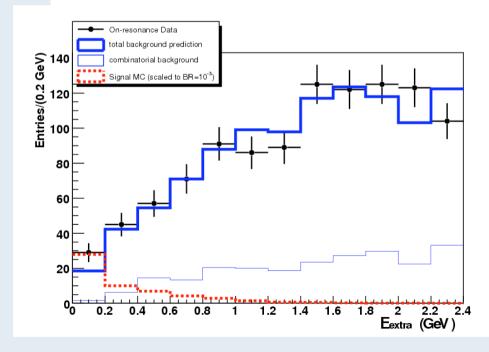
- Most discriminating variable available.
- Sum of Energy deposited in Calorimeter, that is not attributed to any reconstructed particle.
- Should be (close to) zero for true signal events.
- Background typically much higher.
- Used to define signal box.



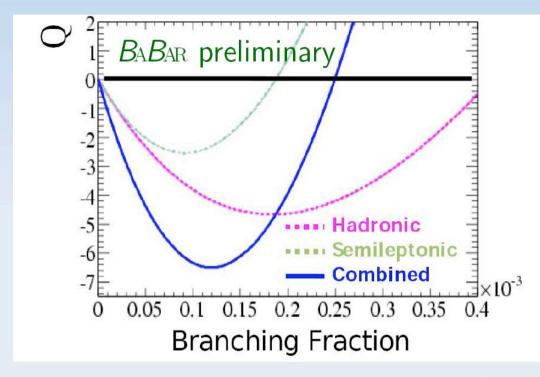
Current Results

Semileptonic Tags

- Used 383 x 10⁶ BB pairs.
- Carry out Likelihood fit to yield in four tau channels.
- $\mathcal{B}(B \to \tau v) = (0.9 \pm 0.6(\text{stat}) \pm 0.1(\text{syst})) \times 10^{-4}$.
- 90% CL UL: $\mathcal{B}(B \to \tau \nu) < 1.7 \times 10^{-4}$.


τ	Expected background	Observed events
decay mode	events	in on-resonance data
$\tau^+ \to e^+ \nu \overline{\nu}$	44.3 ± 5.2	59
$\tau^+ \to \mu^+ \nu \overline{\nu}$	39.8 ± 4.4	43
$\tau^+ \to \pi^+ \overline{\nu}$	120.3 ± 10.2	125
$\tau^+ \to \pi^+ \pi^0 \overline{\nu}$	17.3 ± 3.3	18
All modes	221.7 ± 12.7	245

Hadronic Tags


- Also uses 383 x 10⁶ BB pairs.
- Measured Branching fraction:
- $\mathcal{B}(B^+ \to \tau^+ \nu) = 1.8^{+1.0}_{-0.9}(\text{stat.+bkg}) \pm 0.3(\text{syst.})) \times 10^{-4}.$
- 90% CL Upper Limit: $\mathcal{B}(B \rightarrow \tau v) < 3.4 \times 10^{-4}$.
- \mathcal{B} also calculated from likelihood ratio fit to the individual tau channel yields.
- $f_B \cdot |V_{ub}| = (10.1^{+2.8}_{-2.5}(\text{stat.}) \pm 0.8(\text{syst.})) \times 10^{-4} \text{ GeV}$

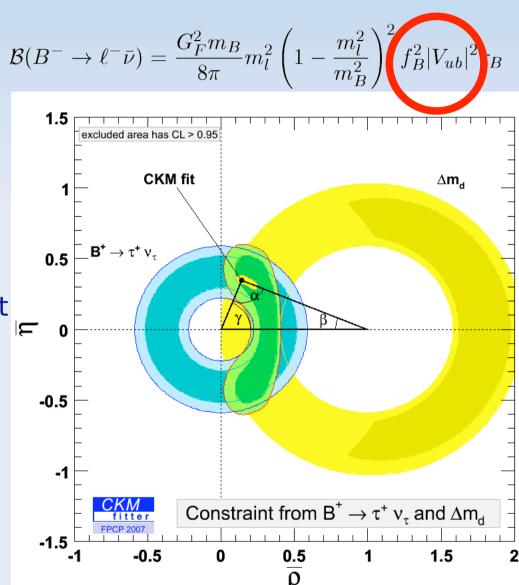
au decay mode E	xpected background	d Observed
$\tau^+ \to e^+ \nu \overline{\nu}$	1.47 ± 1.37	4
$\tau^+ \to \mu^+ \nu \overline{\nu}$	1.78 ± 0.97	5
$\tau^+ \to \pi^+ \overline{\nu}$	6.79 ± 2.11	10
$\underline{\tau^+ \to \pi^+ \pi^0 \overline{\nu}}$	4.23 ± 1.39	5
All modes	14.27 ± 3.03	24

Combined Result

- Combine semileptonic and hadronic results.
- Statistically independent.
- Extend likelihood ratio technique used in both to determine combined result.

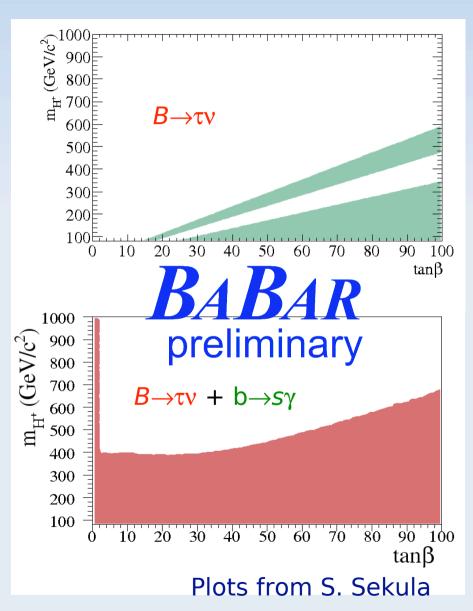
Central value:

$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.20^{+0.40}_{-0.38}(\text{stat.})^{+0.29}_{-0.30}(\text{bkg syst.}) \pm 0.22(\text{syst.})) \times 10^{-4},$$


- 2.6σ significance including uncertainty on background. (3.2 σ if this is omitted.)
- Belle result: $\mathcal{B} = (1.79^{+0.56}_{-0.49}) \times 10^{-4}$

PRL 97, 251802 (2006)

• SM prediction: 1.6×10^{-4}


Constraint on Unitarity Triangle

- Combine $B \rightarrow \tau v$ with Δm_d measurements to constrain CKM ratio $|V_{ub}|/|V_{td}|$.
- f_B cancels least well known value.
- Shown as a graphical constraint on Unitarity Triangle.
- Consistent with SM.

Implications for New Physics

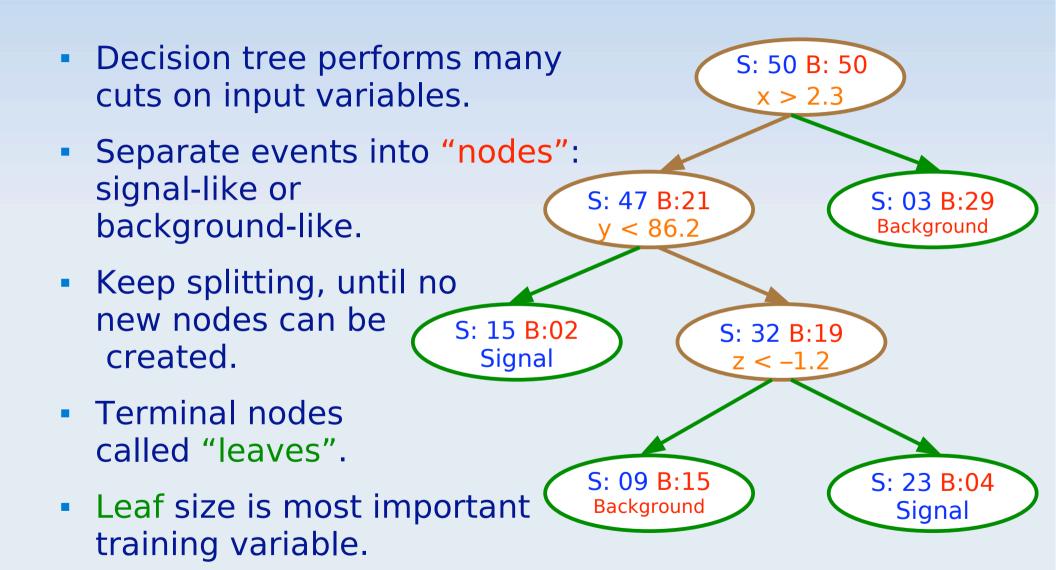
- Exclusions in m_{H} tan β plane.
 - m_H Charged Higgs mass.
 - tan β ratio of v.e.v. of 2HD.
- Plots shown for region above direct search limit from LEP.
- Can be combined with measurement of b→sγ.
- $B \rightarrow \tau v$ more useful at higher values of tan β .

Multivariate Analysis

Multivariate Analysis

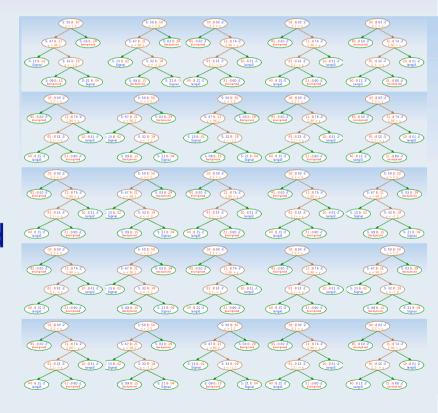
- Use a combination of many variables to select events.
- Make use of correlations between variables.
- Use combination of weakly classifying variables that could not be cut on.
 - Examples of Multivariate Classifiers include:

 Fisher Discriminant, Neural Net
 Boosted Decision Tree, Random Forest
- Increase signal efficiency and/or background rejection.


Multivariate Analysis Packages

- Two packages commonly used in Particle Physics.
- TMVA Toolkit for MultiVariate Analysis:
 - http://tmva.sourceforge.net/
 - Developed mainly at CERN.
 - Incorporated in recent releases of ROOT (5.11+).
- StatPatternRecognition:
 - https://sourceforge.net/projects/statpatrec
 - Developed by Ilya Narsky (Caltech).
 - Fully compatible with ROOT.

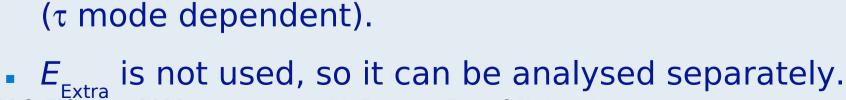
General Strategy for MVA

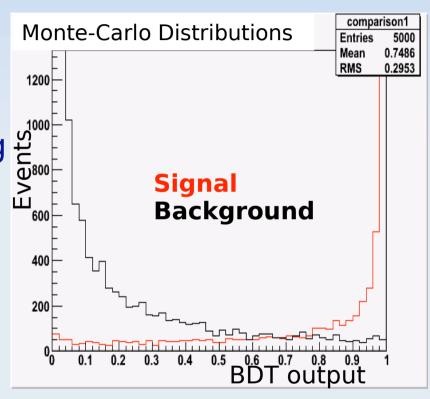

- The chosen classifier must be trained.
- Three steps divide available data (typically Monte-Carlo) into three datasets.
 - Training
 - Validation check, and optimise training parameters.
 - Testing realistic evaluation of performance.
- Example division of data: 50%:25%:25%.
- Separate samples reduces danger of over-training.
- Testing sample used for all performance plots shown.

Decision Tree

Boosted Decision Tree

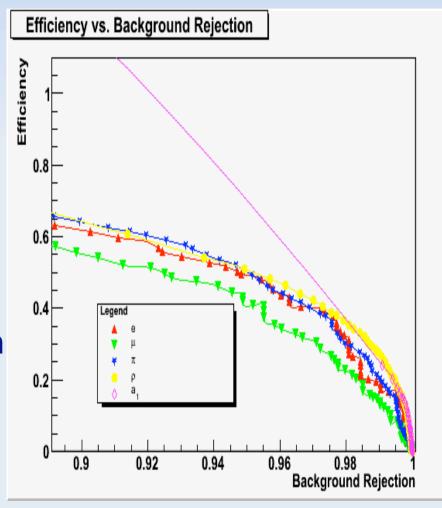
- Boosting over a specified number of cycles: increase weight of misclassified events decrease weight of correctly classified events.
- Increases predictive power.
- Boosted decision tree can no longer be easily visualised.
- Advantages:
 - Can cope with very correlated variables and useless inputs.
 - No "Curse of dimensionality".

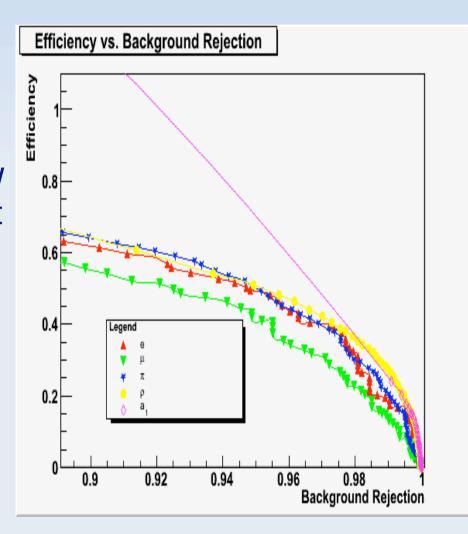



Bagging and Random Forests

- Bagging Bootstrap AGGregatING.
- Bootstrapping sampling with replacement.
- Train classifiers on bootstrap replicas of training data.
- Overall response is average of each classifier training.
- Bootstrapping the input dimensions (variables) as well is called a Random Forest.
 - "De-correlates" variables.
- Important training parameters are Leaf size, and number of input dimensions to sample.

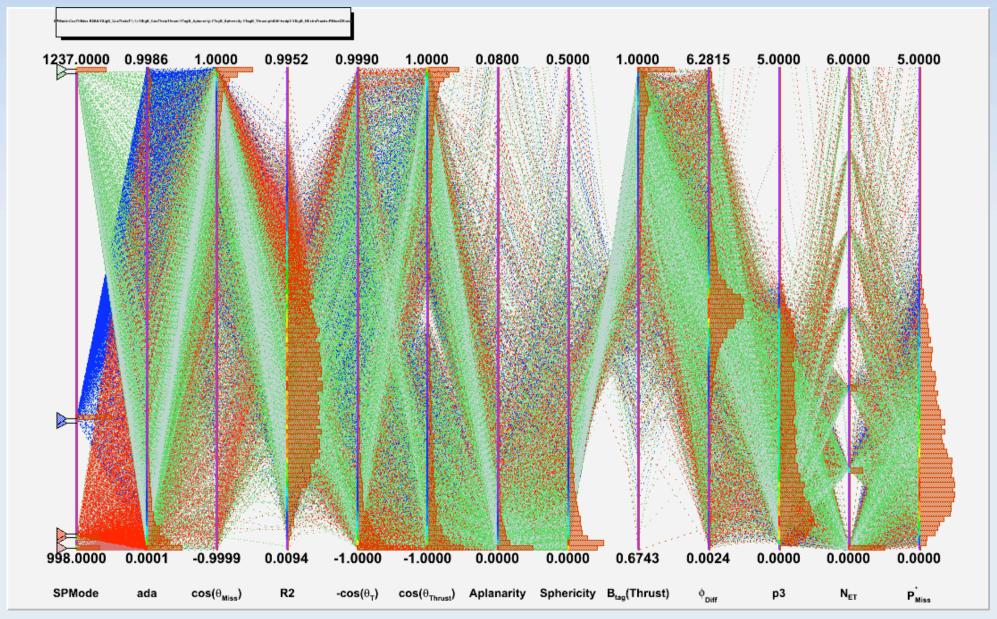
Using a Boosted Decision Tree for $B \rightarrow \tau \nu$

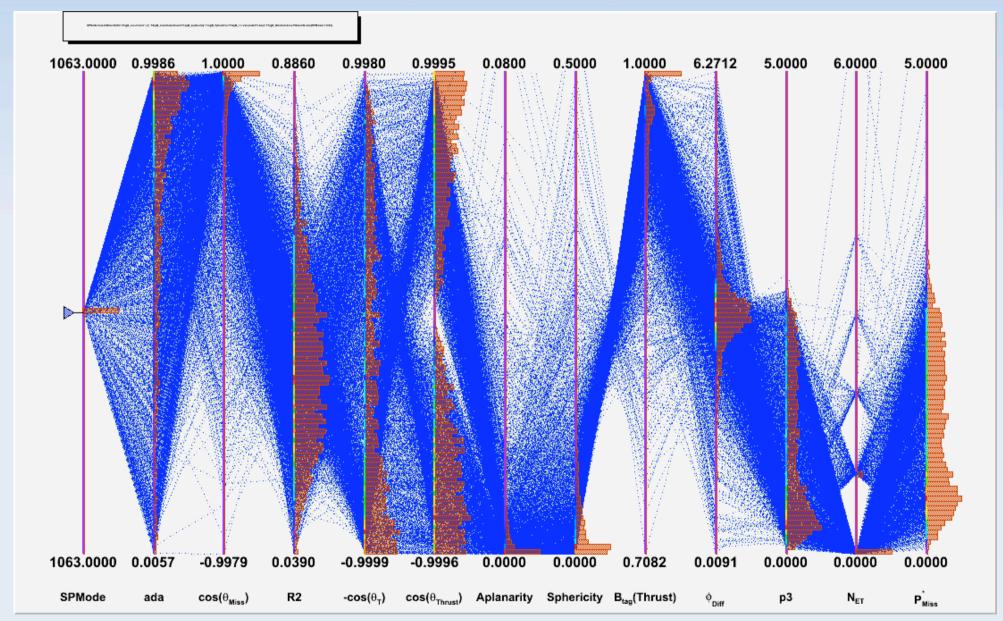

- Use a BDT to classify events.
- Train for each τ mode.
- Use many weakly discriminating Your variables such as:
 - ρ, a₁ candidate mass,
 - Momentum of τ daughter,
 - $\cos \theta_{\text{miss}}$...
- Use 11-18 variables in training (τ mode dependent).


Using a Boosted Decision Tree for $B \rightarrow \tau \nu$

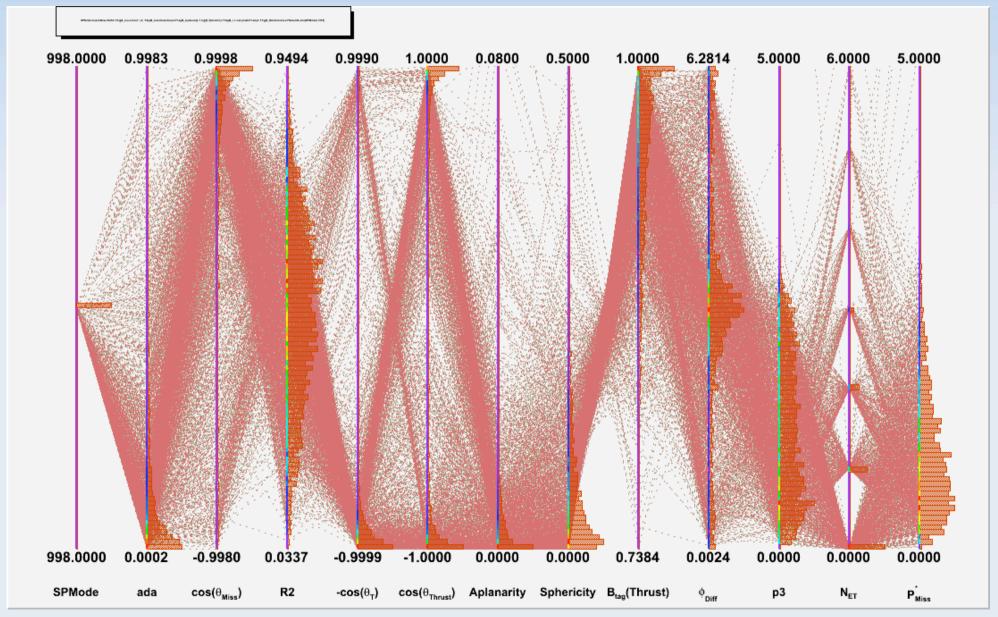
- Raw signal/background distribution not most useful.
- Calculate Signal Efficiency and Background rejection for different cuts.
- Plot Signal Efficiency against Background rejection.
- Very high background rejection can be obtained: At cost of lower signal efficiency.

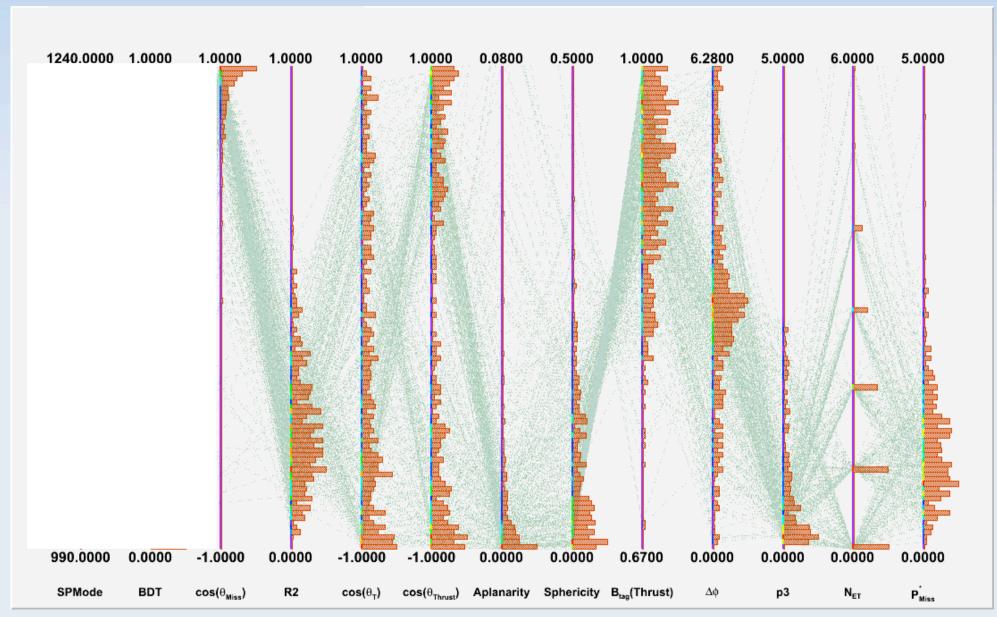
Using a Boosted Decision Tree for $B \rightarrow \tau \nu$


- Standard cuts perform very well in electron mode – very difficult to beat with MVA.
- The other τ decay modes show some promise of improvement using MVA.


Visualisation of Parameters

- Multi-dimensional problems are difficult to visualise.
- More dimensions → More Difficult to visualise.
- Parallel Coordinates are a visualisation method.
 - One (parallel) axis for each variable.
 - Each event is represented by a line.
- Background types represented by a different colours.
- Colour Scheme used in plots:
 Signal uds cc B⁰B⁰ B⁺B⁻
- Available in ROOT 5.17 (and above).
- Example is shown for variables for π mode.


Example for π Variables


Signal Only

Light Continuum (uds) Only

All MC types

Prospects

- BaBar has collected its full dataset of Y(4S) decays.
- The next sets of analyses carried out aim to be the definitive BaBar analyses.
- Work is ongoing to incorporate as many improvements as possible during this intense analysis period.
- B→τν will continue to be a subject of great interest at potential at the next generation of proposed B-factories: SuperB and SuperKEKB.

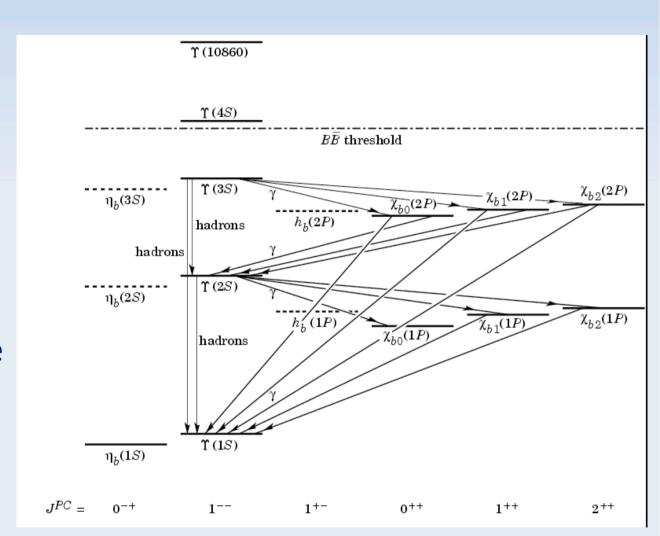
Summary

- The decay $B \rightarrow \tau v$ can be used to measure parameters unavailable to other B decays, and to constrain the Unitarity Triangle.
- It can also put constraints on New Physics Charged Higgs sector.
- Babar and Belle have seen evidence of this decay.

$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.20^{+0.40}_{-0.38}(\text{stat.})^{+0.29}_{-0.30}(\text{bkg syst.}) \pm 0.22(\text{syst.})) \times 10^{-4},$$

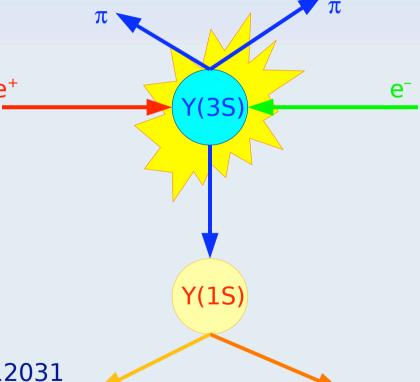
$$\mathcal{B} = (1.79^{+0.56}_{-0.49} \quad ^{+0.39}_{-0.46}) \times 10^{-4}$$

 New methods could hopefully move this closer to a discovery.


Back-Up Slides

Y(nS) Physics

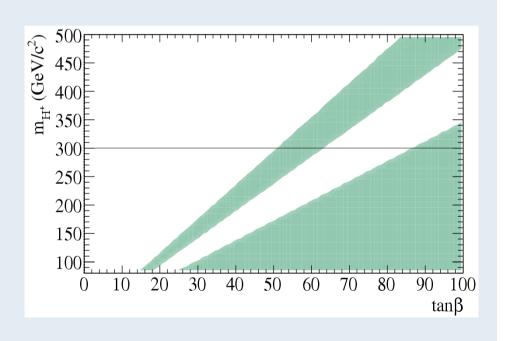
- Taken 30fb⁻¹ at Y(3S) resonance, ~90M Y(3S) events.
- \sim 10× the previous largest sample.
- Take 20fb⁻¹ at the Y(2S) resonance, ~140M events.
- Standard Model:
 - Search for new states;
 - Bottomonium Spectroscopy.
- Beyond the Standard Model:
 - Low mass Higgs.
 - Lepton Flavour violation.
 - Low mass Dark Matter

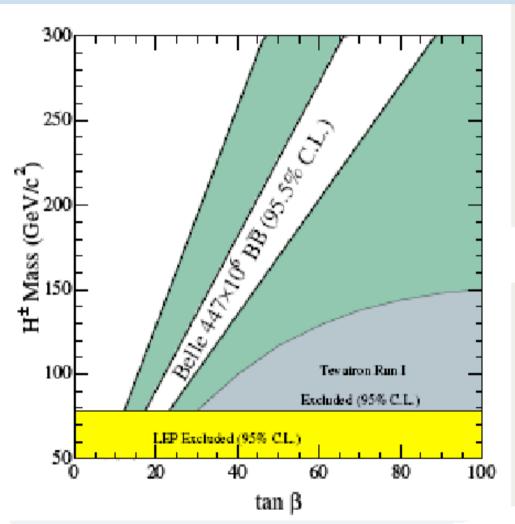

Y(nS) Physics - Bottomonium

- Solid lines:
 Discovered.
- Dashed lines: Predicted.
- Most predicted states accessible.
- Known states have few measured branching fractions.

Y(nS) Physics — Light Higgs

- Recent work in NMSSM interested in low mass CP-odd Higgs (a).
- Avoids direct LEP constraints.
- Would decay to ττ, light hadrons or charmed hadrons depending on mass.


- Hiller, hep-ph/0404220
- Dermisek, Gunion, McElrath, hep-ph/0612031


Y(nS) Physics - Leptons

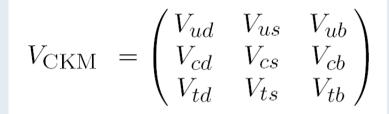
- Measure leptonic decays of Y(nS).
- Different rates for e.g. $\mathcal{B}(Y(nS)) \rightarrow \tau^+ \tau^-$ and $\mathcal{B}(Y(nS)) \rightarrow \mu^+ \mu^-$ would be departure from Lepton Universality.
- Could be caused by low mass Higgs.
- Also search for lepton flavour violation, e.g.
 B(Y(3S))→ τ⁺μ⁻.

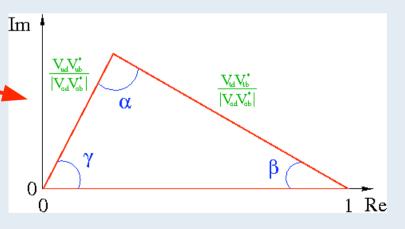
Belle B→τν

• Comparison of BaBar and Belle exclusions from $B \rightarrow \tau v$.

Unitarity Triangle

- Weak eigenstates ≠ Flavour eigenstates (Strong, EM).
- Two generations of quarks described by Cabibbo matrix: $\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$


$$\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$


- CKM matrix describes quark mixing with 3 generations.
- Apply Unitary condition $V^{\dagger}V = I$.
- 9 equations, e.g.

$$V_{ud}V_{ud}^* + V_{us}V_{us}^* + V_{ub}V_{ub}^* = 1.$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- Gives Unitarity Triangle.
- Measure angles α , β , and γ and lengths of sides.

MVA method comparison

 Summary Slide by Ilya Narsky.

	Neural Net	RBF	SVM	Trees (CART)	Boosted and bagged trees	MARS	k-NN	VAE
Predictive power						0		
Ability to deal with irrelevant inputs							•	0
Interpretability	•					0		
Curse of dimensionality			0					
Computational scalability with adding new dimensions		•	•			0		0
Training stability				0			0	
Response time		0	0		0	0		•
Response time	o fair	O		oor	norrible			

 Part of talk available on SPR homepage:

http://www.hep.caltech.edu/~narsky/spr.html