

HUNTING FOR SUSY AT ATLAS

Antonella De Santo Royal Holloway, University of London

Edinburgh, October 3, 2008

Outline

Introduction

The LHC The ATLAS experiment

Supersymmetry

Motivations Benchmarks and strategy Early physics reach

Conclusions

THE LHC AND ATLAS

Collisions at a hadron collider

LHC's Main Goals

Elucidate mechanism for EW symmetry breaking Search or Higgs boson in O(100 GeV)-O(1 TeV) range

If no light Higgs is found, study WW scattering at high mass

Look for evidence of new physics at TeV-scale

Deviations from Standard Model predictions in data

Supersymmetry

(and Exotics...)

LHC's Main Goals

Detector Requirements

Excellent position and momentum resolution in central tracker

b-jets, taus

Excellent ECAL performance

electrons, photons

v. good granularity (energy and position measurements)

Good HCAL performance

jets, Etmiss (neutrinos, SUSY stable LSP, etc)

good granularity (energy and position measurements)

good η coverage (hermeticity for Etmiss measurements)

Excellent muon identification and momentum resolution

from "combined" muons in external spectrometer + central tracker

The ATLAS Detector

Edinburgh, 3rd Oct 2008

The ATLAS Trigger

"Seeded" and "stepwise"

early rejection of uninteresting events minimum amount of processing maximum flexibility

Rols "seed" trigger reconstruction chain <10% of the event accessible at L2 EF seeded by L2 ("offline" reco)

Reduced CPU/ bandwidth requirements but increased complexity

Avoid biases but retain flexibility to account for the "unexpected"

Edinburgh, 3rd Oct 2008

e.m. clusters

"Seeded" and "stepwise"

early rejection of uninteresting events minimum amount of processing maximum flexibility

Rols "seed" trigger reconstruction chain <10% of the event accessible at L2 EF seeded by L2 ("offline" reco)

Reduced CPU/ bandwidth requirements but increased complexity

Avoid biases but retain flexibility to account for the "unexpected"

Edinburgh, 3rd Oct 2008

"Seeded" and "stepwise"

early rejection of uninteresting events minimum amount of processing maximum flexibility

Rols "seed" trigger reconstruction chain <10% of the event accessible at L2 EF seeded by L2 ("offline" reco)

Reduced CPU/ bandwidth requirements but increased complexity

Avoid biases but retain flexibility to account for the "unexpected"

Edinburgh, 3rd Oct 2008

"Seeded" and "stepwise"

early rejection of uninteresting events minimum amount of processing maximum flexibility

Rols "seed" trigger reconstruction chain <10% of the event accessible at L2 EF seeded by L2 ("offline" reco)

Reduced CPU/ bandwidth requirements but increased complexity

Avoid biases but retain flexibility to account for the "unexpected"

Edinburgh, 3rd Oct 2008

Early Physics Triggers for SUSY

Early SUSY searches will mainly concentrate on inclusive signatures

multi-jets large missing transverse energy possibly leptons (see later)

Crucial to keep the trigger selection criteria as simple as possible to minimize biases and systematic effects

Experience shows that an Etmiss trigger takes time to become established

due to instrumental effects

Etmiss also crucial to define control/signal regions

Strategy is to de-emphasize Etmiss trigger in early days rely on leptons and/or jets instead

STATUS

The world did not come to an end...

September 10, 2008

A Great Start...

Edinburgh, 3rd Oct 2008

Unfortunately...

Incident in LHC sector 34

Geneva, 20 September 2008.

During commissioning (without beam) of the final LHC sector (sector 34) at high current for operation at 5 TeV, an incident occurred at mid-day on Friday 19 September resulting in a large helium leak into the tunnel. Preliminary investigations indicate that the most likely cause of the problem was a faulty electrical connection between two magnets, which probably melted at high current leading to mechanical failure. CERN's strict safety regulations ensured that at no time was there any risk to people.

A full investigation is underway, but it is already clear that the sector will have to be warmed up for repairs to take place. This implies a minimum of two months down time for LHC operation. For the same fault, not uncommon in a normally conducting machine, the repair time would be a matter of days.

Further details will be made available as soon as they are known.

(R.Aymar, CERN DG)

Unfortunately...

Incident in LHC sector 34

Geneva, 20 September 2008.

First collisions 2009 expected in 2009 During commissioning (without beam) of the final LHC high current for operation at 5 TeV, an incident 19 September resulting in a large bet investigations indicate that the electrical connection current leading me sector will have mplies a minimum of two me same fault, not uncommon in a

m be made available as soon as they are known.

(R.Aymar, CERN DG)

that

n nd

Fur

A De Santo, RHUL

22 Sep 200

SUPERSYMMETRY

Why go Beyond the Standard Model?

Despite its many successes, the Standard Model is widely believed to be only an effective theory, valid up to a scale Λ << M_{Planck}

Gravity not included in SM

Hierarchy/naturalness problem:

 $M_{EW} \ll M_{Planck}$

Fine-tuning

Unification of couplings

Need a more fundamental theory of which the SM is only a low-energy approximation

Edinburgh, 3rd Oct 2008

Hierarchy Problem and Naturalness

In SM, loop corrections to Higgs boson mass:

$$\delta m_{H}^{2} = O\left(\frac{\alpha}{\pi}\right)\Lambda^{2}$$
 Theory cut-off

Natural scale of scalar mass is very large!

These corrections, which are large, give rise to fundamental problems when requiring that:

m_H << fundamental mass scale (i.e. M_{Planck})

(hierarchy problem)

Corrections $\delta m_{\text{H}}{}^2$ to Higgs mass should not be >> $m_{\text{H}}{}^2$

(naturalness)

Need either fine-tuning or protective symmetry!

Unification of Coupling Constants in the SM

Supersymmetry

Space-time symmetry that relates fermions (matter) and bosons (interactions)

$$Q|boson\rangle = |fermion\rangle$$
 and $Q|boson\rangle = |fermion\rangle$

Further doubling of the particle spectrum

Every SM field has a "superpartner" with the same mass

Spin differs by 1/2 between SUSY and SM partners

Identical gauge numbers

Identical couplings

Superpartners have not been observed

SUSY must be a broken symmetry

But SUSY-breaking terms in Lagrangian must not re-introduce quadratic divergences in theory !

Minimal Supersymmetric Standard Model

	Standard Model Particles and Fields		Supersymmetric Partners					
			Inter Eiger	raction nstates	Mass Eigenstates			
	Symbol	Name	Symbol	Name	Symbol	Name		
	q = u, d, c, s, t, b	quark	${\widetilde{q}}_{\scriptscriptstyle L}, {\widetilde{q}}_{\scriptscriptstyle R}$	squark	${\widetilde q}_1, {\widetilde q}_2$	squark		
	$l=e,\mu, au$	lepton	$\widetilde{l}_{_R},\widetilde{l}_{_L}$	slepton	$\widetilde{l_1},\widetilde{l_2}$	slepton		
	$l = v_e, v_\mu, v_\tau$	neutrino	\widetilde{V}	sneutring	\widetilde{V}	sneutrino		
	g	gluon	$\widetilde{o}_{\mathcal{O}}$	gluino	õ	gluino		
	W^{\pm}	W-boson	\widetilde{W}^{\pm}	wino	$\widetilde{\boldsymbol{\gamma}}_{\cdot}^{\pm}$			
	H^+_u, H^d	charged Higgs boson	${\widetilde H}^{\scriptscriptstyle +}_{\scriptscriptstyle u}, {\widetilde H}^{\scriptscriptstyle -}_{\scriptscriptstyle d}$	charged higgsino	$\sum \lambda 1,2$	chargino		
	В	B-field	\widetilde{B}	bino				
	W^0	W ⁰ -field	${\widetilde W}^{ 0}$	wino	$\widetilde{\chi}^0_{1,2.3.4}$	neutraling		
bu	$\overline{H^0_u,H^0_d}$	neutral Higgs boson	${ ilde H}^0_{u}, { ilde H}^0_{d}$	neutral higgsino		2		

Edin

Supersymmetric Solution to Divergences

Bosonic and fermionic diagrams now give equal and opposite contributions:

$$\delta m_{H}^{2} = \left(\frac{g_{f}^{2}}{16\pi^{2}}\right) \left(\Lambda^{2} + m_{f}^{2}\right) \left(-\left(\frac{g_{S}^{2}}{16\pi^{2}}\right) \left(\Lambda^{2} + m_{S}^{2}\right) = O\left(\frac{\alpha}{4\pi}\right) \left|m_{S}^{2} - m_{f}^{2}\right|$$

If #boson = #fermions and they have equal masses and couplings, the quadratic divergences cancel

Higgs mass correction $\delta m_H^2 < m_H^2$ if $\left| m_S^2 - m_f^2 \right| < \sim \text{TeV}^2$

Gauge boson contribution cancelled by gaugino contribution

Edinburgh, 3rd Oct 2008

Unification of Coupling Constants in MSSM

Now unification of strong, weak and e.m. forces achieved at $\sim M_{GUT}$

Edinburgh, 3rd Oct 2008

R-parity

A new symmetry is introduced to cure unwanted effects (e.g. proton decay) from lepton and baryon number violating terms in MSSM:

$$R_{p} = (-1)^{3(B-L)+2S} | R_{p} = +1 (SM) -1 (SUSY)$$

R_p conservation

Stable LSP (=Lightest SUSY Particle)

typically the lightest neutralino (good DM candidate) Pair-production of sparticles

in scattering of SM particles (e.g. pp at the LHC)

In the following, will assume R-parity conservation

Neutralino as Dark Matter Constituent

Edinburgh, 3rd Oct 2008

Benchmarks and Strategy

Baseline paradigm is R_p-conserving mSUGRA:

- m₀ universal scalar mass
- m_{1/2} universal gaugino mass
- A₀ trilinear soft breaking parameter at GUT scale
- tan β ratio of Higgs vevs

 $sgn(\mu)$ sign of SUSY Higgs mass term

$$\boldsymbol{R}_p = (-1)^{3(B-L)+2S}$$

Stable LSP (good DM candidate)

Other scenarios are also considered (GMSB, AMSB, ...)

Full coverage of signatures and topologies in the entire phase space

If it's there, don't miss it !!

mSUGRA Benchmarks

Four WMAP-compatible regions, with different mechanisms for neutralino annihilation and rather different observable phenomenology

bulk

neutralino mostly bino, annihilation to ff via sfermion exchange

focus point

neutralino has strong higgsino component, annihilation to WW, ZZ

co-annihilation

pure bino, small NLSP-LSP mass difference, typically coannihilation with stau

Higgs funnel

decay to fermion pair through resonant A exchange – high $tan\beta$

SUSY Cross-Sections

Production Mechanisms

Possible Final States

Edinburgh, 3rd Oct 2008

Inclusive Searches

Complex long decay chains to undetected $\tilde{\chi}_1^0$ Inclusive search:

high multiplicity of high-p_T jets
large E_T^{miss} (from escaping LSP)
≥ 0 (high-pT) leptons

Inclusive Searches

500

1000

3000 3500

Effective Mass [Gev]

4000

40

A (simulated!) SUSY event in ATLAS

Standard Model Backgrounds

Dominant SM backgrounds:

multi-jet QCD W/Z+jets ttbar dibosons Need robust, data-driven background predictions (as well as predictions from reliable Monte Carlo simulations)

Before we can claim a discovery, we must achieve complete confidence in our understanding of the detectors, the trigger, the reconstruction and particle identification algorithms and, above all, of the SM backgrounds

Data-Driven Background Estimation – An Example

Discovery potential with 1 fb⁻¹

Discovery potential largely dominated by cross-sections and backgrounds

Constraining SUSY – Dilepton Edges

More Edges

Fits to Mass Edges

Already with O(1 fb-1), the fits to these edges can give reasonably good estimates of SUSY mass differences, and can be used to constrain SUSY

assumption Under the that the considered decay chain is the one actually realised in data

Endpoint

 $m_{\ell \ell q}^{\max}$

 $m_{\ell \ell q}^{\min}$

mmax

lq(low) m^{max}

lq(high)

Inclusive Trilepton Analysis – I

Crucially simple analysis flow:

- 3 isolated leptons (e, μ) (taus are next step!)
- At least 1 high-pt jet

Don't need large missing E_T cut – good !!

Exclusive 3-lep Analysis at Focus Point

Not an early physics channel

But potentially the only way to see SUSY if both scalars and gluino are too heavy!

A. De Santo et al., ditto

4.0.4	- 4			10						
10 fb ⁻¹			No cut	N_{ℓ}	SFOS	Track Isol.	Z-window	E_T	Jet Veto	IP_N
	SU	2 X X	64036.6	186.4	177.7	153.2	119.9	98.3	86.7	80.9
	SU21	non-ĨĨ	7080.5	163.3	127.2	95.4	85.3	83.8	0.0	0.0
		tī	4406578.8	4440.2	2812.2	634.3	507.5	475.7	327.7	179.7
	Zb		1591156.7	6616.1	6562.8	2422.8	386.0	0.0	0.0	0.0
	Z	W	156719.6	1926.8	1910.1	1682.2	321.7	217.8	214.5	204.4
	2	ZZ	38201.8	589.4	579.9	475.8	56.8	13.4	11.8	11.0
	и	W VW	400516.9	32.7	24.5	8.2	8.2	8.2	8.2	0.0
	2	Zγ	32832.3	93.9	90.6	26.8	6.7	3.4	3.4	3.4
(3)		$\tilde{\chi}\tilde{\chi} = S$	S/\sqrt{B}	1.6	1.6	2.1	3.2	3.5	3.6	4.1
(1)	SM+	$-\mathrm{non}-\tilde{\chi}\tilde{\chi}=B$	S/B	0.0	0.0	0.0	0.1	0.1	0.2	0.2
(jj)	A	II SU2= S	S/\sqrt{B}	3.0	2.8	3.4	5.7	6.8	3.6	4.1
(11)		SM = B	S/B	0.0	0.0	0.0	0.2	0.3	0.2	0.2

CONCLUSIONS

Conclusions

With the LHC turn on, new physics at the TeV scale is becoming accessible experimentally for the first time at an accelerator

SUSY provides a well motivated extension to the Standard Model

Very excitingly, we might have the possibility to observe "dark matter in a laboratory"

LET THE SHOW BEGIN !!