Search for High-Mass Resonances in CDF Dimuon Data

Chris Hays, Oxford University

A Brief History of Neutral Resonances

J/ψ discovery

- 1970: Fourth quark would prevent flavor changing neutral currents (s \rightarrow d)
 - GIM mechanism (Glashow, Iliopoulos, and Maiani)
- 1974: "November revolution"
 - Resonance discovered in e^+e^- collisions at SLAC (ψ)
 - Resonance discovered in pp collisions at Brookhaven (J)
- Verified existence of charm quark

October 10, 2008

A Brief History of Neutral Resonances

• Upsilon discovery

- Discovered at Fermilab in 1977 in the dimuon final state
- Demonstrated existence of third generation of quarks

• Z⁰ discovery

- Discovered 1983 with 8 events from UA1 and UA2
- Confirmed central prediction of electroweak theory

The Next Discovery

- Good chance a neutral resonance will be the next discovery
 - Standard model Higgs?

Many weaknesses of the standard model 'fixed' with resonances

Hierarchy between weak and Planck scales (Higgs mass fine-tuning) *Extra dimensions Supersymmetry (SUSY)*

Lack of force unification U(1) symmetries in grand unified theories

Light neutrino masses U(1) or $SU(2)_R$ symmetries

Parity violation in the weak force Left-right symmetric model $(SU(2)_L \times SU(2)_R)$

October 10, 2008

Hints?

Electroweak data more compatible with new physics than SM Z-Z' mixing one possible explanation

CDF Run II Preliminary

CDF search in dielectron data found excess at m ≈ 240 GeV

0.6% of pseudoexperiments find more significant excess in search region

October 10, 2008

Search for Neutral Resonances

• A resonance decaying to dimuons can have spin 0, 1, or 2

• **Spin 0**

- No fundamental scalar particle yet observed
- Higgs branching ratio to dimuons $O(10^{-4})$
- MSSM Higgs can have enhanced production rate
- Sneutrino resonance possible if *R*-parity violated

• Spin 1

- Many models predict new U(1) or SU(2) with neutral gauge boson Z'

• Spin 2

 Excited graviton resonances G* predicted by Randall-Sundrum model of warped extra dimensions

Sneutrino Production

• To solve hierarchy problem, sparticles should have electroweak-scale masses

Resonant sparticle production requires 'R-parity' violation

- SM particles: R = 1; sparticles: R = -1
- Implication: lightest sparticle decays
 - Can still be dark matter candidate if coupling is weak
- Two terms in Lagrangian relevant for production and decay

$$\mathcal{W}_{\not kp} = \lambda_{ijk} \mathbf{L}_{i} \mathbf{L}_{j} \mathbf{e}^{c}_{k} + \lambda'_{ijk} \mathbf{L}_{i} \mathbf{Q}_{j} \mathbf{d}^{c}_{k}$$

Decay $\widetilde{\nu}_i \rightarrow \mu \mu^c (\lambda_{i22})$

 L_i , Q_i : SU(2) doublet superfields e^c_k , d^c_k : SU(2) singlet superfields

Production $dd^{c} \rightarrow \widetilde{v}_{i}(\lambda'_{i11})$

Sneutrino Width and Limits

Sneutrino width

- Partial width:

 $\Gamma(\tilde{v}_i \rightarrow f_j f_k) = c_{jk}/(16\pi) \lambda^{(')}_{ijk} m_{vi}$

For $\lambda'_{211} = 0.5$, $\lambda_{222} = 1$, and $m_{\tilde{v}i} = 100$ GeV: $\Gamma = 3.5$ GeV

Mass and coupling limits

- Indirect:
 - Ratio of $\pi \rightarrow ev$ to $\pi \rightarrow \mu v$ partial widths - $\lambda'_{111} < 0.26 \text{ m}_{\widetilde{d}} / \text{ TeV}$ and $\lambda'_{211} < 0.59 \text{ m}_{\widetilde{d}} / \text{ TeV}$
 - Ratio of $\tau \rightarrow \pi v$ to $\pi \rightarrow \mu v$ partial widths - $\lambda'_{311} < 1.2 \text{ m}_{d}^{\sim}/\text{ TeV}$
- Direct:
 - *CDF searches in ee and µµ decays (200 pb⁻¹)*
 - $-m_{\tilde{v}} > 680$ (ee), 665 GeV (µµ) for $\lambda'_{111} \times BR = 0.01$
 - $-m_{\tilde{v}} > 460 \text{ (ee)}, 450 \text{ GeV } (\mu\mu) \text{ for } \lambda'_{i11}^2 \times \text{BR} = 0.001$

Z' Production

- Z' observable if new gauge symmetry broken at TeV scale
 - Many models predict electroweak-scale U(1) symmetry
 - Useful test model: Superstring-inspired grand unified theory $(E_8 \times E_8')$
 - Compactification of extra dimensions breaks E_8 to $E_6 \times SU(3)$
 - E_8' is a hidden sector that breaks supersymmetry

An example of breaking E_6 to the Standard Model: $E_6 \rightarrow SO(10) \times U(1)$ $\rightarrow SU(4)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ $\rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y$

All matter particles in fundamental 27 representation of E_6 Contains 16 (SM fermions), 10 (Higgs doublets) and 1 of SO(10)

$$(\mathbf{16})_1 = \begin{pmatrix} \overline{u} & \overline{u} & \overline{u} & \overline{v}_e \\ \overline{d'} & \overline{d'} & \overline{d'} & e^+ \end{pmatrix} \begin{pmatrix} u & u & u & v_e \\ d' & d' & d' & e^- \end{pmatrix}_1$$

Restores parity conservation, allows for seesaw mechanism for small neutrino masses, and requires quantized EM charge October 10, 2008 Edinburgh University Seminar

Z' Production

• E₆ breaking can result in multiple U(1) symmetries

$$E_{6} \rightarrow SO(10) \times U(1)_{\psi}$$

$$\rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$$

$$\rightarrow SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{\chi} \times U(1)_{\psi}$$

$$\rightarrow SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \times U(1)'$$

$$\rightarrow SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$$

Assume electroweak-scale U(1)' is a linear combination of U(1)_{χ} × U(1)_{ψ} $U(1)' = U(1)_{\psi} \cos\theta + U(1)_{\chi} \sin\theta$

Generic U(1)' can be expressed in terms of θ : $E_6 \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_\eta \quad (\theta = \tan^{-1}(3/5)^{1/2})$ $SU(2)_I \text{ (instead of SU(2)_R) with W' and Z' with zero EM charge (<math>\theta = \pi - \tan^{-1}(5/3)^{1/2}$) $U(1)_N \text{ where right-handed neutrino has no charge (<math>\theta = -\tan^{-1}(1/15)^{1/2}$) Secluded U(1)' with Z'_{sec} mass resulting from VEV of scalar with no SM charge ($\theta = \pi - \tan^{-1}(27/5)^{1/2}$)

Couplings of $Z_{\psi}', Z_{\chi}' Z_{\eta}', Z_{I}', Z_{N}', Z_{sec}'$ determined by group theory and weak charge

October 10, 2008

Z' Width and Limits

• E₆ Z' couplings smaller than SM Z

- $\Gamma_{Z'} < \Gamma_Z$ if Z' only decays to SM particles
- If Z' decays to 27 of E_6 , width can increase by factor of 5-10

• Z' mass limits dominated by CDF

 LEP uses angular distributions of fermion pairs to set 1787 GeV mass limit for Z' with SM couplings

Analysis	Z'_{sec}	Z'_I	Z'_N	Z'_ψ	Z'_{χ}	Z'_η
CDF $ee + \mu\mu (0.20 \text{ fb}^{-1})$	-	615	-	675	690	720
CDF ee (0.45 fb ⁻¹)	680	650	710	725	740	745
CDF <i>ee</i> (1.3 fb ⁻¹)	-	729	_	822	822	891
CDF ee (2.5 fb ⁻¹)	794	735	837	851	862	930

October 10, 2008

Graviton Production

- Apparent hierarchy between weak and gravitational scales could be due to metric (Randall-Sundrum model)
 - Add exponential factor as function of extra dimension:

$$ds^2 = e^{-2kr\phi} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - r^2 d\phi^2$$
 r: compactification radius

Standard model fields confined to 'brane' at $\phi = \pi$ Gravitational field determined by graviton flux through a surface Exponentially larger surface area at $\phi = 0$ Most gravitons propagate in extra dimension, tiny fraction 'leaks' to SM brane

Graviton Width and Limits

- Graviton excitations occur at the gravity mass scale
 - Expect first excitation to be ~1 TeV in R-S model

- Width proportional to $(k / M_{Pl})^2$
 - Narrow resonance for k / $M_{Pl} \lesssim 0.1$
 - String theory with O(1) couplings: $k / M_{Pl} \sim 0.01$

- Tevatron sensitive to O(1 TeV) graviton resonances
 - DØ ee + $\gamma\gamma$ search: $M_{G^*} > 900$ GeV for k / $M_{Pl} = 0.1$
 - CDF combination of ee, $\gamma\gamma$ searches: $M_{G^*} > 889$ GeV for k / $M_{Pl} = 0.1$

Resonance Searches

General strategy

- Scan invariant mass spectrum for narrow peak
 - Width dominated by detector resolution
- Quantify significance of all excesses
 - Understand background shape and uncertainty
- Determine probability of observing most significant excess

Common issues

- Search window varies with mass due to resolution
 - Window causes a loss in acceptance
- Coarse scan can miss a significant fraction of the resonance

CDF Dimuon Resonance Search

Interpret results from data

CDF Detector

Muon detectors for triggering in $|\eta| < 1$

Tracking drift chamber in 1.4 T magnetic field for momentum measurement in $|\eta| < 1$

Drift Chamber Momentum Measurement

• Lorentz force:

 $\vec{F} = \vec{qv} \times \vec{B} \quad (\vec{B} = B\hat{z}, \vec{v} = v_r \hat{r} + v_z \hat{z}, \vec{F} = (mv_r^2/R)\hat{\phi})$ $mv_r^2/R = evB$ $p_T = eBR$

CDF tracker measures 96 hits in rφ̂ Hit resolution rδφ → curvature resolution δc c ≡ 1/(2R) (c ∝ 1/p_T)

Parameters:

150 µm intrinsic hit resolution Inner hit $r \approx 40$ cm, outer hit $r \approx 130$ cm Relative curvature resolution 0.15% With beam constraint $\delta c/c \approx 0.05\%$

Drift Chamber Alignment

- Alignment optimizes resolution and reduces biases
- Two-step procedure:
 - Fix wire positions at endplates
 - Adjust wire shapes between endplates

Endplate positions fit using hit residuals from cosmic-ray tracks

Single track fit through both sides of detector

Drift Chamber Alignment

• Adjust wire positions using cosmic-ray track parameters

- Correct shape determined from gravitational and electrostatic calculations
- Derive corrections from incoming-outgoing track parameter differences

• Apply track-level curvature corrections

- Use difference between e⁺ and e⁻ ratio of
 calorimeter energy (E) to track momentum (p)
 - E charge-independent
 - *p* can have charge-dependent misalignment bias

Resolution and Scale Calibration

- Simulate muons in tracker using fast tunable simulation
 - Developed for W mass measurement
- Tune hit resolution using width of upsilon $\rightarrow \mu\mu$ resonance
- Tune beam spot size using width of Z resonance
- Calibrate momentum scale using J/ψ , upsilon, Z resonances

Residual scale and resolution uncertainties have negligible effect on search

CDF Dimuon Resonance Search

Interpret results from data

Scanning Distribution

- Mass scan: significant variation of resolution with mass
- Intrinsic curvature resolution independent of curvature
 - Low momentum: multiple scattering causes curvature dependence
 - High-mass resonance search: constant resolution in $1/p_T \rightarrow 1/m$

17% inverse mass resolution at 1 TeV

Scan inverse mass distribution for resonance

October 10, 2008

Scanning Procedure

- Search m⁻¹ < 10 TeV⁻¹ (m > 100 GeV) using 35 bins
 - Peak width due to resolution ≈ 3 bins (i.e., step size $\approx 1/3$ of resolution)
- Use 70 GeV < m < 100 GeV for normalization
 - Removes luminosity and other systematic uncertainties at 100 GeV
- Fit for number of signal events in search region at each mass
 - Compare signal-plus-background templates to data
 - Determine Feldman-Cousins 95% confidence limits
- Calculate probability of observing most significant excess
 - Obtain from background-only pseudoexperiments

CDF Dimuon Resonance Search

Interpret results from data

Drell-Yan Background

Z/γ* dominates SM expectation in almost entire search region

- Predict using PYTHIA with a NNLO multiplicative k-factor correction
 - $\approx 10\%$ variation in search region

Smooth background shape

Resonance peak clearly observable above Drell-Yan background

Dominant uncertainties due to PDFs (16% at 1 TeV) and higher-order corrections (9% at 1 TeV)

W + jet and multijet events can produce dimuons

- Hadron decays to muons or pions escaping calorimeter (no hard collision)
- Dominate like-charge dimuon sample
 - Use to obtain background normalization

Inverse invariant mass shape has two components

- 1: Decays before tracker / pions escaping calorimeter
- 2: Decays inside tracker

1: Use minimum-ionizing same-sign (SS) tracks in multijet events to obtain mass shape

Consistent with opposite-sign (OS) m⁻¹ *shape*

Obtain OS/SS ratio from multijet events

October 10, 2008

Decays inside tracker the dominant background at highest mass

- Outer hits are attached to another track's inner hits
 - Can result in a straight track (i.e., infinite momentum) •

Example: Reconstructed $p_T = 443 \text{ GeV}$

140

Radius (cm)

120

- Reduce decay-in-flight background using hit residual pattern
 - $-\chi^2/dof$ and number of transitions to opposite side of wire

Without cuts, same-sign distribution has long tail to high invariant mass

• Fit same-sign distribution to two shape components

- Flat component from decays-in-flight, peaking shape from multijet data

Expect few 10⁻³ events from misreconstructed muons at highest masses

100% normalization uncertainty for m > 1 TeV

October 10, 2008

WW and tt Background

- W-boson decays to muons result in muon pairs
 - Use NLO cross section prediction
 - Obtain inverse mass shape from PYTHIA and full detector simulation

October 10, 2008

Cosmic-Ray Background

• Cosmic-ray muons are reconstructed as muon pairs

- Can have very large momentum and reconstructed mass
- Reduced to small level by cosmic-ray track-fit algorithm and χ^2 cut
- Further reduction: require consistent origination times between muons
 - ~3 ns time difference between cosmic ray on opposite sides of tracker
 - \sim 3 ns bias in fit for origination time of incoming muon

Fit for background fraction using difference

October 10, 2008

CDF Dimuon Resonance Search

Interpret results from data

Signal Acceptance

• Determine acceptance as functions of spin and inverse mass

October 10, 2008

Edinburgh University Seminar

TeV/M

Acceptance Uncertainty

- Compare acceptance from fast simulation to full simulation
 - 3% uncertainty on slope
- Compare calorimeter selection efficiency to Z data
 - Few percent inconsistency in low-p_T region
 - *Negligible (~0.1%) effect on integrated signal*

Effect of 28 events of $m_{Z'} = 400 \text{ GeV}$ after selection

October 10, 2008

CDF Dimuon Resonance Search

• Procedure

Calibrate detector resolution and scale

Understand background and uncertainty

Interpret results from data

October 10, 2008

Determine scanning procedure

Predict signal and uncertainty

Data

• Good agreement in the normalization region...

...and in the signal region

Data Results

• Most significant excess at 103 GeV

6.6% of pseudoexperiments observe a more significant excess

Spin-0 Limits

- Limits on cross section and sneutrino mass
 - Choose a variety of $\lambda^2 \times BR$ values (λ : dd $\tilde{\nu}$ coupling at production)

October 10, 2008

Edinburgh University Seminar

 $\tilde{\nu}$

278

397

457

541

662

751

810

Spin-1 Limits

• Limits on cross section and Z' mass for various models

Model	Mass Limits, 95% CL (GeV/c ²)
Z' (SM)	1030
Ζ' (η)	975
Ζ' (χ)	892
Ζ' (ψ)	878
Z' (N)	861
Z' (I)	789
Z' (sq)	754

October 10, 2008

Spin-2 Limits

Limits on cross section and mass of first excited R-S graviton
 Choose several couplings (k / M_{Pl})

Graviton k/M _{PI}	Mass Limit, 95% CL (GeV/c ²)
0.1	921
0.07	824
0.05	746
0.035	651
0.025	493
0.015	409
0.01	293

October 10, 2008

Neutral Resonances: Present Limits

• New results are world's highest direct mass limits for almost every model

Analysis	Spin 0:	Spin 1:	Spin 2:	
	$\widetilde{\mathbf{v}}$ ($\lambda^2 \mathbf{BR} = 0.01$)	Z'_η	$G^*(k/M_{\rm Pl}=0.1)$	
CDF $ee + \mu\mu (0.20 \text{ pb}^{-1})$	665 (μμ)	720	710	
CDF ee (0.45 pb ⁻¹)	-	745	-	
DØ $ee + \gamma\gamma (1.0 \text{ fb}^{-1})$	_	-	900	
CDF $ee + \gamma\gamma (1.3 \text{ fb}^{-1})$	-	891	889	
CDF ee (2.5 fb ⁻¹)	_	933	850	
CDF µµ (2.3 fb ⁻¹)	810	975	921	

Summary

- New technique applied to search for high-mass resonances decaying to dimuons
 - Simplifies search and interpretation
- Set world's highest mass limits for almost every model, mass and coupling
 - Key: excellent CDF tracker resolution
- Neutral resonance discovery could be just around the corner
 - Will soon have increases in luminosity and energy