The NA62/P326 experiment at CERN

Cristina Lazzeroni University of Birmingham

CERN-SPS-2007-035 SPS-M-760

1

New physics searches

- FCNC are forbidden at the Tree level
 - look for New Physics in the Penguin loops
- Lepton Flavour Violation
 - Not a fundamental symmetry
- Various NP models
 - MFV
 - MSSM
 -
- But try to use channels that are
 - Experimentally well measurable
 - Theoretically clean
 - Sensitive to NP
- Not many on the market !

CKM Unitarity and Rare Kaon Decays

The unitarity of the CKM matrix can be expressed by triangles in a complex plane: there are six triangles but one is more "triangular":

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

It is customary to employ the Wolfenstein parameterization: $V_{us} \sim \lambda$ $V_{cb} \sim \lambda^2 A$ $V_{ub} \sim \lambda^3 A(\rho - i\eta)$ $V_{td} \sim \lambda^3 A(1 - \rho - i\eta)$

Golden modes

The 4 Golden Modes of Kaon Physics

Short distance dynamics dominated

W-top quark loops constitute the dominant contribution

(+ small charm contribution in the K⁺ $\rightarrow \pi^+\nu\nu$ decay)

Predicted with high precision in SM if short-distance dominated.....
 ...but potentially different beyond SM

To compare:

Theoretically 'clean' $B \rightarrow s \gamma$:

 $A_{CP} = \frac{\Gamma(\overline{B} \to \overline{X}_{s}\gamma) - \Gamma(B \to X_{s}\gamma)}{\Gamma(\overline{B} \to \overline{X}_{s}\gamma) + \Gamma(B \to X_{s}\gamma)}$ Theory Predition: $A_{CP} = (0.42 \pm 0.03^{+0.15}_{-0.08})\%$ $BR(b \to s\gamma) = (3.15 \pm 0.23) \times 10^{-4}$

Β→s νν (Κ*νν)

Like K*ll but..

- No photon penguin
- Reduced long-distanced effects.
- Smaller SM BF:
 - (1.3^{+0.4}-0.3)X 10⁻⁵

$$B^+ \rightarrow \tau^+ \nu$$

Standard Model: $B(B^{+} \rightarrow \tau^{+}\upsilon) = \frac{G_{F}^{2}m_{B}m_{r}^{2}}{8\pi} \left[1 - \frac{m_{r}^{2}}{m_{B}^{2}}\right]\tau_{B}f_{B}^{2}|V_{ub}|^{2}$ SM Prediction $B = (1.6 \pm 0.4) \times 10^{-5}$ $R_{B \rightarrow \tau \upsilon} \equiv \frac{SUSY}{SM} \approx \left(1 - \frac{\tan^{2}\beta}{m_{H^{\pm}}^{2}}m_{B}^{2}\right)^{2}$

$K \rightarrow \pi \nu \nu$: Theory in the Standard Model

q_{2/3}

₩

e,μ,τ

- FCNC loop processes
- Short distance dynamics dominated
- One semileptonic operator
- Hadronic Matrix Element related to measured quantities in semileptonic K decay

$$\lambda = V_{us} \\ \lambda_c = V_{cs} V_{cd} \\ \lambda_l = V_{ls}^* V_{ld} \\ B(K_{L}^{0} \to \pi^{0} v \bar{v}) = \kappa_L \cdot \left(\frac{\operatorname{Im} \lambda_l}{\lambda^5} X(x_l) \right)^2 + \left(\frac{\operatorname{Re} \lambda_l}{\lambda^5} X(x_l) + \frac{\operatorname{Re} \lambda_c}{\lambda} P_c(X) \right)^2 \right] \\ B(K_{L}^{0} \to \pi^{0} v \bar{v}) = \kappa_L \cdot \left(\frac{\operatorname{Im} \lambda_l}{\lambda^5} X(x_l) \right)^2 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \right) \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda^8 \\ \kappa_+ = r_{K^+} \cdot \frac{3\alpha^2 Br(K^+ \to \pi^0 e^+ v)}{2\pi^2 \sin^4 \theta_W} \cdot \lambda$$

Standard Model Predictions

 $BR(K^+ \to \pi^+ \nu \, \overline{\nu}) \approx (1.6 \times 10^{-5}) |V_{cb}|^4 [\sigma \eta^2 + (\rho_c - \rho)^2] \rightarrow (8.0 \pm 1.1) \times 10^{-11}$ $BR(K_L \to \pi^0 \nu \, \overline{\nu}) \approx (7.6 \times 10^{-5}) |V_{cb}|^4 \eta^2 \rightarrow (3.0 \pm 0.6) \times 10^{-11}$

The uncertainty of the SM prediction is mostly due to uncertainty of the CKM parameters and not to hadronic matrix elements

► Combining information from BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) and BR(K⁰ $\rightarrow \pi^0 \nu \overline{\nu}$) (Buras et al. hep-ph/0508165)

> For a 10% uncertainty on P_c one can extract, in principle, a 3.4% \oplus exp. determination of sin2 β from kaon decays.

It is currently 3.7% from B decays

No SM tree-level contribution

- Strong suppression within the SM because of CKM hierarchy
- Predicted with high precision within the SM at the short-distance level

Rare sensitivity and cleanness, compared to even B system

SM+new

88% of total rate, irred. theo. error = 3%

$$A(K \to \pi \mathbf{v} \mathbf{v}) = f\left(c_{\rm SM} \frac{y_t^2 V_{\rm ts}^* V_{\rm td}}{16 \pi^2 M_{\rm W}^2} + c_{\rm new} \frac{\Delta_{\rm sd}}{\Lambda^2} ; \delta_{\rm long}\right)$$

hadronic matrix element from $BR(K^+ \rightarrow \pi^0 e^+ v)$

energy scale of new d.o.f

S

8

d

Two basic scenarios:

by G.Isidori

Minimal Flavour Violation

flavour symmetry broken only by the (SM) Yukawa couplings

Small deviations (10-20%) from SM

• Stringent correlations among the two $K \rightarrow \pi \nu \nu$ modes and a few rare B decays $[B \rightarrow K \nu \nu, B_{s,d} \rightarrow l^+ l^-]$

A precise exp. info on one of the two $K \rightarrow \pi \nu \nu$ modes is a key ingredient to verify or disproof the MFV hypothesis New sources of Flavour Symmetry

breaking around the TeV scale

- •Potentially large effects, especially in the three CPV K_L decays (no λ^5 suppression)
- Correlations with observables in B physics not obvious

In presence of sizable non-MFV couplings mandatory to explore also the $K_L \rightarrow \pi \ ll$ modes

 \approx Non-standard effects induced by chargino-squarks amplitudes largely dominant in $K \rightarrow \pi v v$ with respect to similar effects in B physics

★The A terms are still largely unconstrained

squark-sector trilinear terms

BNL E787/949: $K^+ \rightarrow \pi^+ \nu \nu$

 $BR(K^+ \to \pi^+ \nu \nu) = 1.47 \stackrel{+1.30}{_{-0.89}} \times 10^{-10}$ hep-ex/0403036 PRL93 (2004)

• 3 Events

Compatible with SM within errors

New measurement of the K⁺ $\rightarrow \pi^+ \nu \nu$ branching ratio (BNL E949)

Three events for the decay $K^+ \to \pi^+ \nu \bar{\nu}$ have been observed in the pion momentum region below the $K^+ \to \pi^+ \pi^0$ peak, 140 < P_{π} < 199 MeV/c, with an estimated background of $0.93 \pm 0.17(\text{stat.})^{+0.32}_{-0.24}(\text{syst.})$ events. Combining this observation with previously reported results yields a branching ratio of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$ consistent with the standard model prediction.

Process	Background events
$K_{\pi 2} \operatorname{TG}$	$0.619 \pm 0.150^{+0.067}_{-0.100}$
$K_{\pi 2} \text{ RS}$	$0.030 \pm 0.005 \pm 0.004$
$K_{\pi 2\gamma}$	$0.076 \pm 0.007 \pm 0.006$
K_{e4}	$0.176 \pm 0.072^{+0.233}_{-0.124}$
CEX	$0.013 \pm 0.013^{+0.010}_{-0.003}$
Muon	0.011 ± 0.011
Beam	0.001 ± 0.001
Total	$0.927 \pm 0.168^{+0.320}_{-0.237}$

TABLE I: Summary of the estimated number of events in the signal region from each background component. Each component is described in the text.

 $BR(K^+ \to \pi^+ \nu \nu) = 1.73^{+1.15}_{-1.05} \times 10^{-10}$

2

SM expectation = $(8.0\pm1.1) \times 10^{-11}$ dominated by *CKM* uncertainty

E787/E949: $BR(K^+ \rightarrow \pi^+ \nu \nu) = 1.73^{+1.15}_{-1.05} \times 10^{-10}$

E391a: $K^0 \rightarrow \pi^0 \nu \nu$

E391a @ KEK 12 GeV proton synchrotron (Tsukuba, Japan)

Best Limit from direct search

RUN II (2005)

- Pencil beam, p_K peaked around 2 GeV/c
- Total K_{L}^{0} decays: 5.1 × 10⁹
- Acceptance: 0.67 %
- Background in signal box: 0.41±0.11 events
- S.E.S. = $(2.9 \pm 0.3) \times 10^{-8}$

For the future:

J-PARC Proposal (April-May 2006) \rightarrow expect 3.5 S.M. events with 50% acceptance

New Physics Reach of the K $\rightarrow \pi vv$ decays

Experimental situation

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
 - 7 events found by E787/E949
 - Measurement in agreement with SM within errors
 - Future experiments should aim at O(100) events
 - FNAL proposal (K⁺ decays at rest) cancelled
 - Proposal for K⁺ decays in flight : CERN P-326/NA62
 - LOI at J-PARC to study decays at rest

• $K^0_{\ L} \rightarrow \pi^0 v \overline{v}$

- Several opportunities
- First result E391a (SES~3 · 10⁻⁸)
- Current Upper limit is **3 orders of magnitude** above MS prediction
- Proposal at J-PARC (expected 3.5 events MS)
- Proposal at U-70, IHEP, Protvino (expected 1.1-2.4 events MS)
- KOPIO terminated
- $K^0_{\ L} \rightarrow \pi^0 e^+ e^- (\mu^+ \mu^-)$
 - Precise knowledge of short-distance contributions
 - Measurement of K_S decays allows more precise SM prediction
 - Limited by background
 - Need increase ~100 in K flux

Direct CP-Violation established

NA62@CERN: $K^{\pm} \rightarrow \pi^{\pm} \nu \nu$

Collaboration

Bern, CERN, Dubna, Fairfax, Ferrara, Firenze, Frascati, Mainz, Merced, Moscow, Napoli, Perugia, Pisa, Protvino, Roma I, Roma II, Saclay, San Luis Potosi, Stanford, Sofia, Torino, Triumf

Birmingham expressed interest, Sol submitted to PPAN in July

Istalled in same location as NA48

- September 2005: P326 proposal to SPSC at CERN
- December 2005: R&D approved by Research Board at CERN
- October-November 2006: Test beam at CERN (LKr and Cedar)
- February 2007: approval of NA62 (run in June-October) to measure $R_{K} = \Gamma(K^{+} \rightarrow e^{+}v) / \Gamma(K^{+} \rightarrow \mu^{+}v)$
- June 2007: NA62 appears in CERN Medium Term Plan 2007-2011 (CERN Council)
- Autumn 2007: Test beams at CERN and LNF (Straw tubes, Veto, RICH)
- December 2007: Proposal Addendum sent to SPSC
- **September-November 2008:** Test beam at CERN shorten by LHC accident
- Summer 2008: Approved by italian funding agents on condition of CERN approval
- November 2008: Recommended for approval by SPSC
- 2009 2011: Technical design and completion of detectors
- 2011 2012 : Commissioning
- 2012-2014: Data taking

NA62 : principle of experiment

O(100) events $K^+ \rightarrow \pi^+ \sqrt{\nu}$ in 2 years

~ 10% background

BR(SM) = 8×10^{-11} ~ 10^{12} K⁺ decays Acceptance= 10%

- K decays in flight
- Intense beam of protons from SPS
- High energy K (P_K = 75 GeV/c)
- Cherenkov K ID: CEDAR

Kinematic rejection

- Kaon: beam tracking
- Pion: spectrometer
- **Excellent timing for K-** π association
- γ/μ : calorimeter
- Charge Veto : spectrometer
- π/μ separation : **RICH**

Principle of the Experiment

3) PID for $K^+ \rightarrow \mu^+ \nu$ rejection

Background with kinematic threshold

- Definition of signal region
- $K^+ \rightarrow \pi^+ \pi^0$: division between Region I and Region II

Region I: $0 < m^2_{miss} < 0.01 \ GeV^2/c^4$ Region II: $0.026 < m^2_{miss} < 0.068 \ GeV^2/c^4$

Background with no kinematic threshold

Across signal region
Rejection using Veto and Particle ID

• **Background from detector:** accidental interactions due to material on the beam line

Kinematic rejection

Signal region:

- Signal acceptance ≥ 10%
- Minimize background due to non-gaussian tails
- $\rightarrow \sigma(m^2_{miss}) \sim 10^{-3} \text{ GeV}^2/c^4$

Missing Mass Resolution

Non-gaussian tails can be induced, for instance, by the wrong association between the incoming kaon and the pion

200 ps time resolution is required

Signal Acceptance

Beam line

- P proton = 400 GeV/c
- Proton/pulse 3.3×10¹² (×3.3 NA48/2) •
- Duty cycle 4.8/16.8 s

- P Kaon = 75 GeV/c (Δ P/P ~ 1.2%)
- Fraction of K⁺~6.0% (p 23% π⁺70% μ⁺ 1% e⁺<0.1%)
 - Negligible amount of $e^+(1X_0 W radiator)$
- Beam acceptance = ×25 NA48/2
- Integrated average rate = 760 MHz
- K⁺ decays / year = 4.8 × 10¹²

Detector requirements

Rejection of 2-body backgrounds $(\pi^+\pi^0, K_{\mu 2})$

► Maximum kinematic rejection → beam characteristics, beam spectrometer, downstream spectrometer, CEDAR

Rejection of $\pi^+\pi^0$

Hermeticity \rightarrow ANTI, SAC, maximum π momentum

Rejection of $K_{\mu 2(\gamma)}$

particle ID \rightarrow RICH (minimum π momentum), Muon Detector

■ Rejection of 3-body charged background (K_{e4}):

► Charged particle hermeticity → downstream spectrometer

Rejection of non-physical background:

► <1 event/year → vacuum, beam spectrometer, ANTI, CEDAR

NA62 Proposed Detector Layout

NA62 Straw Tracker

Unseparated beam, in-flight decay:

How do you associate the parent kaon to the daughter pion in a ~ 1 GHz beam ?

K⁺ : Gigatracker, CEDAR with very good time resolution (~ 100 ps) π^+ : **RICH** (Neon, 1 atm) read out by Photomultipliers

Example of background rejection

 K^+ →μ⁺ν ($K_{\mu 2}$)

Largest BR: 63.4% Need ~10⁻¹² rejection factor

- Kinematics: 10⁻⁵
- Muon Veto: 10⁻⁵ → MUD
- Particle ID: 5×10⁻³ RICH

Assuming the above performance and an acceptance of 10%, a S/B > 10 is obtained if

 $(\Delta m_{\rm miss})^2 \sim 10^{-3} \ GeV^2/c^4$

 $\mathbf{K}^+ \rightarrow \pi^+ \pi^0 \ (\mathbf{K}_{\pi 2})$

2nd Largest BR: 20.9% Need ~10⁻¹² rejection factor

- Kinematics: 5×10⁻³
- Photon Veto: 10⁻⁵ per photon

→ Large angle: 13 ANTIs (10 < acceptance < 50 mrad)</p>

→ Medium angle: NA48 LKr (1 < acceptance < 10 mrad)</p>

IRC SAC (acceptance < 1 mrad)

Resolution requirements: $P_{\pi} \rightarrow < 1 \%$ $P_{K} \rightarrow < 0.5\%$ $\theta_{K\pi} \rightarrow 50-60 \mu rad$

Physical background

Decay	Events/year
Sig (acc=14.4%, flux = 4.8·10 ¹² evt/year)	55
$K^+ \rightarrow \pi^+ \pi^0$	4.3%
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3-body decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~ 0.7%
K ⁺ →e ⁺ (μ ⁺) π ⁰ ν, others	neglig
Total	≤13.5%

The particle ID system

The RICH (*i.e.* the pion ID)

- ▶ <u>18 m long tube (∅ 2.8 m), 17 m focal lentgh mirrors</u>
- Ne @ 1 atm (π thr = 13 GeV/c)
- >3 $\sigma \pi/\mu$ separation up to 35 GeV/c
- High granularity (2100 PMTs)
- Small pixel size (18 mm PMT)
- Disentangle pileup in Gigatracker $\rightarrow \sigma(t) \sim 100 \text{ ps}$

✓ PMTs tested in 2006
✓ Full length Prototype Tests in 2007-2008

The Veto system

Photon vetoes

- Large angle (10-50 mrad): 12+1 ANTIS
- Rings calorimeters (in vacuum)
- Rate: ~4.5 MHz (μ) + ~0.5 MHz (γ) (OR 12)
- 10⁻³ inefficiency for $0.05 < E_{\gamma} < 1 \text{ GeV}$
- 10⁻⁴ inefficiency for $E_{\gamma} > 1 \text{ GeV}$
- 2500 channels
- Medium angle (1-10 mrad): NA48 LKr Calorimeter
- Rate: ~8.7 MHz (μ) + ~4 MHz (γ) + ~4 MHz (π)
- 10⁻⁴ inefficiency for $1 < E_{\gamma} < 5$ GeV
- 10^{-5} inefficiency for $E_{\gamma} > 1 \text{ GeV}$
- 13000 cells, no zero suppression
- Small angle (< 1 mrad): Shashlik technology
 Rate: ~0.5 MHz (μ)
 - 10⁻⁵ inefficiency for high energy (>10GeV) photons

Muon veto MUD

- Sampling calorimeter + Magnet for beam deflection
- Rate: ~7 MHz (μ) + ~3 MHz (π)
- 10^{-5} inefficiency for μ detection

Lead-scintillator tiles (CKM) Lead-scintillator fibers (KLOE-like) OPAL Lead-Glass (barrel) All satisfying requirements,

OPAL Lead Glass is the most cost-effective solution

The NA48 LKr calorimeter

- Sensitivity to the MIP
- em/hadronic cluster separation
- 5Tm B field in a 30×20cm² beam hole: deviate the beam out from the SAC

New Readout
Preliminary Sol

Statement of Interest (first step) submitted by me to 22nd July PPAN-STFC meeting :

"Search for New Physics beyond the Standard Model with the NA62 experiment at CERN" and the CEDAR

Feedback:

PPAN agreed that there was good and exciting science likely to emerge from the project and the proposal built upon the strong science role that the applicant has established.

However PPAN was concerned by the lack of a developed science consortium for what was a significant package of research. For the project to be viable, PPAN believed that a stronger research community in the UK would need to be identified.

Possible UK contributions

CEDAR: Identify kaons in the beam line

- light collection system
- photo-detectors
- front-end electronics
- trigger and daq

Simulation of the Experiment Data process Distributed Computing

NA62 TDAQ scheme

16.8 s/34.8 s CNGS+fixed target
0 s/22.8 s LHC+CNGS
0 s/21.6 s LHC filling
~ 30% of spill-time/total time, not synchronous events
(no bunch crossing!)

NA62 data volume

control + calibration	Sub- detector	R-O type F 1CHz	Rate (MHz)	Total channels	Active channels (22)	N. Time	of bits Channe
Maximum 1 MHz at the output of L0 trigger	Gigatracker Antis Straws	F IGHZ TDC F 40 MHz TDC	1000 10 20	250 $18K \times 3$ 2500 $2K \times 6$	(3.2) 6 (3.3) 33	250 20 2500 18	$\times 8/18$ 12 $\times 8/25 \text{ ns}$ 14
1.1 ± 1.2 in software, reduction by a factor ~50	RICH IRC LKr N. Hodoscope	TDC F 40 MHz F 40 MHz TDC	15 40 20 20	2K 48 13.2K 32	40 (8) (150) 4	21 48 × 13.2K 21	11 10/25 ns $\times 10/25 \text{ r}$ 5
20 kHz event rate	MAMUD Mu Hodoscope SAC	TDC TDC F 40 MHz	15 15 10	2080 512 64	73 4 (8)	20 21 64 ×	12 9 10/25 ns
 ~ 1 GB/s (without Krypton zero-suppression, but with data compression) ~ 500 kB/event 		13	80 GE	3/s raw	at the	e L0 o	utput
300 MB/s average over the spill ~ 40 TB/day → 3 PB/year							
Only a fraction to be logged to tape: •Need L3 trigger and/or Krypton zero- suppression	-1 (at	РВ/уе 150 МВ	e ar t 8/s)	to log	to t	ape	
 Use pre-scaling & control samples Need on-line monitoring Keep the system highly flexible 	Of coul - CPU f - Disk k	rse, nee or proc ouffers:	ed als essir ~ 200	so: ng: ~3(0 TB	000 kS	Speci	nt2k

10 MHz event rate \rightarrow ~300 kHz at the L0 +

N. of bits Channel

 $2500 \times 8/25 \text{ ns}$

 $48 \times 10/25 \text{ ns}$ $13.2K \times 10/25 \text{ ns}$

 $64 \times 10/25 \text{ ns}$

Monte Carlo

•Several kinds of Monte Carlo already existing:

•It is not **conceivable** to generate 10¹³ kaon decays with full tracking of particles inside a detailed GEANT description of the experiment...

•GEANT4 detailed simulations of detectors response

•Fast simulation using:

Physics generators

•Accurate beam and halo parameterizations

•Simulation of setup as passive materials

•Parameterization of detectors response from GEANT4

Trigger simulation

•Full reconstruction in C++

•~1 MB/event with MC info

•10⁸ events/year/kSpecInt2k [generation step faster]; 100 TB/year

CEDAR : Basic principles

- The CEDAR is used to identify Kaons in the beam using Cerenkov light
- □ The Kaons are a small fraction of the total flux (in units of 10⁶ per spill):

Protons	500	
Kaons	150	ightarrow 6.6% only
Pions	1600	
Electrons	1	
Muons	20	

- The CEDAR is blind to all particles except Kaons (i.e. the wanted type) A diaphragm blocks the light from other particles
- Nevertheless the rate is very high: $1.5 \ 10^8 / 3 \text{ sec} = 50 \text{ MHz}$
- Two types of CEDAR exist (as AB standard): North type 100-300 GeV/c, filled with He at ~10 bar, θ ~25 mrad West type up to 150 GeV/c filled with N2 at < 1.7 bar, θ ~31 mrad
- CEDAR requires a parallel beam for adequate performance

CEDAR: R&D program

CEDAR W-type filled with N tested at CERN in November 2006, using a 100 GeV hadron beam with 10⁵ 10⁷ ppp

Test in 2006 mainly devoted to study time capability Proof that CEDAR works !

Why Hydrogen ?

- □ Absolute necessity to minimize material on beam line
- □ 4x lower pressure allows thinner windows
- **Optics requires chromatic corrections depending on gas and quartz n**(λ)

Photo-detector for the CEDAR

Current optics condenses the Cherenkov light from the diaphragm into 8 rectangular light spots $\sim 10 \times 30 \text{ mm}^2 \text{ each}$

Kaon rate = 50 MHz and ~100 photons per Kaon

 \rightarrow photon rate = 100 ph x 50 MHz / (300 mm² x 8)

~ 2 MHz / mm² (rate of singles from accidentals, after-pulses, dark noise not included)

Solution to be investigated: SiPM

Key points for the new detector:

- Single photon counting application
- Stand very high photon rate / unit area (occupancy in time and space)
- Reduced active area (beam activity) (minimum ~150 mm² / spot due to optics phase space)
- UV/Blue light sensitivity with the highest efficiency (PDE)
- Excellent timing resolution on single photon (100 ps)
- Exposition to the halo of intense hadron beam (radiation damage)

Other physics opportunities

- P-326 Kaon Flux ~100 times NA48/2 Kaon Flux
- Other physics opportunities can be addressed:
 - Lepton flavor violation:
 - $\checkmark K_{e2}/K_{\mu 2}, K^+ \rightarrow \pi^+ \mu^+ e^-, K^+ \rightarrow \pi^- \mu^+ e^+$
 - Tests of CPT
 - \checkmark K⁺ $\rightarrow \pi^+\pi^-e^+\nu$ (Ke4)
 - Search for new low mass particles:
 - $\checkmark K^+ \rightarrow \mu^+ N \ (light \ RH \ neutrinos)$
 - $\checkmark K^+ \rightarrow \pi^+ \pi^0 P \ (pseudoscalar \ sGoldstino)$
 - Hadron spectroscopy

• ...

$\mathsf{R}_{\mathsf{K}}=\Gamma(\mathsf{K}^{+}\rightarrow e^{+}\nu(\gamma))/\Gamma(\mathsf{K}^{+}\rightarrow \mu^{+}\nu(\gamma))$

$$R_{M} = \frac{\Gamma(M \rightarrow ev(\gamma))}{\Gamma(M \rightarrow \mu v(\gamma))} = \left(\frac{m_{e}}{m_{\mu}}\right)^{2} \left(\frac{1 - \left(\frac{m_{e}}{m_{M}}\right)^{2}}{1 - \left(\frac{m_{\mu}}{m_{M}}\right)^{2}}\right)^{2} \times (1 + \delta R_{M}) \quad \text{The latest SM theoretical predictions:}$$

$$R_{\pi} = (1.2352 \pm 0.0001) \times 10^{-4}$$

$$R_{K} = (2.477 \pm 0.001) \times 10^{-5}$$

Experimental Situation before NA62

 $\pi \rightarrow e\nu$

$$R_K = 2.457 \pm 0.032 \times 10^{-5}$$

 $R_{e/\mu}^{\exp \pi} (\pm 0.4\%)$ 1.2265(34)(44)x10⁻⁴ TRIUMF (1992) 1.2346(35)(36)x10⁻⁴ PSI (1993)

New experiments planned at TRIUMF and PSI to reach <0.1% on R_{π}

$\mathbf{R}_{\mathbf{K}}$ and SUSY

Masiero, Paradisi, Petronzio, hep-ph/0511289 PRD74,(2006)

$$R_{K}^{LFV} = \frac{\sum_{i} K \to e\nu_{i}}{\sum_{i} K \to \mu\nu_{i}} \simeq \frac{\Gamma_{SM}(K \to e\nu_{e}) + \Gamma(K \to e\nu_{\tau})}{\Gamma_{SM}(K \to \mu\nu_{\mu})} , \quad i = e, \mu, \tau$$

Charged-Higgs mediated SUSY LVF contributions: $R_{K}^{SUSY} = R_{K}^{SM} \cdot (1 + \Delta R_{SUSY}), |\Delta R_{SUSY}| \sim up to few \%.$

NA62 aims to test the SM prediction with a precision better than 0.5%

Experimental Technique

Kinematic ID of the K_{l_2} candidates: $M_{miss}^2(I) = (P_K - P_I)^2$

Good kinematical separation for p<40GeV/c e/μ PID required for p>40GeV/c

Tools

- P_{K} : narrow band beams: $\Delta P_{K}/P_{K} \sim 2\%$
- $P_{e,\mu}$: maximum P_t kick: 263MeV/c $\delta p/p = 0.47\% + 0.020\% p$ [p in GeV/c].
- E/p: Energy in LKR / Momentum in Spectrometer

Expected $K_{\mu 2}$ background in analysis region: 7%.

Analysis strategy

Express analysis: ~40% of the 2007 K⁺ sample

Measurement of R_K

- 300 TB of raw data collected in 2007
- •The 2007 K_{e2} data sample allows us to achieve a statistical precision of $\delta R_K/R_K=0.3\%$
- Preliminary studies of systematic uncertainties demonstrate the feasibility of a total precision better than $\delta R_{\rm K}/R_{\rm K}$ =0.5%.
- 2008 data taking aims at systematic checks

Presented at SPSC on 4/11/2008

	New opportunities in Kaon Physics	Thursday 27 November 2008 from 13:00 to 17:00 Europe/London at University of Birmingham (G33 - Aston Webb Building) chaired by: Cristina Lazzeroni support: cristina.lazzeroni@cern.ch
Description	n: Institute of Physics half-day meeting.	
	This meeting will review recent results in Kaon Physics, explori new physics. All presentations will be given in a form accessib	ng the use of kaon decays in precision tests of the Standard Model and in searches for le to students and to researchers from other areas of high-energy physics.
	For further information, contact the organiser: cristina.lazzeron	<u>ii@cern.ch</u>
		Thursday 27 November 2008 I
Thurse	day 27 November 2008	<u>top</u> +
13:00	Welcome (10)	Cristina Lazzeroni (High Energy Physics Group, University of Birmingham)
13:10	Review of KI3 results in UKQCD (20)	Jonathan Flynn (Southampton U)
13:30	Review of KI3 results and Vus in Flavianet (20)	Matthew Moulson (Laboratori Nazionali di Frascati (LNF) - Istituto Nazionale Fisi)
13:50	Lepton Flavour Violation in Kaon decays (20)	Paride Parisi (University of Munich)
14:10	Search for LFV in kaon decays from KLOE and NA4	8/NA62 (20) Evgueni Goudzovski (University of Birmingham)
14:30	Rare Kaon decays in SM and beyond (I) (30)	Martin Gorbhan (University of Munich)
15:00	Rare Kaon decays in SM and beyond (II) (30)	Christopher Smith (Karlsruhe)
15:30	The NA62 experiment at CERN (30')	Augusto Ceccucci (CERN)
16:00	K+ to pi+ nu nubar measurement from E949 (20)	llectra Chrisitidi (Aristotle University of Thessaloniki)
16:20	Discussion (30')	

NA62: Conclusions

Exciting physics, precise test of SM and meaningful search for new physics in kaon rare decay $K^+ \rightarrow \pi^+ v v$

PPAN: we agree that good and exciting physics will come from this project

- Project is well defined, timescale suitable to complement LHC Now it is the time to join !

- Several aspects where UK can take leadership, looking for collaborators

TRIGGER

♦ A possible scheme.....

Level	L0 "hardware"	L1-L2 "software"
Input	~10 MHz	1 MHz
Output	1 MHz	O(KHz)
Implementation	Dedicated hardware	TDAQ farm
Actions	RICH minimum multiplicity, Muon veto, LKr (γ) veto, CEDAR	L1 = single sub- detectors L2 = whole event

- •1track × μ ! × γ ! \rightarrow 1 MHz L1 trigger input \rightarrow PC farm
- Software trigger reduction ~ 40
- Main work on possible solutions for the L0 hardware
- TELL-1 board (LHCb) based implementation for all non FADC sub detectors
- Design of a new 100 ps TDC daughter-card
- Two prototypes under study

NA62: detectors

- **CEDAR:** differential Cherenkov to identify kaons in beam line (50MHz)
- **GIGATRACKER:** Beam Tracking (Si micropixel) (800 MHz)
- **STRAW Chambers:** Spectrometer made of 4 stations of straw tubes chambers, to detect kaon decay products (~10 MHz)
- **RICH:** Ring Image Cherenkov, to detect pion from kaon decay, to distinguish pion/muon and to fast trigger
- LAV: photon ANTI-counters at large angle (lead glass)
- **LKR:** photon Veto in forward region and electromagnetic calorimeter (LKr NA48)
- **IRC/SAC:** photon Veto at medium/small angle
- **MUD**, sweeper: muon detector (hadron calorimeter NA48, scintillators for fast trigger) with sweeping magnet to deflect non-decayed beam particles

Data sample recorded in 2007

Main Features:

- A) Start running with K⁺ beam only;
- B) Pb wall dismantled & new multiplicity condition in trigger;
- C) Dedicated K⁻ period started;
- **D)** Resumed K⁺ data taking during the straw prototype test.

Trigger logic

<u>improvements</u> of trigger purity during the run:

- 1) introduction of drift chamber multiplicity conditions (1TRK);
- 2) optimization of downscalings;
- 3) optimization of beam steering;
- 4) dismantling the Pb wall.

	Co	ondition	Rates/SPS spill		Purity		
Trigge	Start-up	End-of-run	Start-up	End-of-	Start-up	End-of-	
r				run		run	
K _{e2}	$Q_1 \times E_{LKr}$	Q ₁ ×E _{LKr} ×1TRK	0.23	0.54	0.6×10 ⁻⁵	1.3×10 ^{−5}	
Κ _{μ2}	Q ₁ /50	Q ₁ ×1TRK/150	290	160	1.8%	1.8%	

Electron/muon identification

Electron ID is based on LKr energy deposition: 0.95<E/p<1.05.

A muon is mistaken as electron if its E/P falls between 0.95 and 1.05:

A measurement of $p(\mu \rightarrow e)$ is necessary: lead wall inserted between the HOD planes. Tracks traversing the wall + MIP in HOD(H): samples of pure muons.

Pure muon samples collected:

From K_{μ2} decays;
 Special μ runs
 Each sample: ~2,000 muons with E/p>0.95 and 35GeV/c<p<65GeV/c.

Backgrounds

Main backgrounds in K_{e2} sample [subtracted using special runs]

- 1) $K_{\mu 2}$ decays: estimated (7.5±0.2)% by measuring $p(\mu \rightarrow e)$.
- From beam halo: estimated (1.3±0.1)% using runs with blocked K⁺ beam. Reducible by stricter CDA cuts.

Other backgrounds in K_{e2} sample [more trivial to subtract]

1) $K_{e2\gamma}(SD)$: (0.7±0.1)%, precision limited by BR($K_{e2\gamma}$), will be improved.

Electron Identification

<u>Electron ID efficiency</u> f_e measured from the data:

- clean sample of electrons by kinematic selection of $K^{\pm} \rightarrow \pi^0 e^{\pm} v$ decays: collected simultaneously with main data taking, but p<50GeV/c.
- 15h special K_L run: kinematic selection of pure K_L $\rightarrow \pi^{\pm}e^{\pm}\nu$ decays in the whole analysis track momentum range 15GeV/c<p<65GeV/c.

Expected precision of f_e measurement: much better than 0.1%.

Other effects

Acceptance correction:

- p-dependent, $A(K_{\mu 2})/A(K_{e2}) \sim 1.2;$
- K_{e2} radiative corrections strongly affect of the acceptance;
- 2004 conclusion: the correction can be evaluated with a 0.1% precision after appropriate MC tuning.

Trigger efficiency:

- All efficiencies are monitored with control trigger samples;
- Q_1 efficiency mostly cancels in R_{κ} ;
- Preliminary measurement: $1-\epsilon(E_{LKr}) \approx 1-\epsilon(K_{e2})/\epsilon(K_{\mu 2}) < 0.1\%$;

Other known sources of uncertainies (@ 0.1% level):

• Global inefficiency of LKr calorimeter readout.

Quark Mixing and CP-Violation

Cabibbo-Kobayashi-Maskawa (CKM) matrix:

- Non-diagonal (e.g. V_{us} ≠0)
 → Flavour Violation
- 3 or more quark generations
 → CP-Violation in SM

$$\begin{pmatrix} d \\ s \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$N_g=2$$
 $N_{phase}=0 \Rightarrow \text{No CP-Violation}$

 $N_g=3$ $N_{phase}=1 \Rightarrow$ CP-Violation Possible

e.g., $Im \lambda_t = Im V_{ts}^* V_{td} \neq 0 \rightarrow CPV$

GIM mechanism → No FCNC at tree level Violation at one loop depending on quark masses and CKM couplings

Status of the Unitarity Triangle (S.M.)

Allowed regions for ρ and η in S.M.

(UTfit Group, M.Bona et al. hep-ph/0606167)

K12 Beam Working Group – CEDAR Status

Comparison SiPM vs PMT

for applications of photon counting and timing at high rates

Reference device (eff. area) Gain (G)	PMT HPK R7600 (18x18 mm ²) ≥10 ⁶	SiPM HPK S10362-11-50C (1x1 mm ²) ≥10 ⁶	
$\delta V/V$ for $\delta G/G=1\%$ δT for $\delta G/G=1\%$	5° C	0.3°C	
Max average anode current	100 μA (350 mm²)	3 μA (1 mm²)	
Efficiency (on active area)	~25% @ 400nm ~40% (UBA)	~95% @ 400nm	
Fill Factor	36%	40% to 80%	cell geometry
Time resolution	~300ps	50ps to 100ps	
Dark noise (1 p.e.)	few kHz	0.5 MHz @room T	
After-pulse (thr. @ 1 p.e.)	1 % level	10 % level	
B-field immunity	No	Yes	
Radiation damg.	No (also at single photon level ?)	Yes	

69

Gigatracker: R&D program

▶Readout chip: Front-End Blocks in 0.13 µm CMOS

Submitted in February 07

■Wafers delivery ≈ May 07

ASICs characterization (t resolution, jitter, time walk)
 Tosts card in progress

Tests card in progress

Si diode irradiation tests (started in 2006)

Prototype wafers (200 μ m thick) produced by itc-IRST using ALICE pixel layout

3 mm × 3 mm and 7 mm × 7 mm test-diodes

Test diodes irradiated with n and p (Ljubljana, CERN)

Fluences: 1E12 to 2E14 1MeV n cm⁻² (range P326)

Pre and post irradiation measurements (annealing) to study diode characteristics

CFD and NINO front-end blocks

Fadmar Osmić - P326 GTK Meeting, September 10, 2007 -7-

Spectrometer: R&D program

Chosen technology: tube of mylar (25 μ m, D=1 cm, L=2.1 m)
 100 straws (need 8000) produced in Dubna
 Tests on gas leakage (CO₂ 80% + Isobutane 10% + CF₄ 10%)
 Tests on tube expansion in vacuum
 Prototype assembled & cosmic ray tests

October 2007:

Prototype integration in NA48 set-up and test on beam

Spectrometer Test 2007: Aluminum straws (preliminary)

Data were collected with hadron, muon and kaon decays

RICH: R&D program

Design, construction and test of a RICH prototype (CERN, Firenze, Perugia)

Full length prototype (17 m, 0.6 m diameter, stainless steel tube at CERN) tested in 2007:

integration in the NA48 set up

Endcap with 96 Hamamatsu PMs readout through Winston's cones

PMs tested at SPS (2006) and Firenze/Perugia (with laser) – Hamamatsu R7400-U

Measured FWHM per single γ per phototube 380ps (150 ps electronics and 110 ps laser included)

PM size is the main limitation to Cerenkov angle resolution

Liquid Kripton Calorimeter

- 2×10⁸ electrons collected
- 10⁻⁵ ineff.sensitivity below 10 GeV
- Consolidation of the readout
- Custom boards (FPGA based) sending data directly to PC Farm
- Test of the new electronics in 2007 NA48 run

October 2006 test: Tagged photon beam Using the existing NA48 setup

Large Angle Photon Vetoes (LAV) BTF setup

Prototypes tested at the Beam Test Facility in Frascati

The BTF can provide single electrons and positrons at 50Hz rate with an energy 100 MeV< E_e <750 MeV

Several beam periods allocated to us during the first half of 2007

Hard work to understand the background and to define and build an efficient trigger system

All LAV options satisfy the requirements

Efficiencies for electron detection similar for all 3 technologies

Tile (CKM) and lead glass (OPAL) results are preliminary

With inefficiency at this level, the LAV contribution to the average inefficiency is 0.2•10⁻⁸

Test of a set of OPAL LG in Naples

Baseline Choice: OPAL Lead-Glass

- During the 2007 run we have exposed a few Lead-Glass blocks to radiation doses similar to those expected during the experiment lifetime.
- No radiation damage was measured

LKr inefficiency measured with data

77

Detector Status (I)

Detector	Function	Status	Current Collaboration
CEDAR	 Event by event K⁺ identification (50 MHz) 	 CEDAR Exists To be modified for H₂ Needs New Front end Needs New Read – out 	Birmingham interest
GTK	 Gigatracker for beam tracking Three Stations of Si μpixels 300 x 300 μm ~200 ps per station time resolution 0.5 % radiation length per station 800 MHz beam 	 Sensor qualified after irradiation 0.13 μm CMOS front end blocks under test Next step: 8 x 8 pixel array (bump bonded to R/O chip) 	CERN Ferrara Torino
LAV	 12 Ring Calorimeters for photon detection Three different technologies tested Chosen solution: OPAL lead glass 	 Performed prototype beam tests Design of Mechanics under way 	Frascati Pisa Roma 1 Naples
STRAW	4 Large (6 m ²) straw tracker stations to track ~10 MHz particles from kaon decays	 Full length prototype beam tested inside actual vacuum tank 	CERN Dubna Mainz

Detector Status (II)

Detector	Function	Status	Current Collaboration
RICH	 Pion muon separation 17 m STP Ne radiator: (n-1)x10⁶=63 Spherical mirrors (r.c. 34 m) ~2000 Hamamatsu R7400 06 (18 mm ø) Fast timing of the outgoing charged track 	 Full length prototype (96 PMT) tested Oct-Nov '07 Timing demonstrated 400 PMT prototype to be tested in 2008 	CERN Florence Merced Perugia San Luis Potosi George Mason Stanford
LKR	•NA48 Liquid Krypton Calorimeter for forward photon. 20 tons of liquid krypton. Available!	 Validated as veto Cryogenics being consolidated Electronics to be updated/replaced 	CERN Pisa Roma II
MUD	 Muon Detector based on the NA48 Hadron Calorimeter + iron and a fast veto plane for triggering 	 Sample tested this year 	Protvino Moscow (INR)
IRC/SAC	 Intermediate Ring and Small Angle Calorimeter to detect photons at small angle 	 Shashlik prototype (SAC) tested in 2006 	Sofia INR 79

Updated Sensitivity vs. Proposal

Decay Mode	New layout	Proposal
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹²	55 evt/year	65 evt/year
$K^+ \rightarrow \pi^+ \pi^0 [\eta_{\pi 0} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3% (7.5%)	4.2%
$K^+ \rightarrow \mu^+ \nu$	2.2%	1.9%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%	~3%
Other 3 – track decays	≤1.5 %	~1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%	2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%	0.7%
K^+ →e ⁺ (μ^+) π^0 ν, others	negligible	negligible
Expected background	≤13.5% (≤17%)	~13%

The 15% acceptance reduction is offset by better immunity to Ke4 backgrounds and a more conservative layout of the straw tracker
 3.5 × 10⁻⁸ π⁰ ineff. allows for a 10 cm γ blindness around the π⁺ in LKR

Conclusions on $K^+ \rightarrow \pi^+ \nu \nu$ Sensitivity

- More detailed simulation available
- Better understanding of the apparatus
- Detailed kinematical reconstruction
- Slightly improvement in M²_{miss} resolution
 - 3 view-planes hit by a particle on average (instead of 4 as assumed in the Proposal)
- Study of the impact of the updated layout on the signal acceptance and 2-body background rejection:
- Signal acceptance: 14.4%
 - 17% (Proposal) \rightarrow 14.4% (single spectrometer)
 - The number of events in the proposal (40/y@10⁻¹⁰ BR) assumed 10% overall efficiency
- Background: ≤17%
 - 13% (Proposal) \rightarrow 13.5% because of the new configuration
 - $13.5\% \rightarrow 17\%$ because of a more realistic treatment of photon rejection (assumption of a r=10 cm blind area around the π^+ LKR impact point)

Background rejection

<u>Kinematical rejection inefficiency</u> (backgrounds kinematically-constrained)

- Sources:
 - Non-gaussian tails in M^2_{miss} → Depends on spectrometer configuration
 - High angle Multiple Scattering (ex. δ-rays)
 - Hadronic elastic scattering
 - Intrinsic limit since depends on the detector material (cannot be further reduced)
 - □ Wrong π -K matching → **Depends on** σ (t) and σ (θ): similar or better wrt Proposal
 - Beam rate
 - Beam resolution >> Gigatracker resolution
 - Gigatracker time resolution, CDA resolution
 - Can be controlled varying the beam rate

Photon rejection, µ rejection, particle ID inefficiencies

- Sources:
 - LKr inefficiency at high energy → Better understanding wrt the Proposal
 - Geometrical coverage of LAV → Similar wrt the Proposal
 - RICH performance
- → Similar wrt the Proposal
- MUD performance

→ Similar wrt the Proposal

Signal acceptance

- Acceptance = 14.4% (3.5% Region 1, 10.9% Region 2)
- Tighter cut: cut on P_{π} (-50% of signal events rejected)
- -15% wrt the Proposal
 - Effect of the acceptance cut at RICH and LKr
 - Higher π dispersion since we use 1 magnet only
 - Long lever arm after the magnet for better hermeticity against decays with >1 charged particle

Signal acceptance

- Generation:
 - $K^+ \rightarrow \pi^+ \nu \nu$ decays generated with vector form factors
 - Small effect on the acceptance
- Selection:
 - 1 track reconstructed in gigatracker with good χ^2
 - 1 track reconstructed in straw spectrometer: hits with at least 2 views and good χ^2
 - 1 track in the RICH → particle-ID and timing
 - Downstream track in RICH, LKr, MUD acceptance → particle-ID
 - $5 < Z_{vertex} < 65$ m from the 3rd gigatracker station \rightarrow definition of the fiducial region
 - CDA<0.8 cm (s(CDA)~0.1 cm) \rightarrow against mis-reconstruction of the track slope
 - $P_{\pi} > 15 \text{ GeV}/c \rightarrow \pi\text{-threshold in RICH 13 GeV}/c$
 - $P_{\pi} < 35 \text{ GeV}/c \rightarrow \text{for } \pi^{+}\pi^{0} \text{ rejection purposes and better } \mu/\pi \text{ separation}$
 - Region 1: $0 < M^2_{miss} < 0.01 \text{ GeV}^2/c^4$
 - Region 2: $0.026 < M_{miss}^2 < 0.068 \text{ GeV}^2/c^4$

Background rejection

<u>Rejection of $K^{\pm} \rightarrow \pi^{\pm} \pi^{\underline{0}}$ and $K^{\pm} \rightarrow \mu^{\pm} \nu$:</u>

- Geometrical acceptance (A_{geo}) : 15% lower wrt the Proposal ÷.
- Kinematical rejection inefficiency (η_{kin}):
 - Effect of the non gaussian tails: $A_{geo} \times \eta_{kin} = 3 \times 10^{-5} (K^+ \rightarrow \pi^+ \pi^0), 0.31 \times 10^{-5} (K^+ \rightarrow \mu^+ \nu)$ η_{kin} re-evaluated with the new layout.

 - No redundancy on P measurement (resolution of P measurement from RICH too high).
 - Effect of wrong K- π matching : $A_{geo} \times \eta_{kin} = 8.5 \times 10^{-5} (K^+ \rightarrow \pi^+ \pi^0), 0.43 \times 10^{-5} (K^+ \rightarrow \mu^+ \nu)$
 - η_{kin} from the proposal
- π^0 and μ rejection:
 - \blacksquare π^0 rejection inefficiency: Intrinsic veto inefficiency of the LKr: 2×10^{-8} (number used in the Proposal) More realistic use of the LKr: 3.5×10^{-8}
 - μ detection inefficiency: 10⁻⁵ from MUD, 10⁻³÷10⁻² from RICH (as in the Proposal)

Other backgrounds:

- No other relevant dependence on the new layout expected
- Expected better coverage against decays with >1 charged particle in final state
- Analysis in progress

SPARES

 $K^{0}_{L} \rightarrow \pi^{0} e^{+} e^{-} (\mu^{+} \mu^{-})$ in SM

- Sensitivity to New Physics : clean probe up to Λ ~100 TeV scale
- Two possible scenarios:

Minimal Flavour Violation (MFV)

- Flavour and CP violation governed by universal CKM matrix
 - No Extra Complex Phases
- Same operators as in SM effective Hamiltonian
- Different coefficients
- Stringent correlation for FCNC predictions with B rare decays

New sources of Flavour Symmetry Breaking ~ TeV scale

- Minimal Supersymmetric extension of SM (MSSM)
- Extra Phases can lead to large deviations from SM predictions, especially for the CP-Violating modes

State of the art: KEK E391a

E391a: technique

Kaon Decay

- $K_L \rightarrow \pi^0 \pi^0$ (2 γ missed; due to inefficiency or fusion)
- $K_L \rightarrow \pi^+ \pi^- \pi^0$ (2 charged pion missed)
- $K_L \rightarrow \pi^- e^+ v$ (charge exchange, annihilation)

E391a: Run II

Background Source	Estimated # BG	
$K^0_L \rightarrow \pi^0 \pi^0$	0.11 ± 0.09	
CC02	0.16 ± 0.05	
CV	0.08 ± 0.04	
CV-η	0.06 ± 0.02	
Total	0.41± 0.11	

PRL 100, 201802 (2008) [arXiv:0712.4164]

 $BR(K_{L}^{0} \rightarrow \pi^{0} vv) < 6.7 \times 10^{-8} 90\% CL$

Improvement by about a factor of three w.r.t. previous best limit

Upgrades for E14 (J-Parc Step 1)

E14@J-PARC Stage 1

- 3 snowmass years
- "KL alone" beamline

(KL yield based on GEANT4/QGSP)

				acceptance loss
		standard cuts	CsI cluster shape cut	(50%)
Signal	$K_L \to \pi^0 \nu \overline{\nu}$	6.0 ± 0.1	5.4 ± 0.1	2.70 ± 0.05
K_L BG	$K_L \to \pi^0 \pi^0$	3.7 ± 0.2	3.3 ± 0.2	1.7 ± 0.1
	$K_L \to \pi^+ \pi^- \pi^0$	0.18 ± 0.08	0.16 ± 0.07	0.08 ± 0.04
	$K_L \rightarrow \pi^- e^+ \nu_e$	0.13 ± 0.01	0.03 ± 0.003	0.02 ± 0.001
halo n BG	CV		_	0.08
	η	8.1	0.6	0.3

Note: Detailed simulation of CV/CC02 BG in progress

Slide from T. Nomura

Status of E14

- Stage | Approved
- Recommended for stage II approval by J-PARC PAC
- Significant resources already secured

Schedule from T. Nomura

$K_L \rightarrow \pi^0 v v$ Long Time Prospects

Background Level (1mmPb/5mmScint)

Picture adapted from KAMI proposal

