QCD at DO: Jets and Bosons

Gavin Hesketh, UCL 22nd November 2010 University of Edinburgh

≜UCL

The Tevatron

2

The Tevatron:

- proton anti-proton collider
- c.o.m energy 1.96 TeV
- Runll started in 2001
 - ending in 2011-14...
- Two general-purpose detectors:
 - D0 and CDF.

The Tevatron

Chicago

n

3

Tevatron performing very well:

- 9.7 fb⁻¹ delivered per experiment
- 2 fb⁻¹ in 2009-10
- D0 efficiency >90% over the last 3 years

partons inside the hadrons: parton density functions (PDFs) anti-proton proton

two high-energetic hadrons

Gavin Hesketh

4

Gavin Hesketh

MW06

Gavin Hesketh

Gavin Hesketh

Gavin Hesketh

QCD at D0

Part 1: basic parton scattering - jet production:

- test pQCD, constrain PDFs, search for new interactions

Part 2: using bosons as a probe of QCD:

- colourless probe of QCD excellent testing ground for predictions
- using studies of known particles to predict dynamics of new signals
 - and their main backgrounds!

Precision understanding of QCD is an essential part of the Tevatron (and LHC) program

The D0 Experiment

UC

The D0 Experiment

3.2 4.1

The D0 Experiment

1.6

1.8

2.0

2.2

2.4

3.2

4.1

LAr – U calorimeter

- "Towers" of cells:
- used in triggering and reconstruction
 require |z|<50 cm

Three distinct regions:

- central

- ICR
- forward

1) Jetsa) anglesb) cross sections

Defining a Jet

14

Use D0 Runll seeded, iterative, midpoint cone algorithm.

Run I algorithm:

- draw cone axis around seed (tower)
- split/merge after proto-jet finding
- recompute axis using ${\rm E}_{_{\rm T}}$ weighted mean
- re-draw cone
- iterate until stable.

Algorithm sensitive to soft radiation:

- infra-red problem.

Defining a Jet

15

Use D0 Runll seeded, iterative, midpoint cone algorithm.

Run I algorithm:

- draw cone axis around seed (tower)
- split/merge after proto-jet finding
- recompute axis using ${\rm E}_{_{\rm T}}$ weighted mean
- re-draw cone
- iterate until stable.

Algorithm sensitive to soft radiation:

- infra-red problem.

D0 Run II algorithm:

- add additional seeds between jets
- use 4-vectors instead of $E_{_{T}}$
 - Jets characterised in terms of $p_{_{\rm T}}$ and y.

Improved infra-red stability

Algorithm available in fastjet v2.4

First category: searches for new physics

- jet angles are a nice candidate:
 - angles are well measured, not limited by systematics

Focus on $\chi = \exp(|y_1 - y_2|)$

- in massless, $2 \rightarrow 2$ limit:
 - interaction with different kinematics to QCD \rightarrow different dijet x distribution
 - any deviation from QCD prediction \rightarrow new physics!
- need good understanding of y dependence of JES

UC

Dijet X

17

Measurement of di-jet χ

- in 11 bins of di-jet mass
- first measurement above 1 TeV
 - ie > 50% of beam energy!
 - most sensitive to new physics

Result is 0.7 fb⁻¹, statistics limited!

Compared to NLO pQCD:

very small theory uncertaintywidth of the red line!

In this game, beam energy wins! D0 limits:

- exclude Λ < 1.3 – 2.2 TeV at 95% CL ATLAS: 3.1 pb-1, masses up to 2.8 TeV - exclude Λ < 3.4 TeV at 95% CL

Gavin Hesketh

b) Jet Cross Sections

18

Second category: high pT cross sections

$$\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

Matrix element known at NLO in pQCD

 \rightarrow Inclusive jet cross section constrains PDFs

Run I measurements left lots of high-x freedom

- in Run II, analysed 10x the luminosity
- 5x higher cross section at $p_{\tau} = 550 \text{ GeV}$

Tevatron complementary to ep, fixed target

Jet Calibration la

19

Precision cross sections require calibrated objects

- Translate calorimeter jet energy to particle jet energy

≜UCL

Jet Calibration la

Gavin Hesketh

20

Precision cross sections require calibrated objects

- Translate calorimeter jet energy to particle jet energy

Main tool in energy scale calibration:

- $p_{_T}$ balance in back-to-back γ +jet
 - EM calibration from Z->ee

Jet Calibration Ib

Extend into forward calorimeter with dijets:

- account for quark/gluon jet differences
- gluon jet response ~ 5% lower.

Remarkable achievement:

- uncertainties ~ 1-2 %
 - even into the forward region
- 7 years of work!
- still dominant uncertainty on jet measurements

Note:

- we use D0 Run II jet algorithm for detector and particle jets
- change jet algorithm:
 - \rightarrow must re-derive the JES!

Jet Calibration II

Jet Resolution measured in dijet events:

- attribute $\textbf{p}_{_{T}}$ imbalance to resolution
- after accounting for physics effects

Raw asymmetry $A = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$ Raw resolution $\Box > \frac{\sigma_{p_T}}{p_T} = \sqrt{2} \cdot RMS(A)$

Jet p_{T} resolution:

- smears the measured $p_{_{T}}$
- have to correct for this: unfolding

Jet Cross Sections

Gavin Hesketh

23

Two jet cross section results

- inclusive jets vs pT
- vs dijet mass
- both in bins of rapidity

Comparison from NLO prediction

- with non-perturbative corrections
 parton → particle level
 - underlying event
- typically ~5%

Impact on PDFs

25

Over to the LHC?

At the LHC:

- cross section vs p_{τ} obviously much larger

BUT cross section vs x significantly smaller! e.g. for |y| < 0.4, factor of 200 at x = 0.5

D0 results with 0.7 fb⁻¹ \rightarrow need 140 fb⁻¹ at LHC

Further, problem of steeply falling spectrum:

- at D0, 1% error on jet energy calibration
 - \rightarrow 5 10% error on central σ
 - \rightarrow10 25% error on forward σ

At LHC:

- need excellent jet energy scale
- out to very high $\boldsymbol{p}_{_{\!T}}$

Expect Tevatron to dominate high-x gluon PDF for some years!

UC

Determining α_{i}

Gavin Hesketh

27

Can also turn into a measurement of α_{c}

- need PDFs for different α_s - 21 sets from MSTW08, 0.107 \rightarrow 0.127 - NLO + 2-loop threshold corrections

$$\alpha_s(M_Z) = 0.1173^{+0.0041}_{-0.0049}$$

Phys. Rev. D 80, 111107 (2009)

result	uncertainty contributions				
$\alpha_s(M_Z)$	stat.	exp. syst.	non-pert.	PDF	scale $\mu_{r,f}$
0.1173	+0.0001 -0.0001	+0.0034 -0.0029	+0.0010 -0.0010	+0.0012 -0.0011	+0.0021 -0.0029

≜UCL

Near Future

Gavin Hesketh

28

More jet studies on the way:

- 3 jet events
- R3/R2

Using 0.7 fb⁻¹

- driven by JES precision!

2) Bosons - $Z p_r, a_r, \phi^*$ - underlying event - Z + jets

Vector Bosons

30

Focus on Z:

- leptonic decay modes provide very clean signal
- but much lower statistics than pure jet sample
- Z very well understood
 - colourless probe of QCD process
 - \rightarrow make precision QCD measurements!
- very active area at D0

Beams have no transverse momentum:

- any Z pT caused by initial state radiation
- can reconstruct the Z right down to zero pT
 - soft (non-perturbative) QCD
- up to high pT (with identified jets)

- pQCD

Excellent test of QCD predictions and models!

Knowledge Transfer

31

The other motivation:

- (W or) Z + jets is the main background to top, higgs, some SUSY models.

- as well as the testing ground for the signal
- example: associated Higgs production: WH→Ivbb, ZH→Ilbb

Knowledge Transfer

The other motivation:

- (W or) Z + jets is the main background to top, higgs, some SUSY models.

- as well as the testing ground for the signal
- example: associated Higgs production: $WH \rightarrow I_V bb$, $ZH \rightarrow IIbb$

Tiny signal under huge background

- feed many variables to MVA
- need accurate descriptions of those variables
 - signal and background

Measure them for the first time!

Theory Status

1) Resummation: NNLL RESBOS-CP (+PHOTOS v2 for FSR)

- uses non-perturbative form factor at low pT, eg BLNY parameterisation:

$$S_{NP}(b,Q^2) = [g_1 + g_2 \ln(\frac{Q}{2Q_0}) + g_1 g_3 \ln(100x_i x_j)]b^2$$

- transitions to O(α_s) pQCD + k-factors at higher pT

- no jets!

2) Fixed order pQCD:

- W/Z+3 jets now available at NLO (blackhat, rocket); inclusive Z at NNLO.
- here, use MCFM v5.6, MSTW2008 PDFs
- apply FSR corrections derived from RESBOS+PHOTOS

3) Full event generators, 2->1 ME + reweighted PS:

- various tunes available, here use:
 - PYTHIA (v6.423) Perugia 6 (p_{τ} ordered)
 - PYTHIA (v6.423) D6 (Q^2 ordered)
 - HERWIG v5.1 (angular ordered)
- also NLO 2->1: MC@NLO, POWHEG

4) Full event generators, 2->N ME+PS:

- ALPGEN v2.13 and SHERPA v1.2.2, CTEQ6L1 PDF
- shower ALPGEN with PYTHIA and HERWIG

Phenomenological Issues

Gavin Hesketh

34

In published data measurements, typically:

- 1) correct observed leptons for detector resolution and efficiency
- 2) correct from the leptons the the (non-observable) Z
- 3) extrapolate from measured phase space to full 4pi coverage

The result is a mix of measurement and (significant) theory corrections

Publish data after step 1!

- minimal (zero?) model dependence, most useful for theory comparisons!
- also publish (best-guess) corrections to go to step 3 or the data after step 3
 - to compare to other experiments

Phenomenological Issues

Gavin Hesketh 35

Present Z and W measurements at the level of particles entering the detector

- define the Z and W in terms of these particles
- in a way that matches what we measure in the detector

arXiv:1003.1643, Section 14

UCL

Impact

Gavin Hesketh

36

Main effect from not extrapolating in $|\eta|$

- corrections of x2 typical

- however, not correcting for FSR up to 5% in pT

UCL

Impact

37

Main effect from not extrapolating in $|\eta|$

- corrections of x2 typical - however, not correcting for FSR up to 5% in pT

Muon isolation is a grey area:

FSR / brem can be reconstructed as jets
don't want to count / veto on these
but multijet background looks similar

- want to veto these events...

Experimental Issues

Gavin Hesketh

38

Triggering and event selection:

- trigger & select high p_{T} (15 - 20 GeV)

Z "Physics" Backgrounds:

- cosmic rays (μ , negligible)
- Z $\rightarrow \tau \tau$, WZ, WW, top pair (0.5% 1%)

Z "instrumental" backgrounds:

- high EM fraction jets (~1%)
 - reject with shower shape cuts
- semi-leptonic decays (< ~0.5%)

- reject with isolation criteria

Measure lepton efficiencies using "tag and probe"

- with Z events

Measure lepton resolution / energy scale: - width and position of Z mass peak

Unfold using bin-corrections method, and matrix inversion

Inclusive Z pT

39

Principle is simple:

- reconstruct the Z, plot the pT

Have to correct for detector effects:

- efficiency and resolution (unfolding)

There are several unfolding techniques:

- regularized matrix inversion
- ansatz method
- bin corrections
- Bayesian unfolding

- ...

Mostly use GURU, regularized SVD matrix inversion:

- 1) Use a Monte Carlo to populate the matrix
- 2) invert, apply some regualrisation
 - suppress statistical "noise"
 - ensure smooth solution
- 3) apply to the data, and correct for efficiency

We also use bin corrections on some results.

- much more sensitive to the MC model.

Inclusive Z pT

Gavin Hesketh

40

Phys. Lett. B 693, 522 (2010)

Normalised cross section

Limited by:

- muon resolution at low pT (~5%)
- and by stats. at high pT

Resbos falls away in transition region

pQCD consistently below the data!

- even with careful definition - lower scale would help - default $\mu^2 = M_z^2 + p_{TZ}^2$

≜UCL

Inclusive Z pT

Gavin Hesketh

Inclusive Z pT

Gavin Hesketh

Resolution is a limitation:

- define a variable with ~no smearing! - a_{T} = projection of p_{T}
- $\phi_{\eta}^{*} = \tan\left(\phi_{\rm acop}/2\right)\sin(\theta_{\eta}^{*})$

where: $\cos(\theta_{\eta}^{*}) = \tanh\left[\left(\eta^{-} - \eta^{+}\right)/2\right]$

 $-\phi^* \sim a_T/M_{\parallel}$

Resolution is a limitation:

- define a variable with ~no smearing! - a_{τ} = projection of p_{τ}
- $\phi_{\eta}^{*} = \tan\left(\phi_{\rm acop}/2\right)\sin(\theta_{\eta}^{*})$

where: $\cos(\theta_{\eta}^{*}) = \tanh\left[\left(\eta^{-} - \eta^{+}\right)/2\right]$

$$-\phi^* \sim a_T/M_{\mu}$$

Analysis becomes stats. limited everywhere:

- use max lumi (7.3fb⁻¹), e and mu channels
- looser data quality
- 966k Z events!

New levels of precision at low pT:

- best measurement of
$$\textbf{g}_2$$

$$S_{NP}(b,Q^2)=[g_1+g_2\ln(\frac{Q}{2Q_0})+g_1g_3\ln(100x_ix_j)]b^2$$

Can also look for "small x broadening"

Channel	y < 1	1 < y < 2	y > 2
ee	0.644 ± 0.013	0.619 ± 0.017	0.550 ± 0.048
$\mu\mu$	0.670 ± 0.012	0.645 ± 0.019	_

|y| > 2

0.2

0.3

 ϕ_{η}^{*}

φ^{*}_η

10⁻¹

Photons

"Instrumental background":

non-prompt photons appear isolatedenergy overlay on prompt photons dilutes isolation

Diphotons

"spin-off" from the $H \rightarrow \gamma \gamma$ search

- two photons with pT>20 (21) GeV, $|\eta| < 0.9$, $pT(\gamma\gamma) < M(\gamma\gamma)$
- measure mass, pT, $\Delta \phi$, $\cos \theta^*$
 - and again, in bins of mass

The Next Step

Next step: take a closer look at what else is happening in these events

- extra activity from hard scatter, MPI, underlying event.
- can we disentangle?

γ + jets: MPI

Next step: take a closer look at what else is happening in these events

- extra activity from hard scatter, MPI, underlying event.
- can we disentangle?

â

Double parton interactions:

- important background (esp at LHC)

Tag primary interaction $A = \gamma + jet$ Identify second interaction B = di-jets

Extract effective cross section:

 $\sigma_{DP} = \boldsymbol{m} \cdot \sigma_{A} \cdot \frac{\sigma_{B}}{2\sigma_{eff}}$

Measured: $<\sigma_{eff}> = 15.1 \pm 1.9 \text{ pb}$ Consistent with previous CDF result

γ + jets: MPI; UE

Next step: take a closer look at what else is happening in these events

- extra activity from hard scatter, MPI, underlying event.
- can we disentangle?

Double parton interactions:

- important background (esp at LHC)

Tag primary interaction $A = \gamma + jet$ Identify second interaction B = di-jets

Extract effective cross section:

 $\sigma_{DP} = \boldsymbol{m} \cdot \sigma_{A} \cdot \frac{\sigma_{B}}{2\sigma_{eff}}$

Measured: $<\sigma_{\rm eff}$ > = 15.1 \pm 1.9 pb Consistent with previous CDF result

Also: a D0 min bias measurement!

use dimuon triggerslook for other vertices

Back to the Z, focus on the jets:

- need differential distributions

Back to the Z, focus on the jets:

- need differential distributions

Unfolding problems become worse:

- detector resolution worse than leptons
- migrations across pT cut
- and changes in pT ordering...

Looking at the 2nd, 3rd, jet is tough

- need to be very careful
- or have a MC which describes the data
 - \rightarrow lots of reweiahtina...

≜UCL

Z + 1,2,3 jets

53

Measurement of 1st, 2nd and 3rd jet pT in Z events:

- $Z \rightarrow ee$, jet $p_T > 20 \text{ GeV}$, jet |y| < 2.5.
- normalize to inclusive Z production (cancel some uncertainties)

Carry out extensive event generator comparisons

PLB 678, 45 (2009)

Z+jets: $\Delta \phi$

54

Another, simpler way to access higher jet multiplicities: - similar to the dijet decorrelation measurement ՃՓ - $\Delta \phi$ (Z, leading jet), measured for the first time Phys. Lett. B 682, 370 (2010) DØ, L=0.97 fb⁻¹ --- HERWIG+JIMMY $\begin{array}{c} 1/\sigma_{z}\times d\sigma_{z+jet}/d\Delta\varphi \ (1/rad)\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 1\end{array}$ DØ, L=0.97 fb⁻¹ PYTHIA scale unc. PYTHIA Tune D6 NLO pQCD + corr. • PYTHIA Perugia 6 Require $p_{+}(Z) > 25 \text{ GeV}$ $LO = O(\alpha_s^2)$ NLO = O(α_{a}^{3}) $65 < M_{\mu\mu} < 115 \text{ GeV}$ 10-4 $|y^{\mu}| < 1.7, p_{\tau}^{Z} > 25 \text{ GeV}$ $R_{cone}=0.5, p_{\tau}^{jet} > 20 \text{ GeV}, |y^{jet}| < 2.8$ 0.5 pQCD diverges as Ratio to PYTHIA Perugia 6 DØ, L=0.97 fb⁻¹ Ratio to PYTHIA Perugia 6 DØ, L=0.97 fb⁻¹ --- ALP+HERWIG - LO pQCD $\Delta \phi \rightarrow \pi$ 3 NLO pQCD SHERPA ····· ALP+PY Tune D6 - Scale & PDF unc. Scale & PDF unc. - ALP+PY Perugia 6 PYTHIA scale unc. PYTHIA scale unc. Corrections large as $\Delta \phi \rightarrow 0$ (due to MPI) 0.7 0.5 0.5 1.5 2.5 1.5 2 з 2 2.5 $\Delta \phi(Z, jet)$ (rad) $\Delta \phi(Z, jet)$ (rad)

Z+jets: jet y

Some simpler things also revealing: leading jet rapidity

- well modeled by pQCD
 - alpgen and (fortran) herwig diverge in opposite directions...

Phys. Lett. B 669, 278 (2008)

See same effect on $\Delta y(Z, jet)$

Z+jets: Δy

Gavin Hesketh

57

Z pT, >= 1 jet in the event

- never measured before
- interesting way to access MPI!

Z+jets

UC

 $1/\sigma_{\rm Z} \times d\sigma_{{\rm Z+jet}}/dp_{\rm T}$ (1/GeV)

10-4

10⁻⁵

Ratio to PYTHIA Perugia 6

0.7

0.5

0

20

65 < M_{....}< 11

DØ. L=0.97

NLO pQCD

Scale & PD PYTHIA sci

80

60

R_{cone}=0.5,

58

Ρ

XB

Z pT, >= 1 jet in the event

- never measured before
- interesting way to access MPI!

100 120 140 160 180 200

p^z_T (GeV)

Phys. Lett. B 669, 278 (2008)

XA

XB

Ρ

So far, no "perfect" Monte Carlo

- some good variables for future tuning
- LO Monte Carlos have LO accuracy...
 - how much should we expect from tuning?
 - some shape effects are not scale related
 - SHERPA v1.2.2 looks good overall

Z + Heavy Flavour

Much progress with Z+light flavour

- also need to understand heavy flavour
- THE low mass Higgs background!

Heavy flavour tagging:

- based on many variables in a NN
- different operating points
- extra complication in unfolding

Z + Heavy Flavour

60

Final discriminant: rJLIP

UC

- reduced jet lifetime probability
- confidence level that all tracks in a jet originate from same vertex.
- reduced? discard the least likely track.
- fit templates to extract b-jet fraction

$Z+b/Z+jet = 0.0176 \pm 0.0024(stat) \pm 0.0023 (syst)$

- in agreement with NLO pQCD (which has 20-25% scale uncertainty)

Subm to PRL, arXiv.org:1010.6203

CDF result: $0.0208 \pm 0.0033(stat) \pm 0.0034(syst)$ 2 sigma over pQCD in first bin

γ + Heavy Flavour

61

Similar analysis to photon + jet:

- p_{Tiet} > 15 GeV, $|\eta_{iet}| < 0.8$, $|\eta_{v}| < 1$

Systematics dominated by flavour fractions

- from template fit to jet lifetime probability

Phys. Rev. Lett. 102, 192002 (2009)

b-jet cross section well modeled

Deficit in c-jet at high p,:

- region dominated by gluon splitting

Increased charm sea models:

- move in direction, but not enough

What will the LHC observe?

- more sensitive to heavy flavour sea

How will this look for Z?

Conclusions

62

Understanding QCD is essential at a hadron collider!

QCD programme at D0 very successful

- solid methods, precision results!

Jet results building on the precise JES:

- no new physics, but...
- improving knowledge of PDFs
- new measurement of α_{s}
- more results to come

Boson (+ jet) production:

- excellent test of QCD predictions, essential for discoveries!
- developed new techniques, new variables
- extensive study of Z+jets
 - and updated MC tunes
- Z/W + heavy flavour is next!

Backup

Inclusive Z pT

UCL

ρ_τ (GeV)

Z Boson p

66

Result using 1 fb⁻¹, $Z \rightarrow ee$ channel:

- differential cross section over wide Z $p_{_{\rm T}}$ range
- normalised to inclusive Z cross section

Low Z p_{T} associated with soft ISR:

 \rightarrow gluon re-summation, eg BLNY parameterisation:

$$S_{NP}(b,Q^2) = [g_1 + g_2 \ln(\frac{Q}{2Q_0}) + g_1 g_3 \ln(100x_i x_j)]b^2$$

Implemented in RESBOS Monte Carlo

- extract $g_{2} = 0.77 \pm 0.06$

- also use forward Z to test small-x broadening

Higher p, associated with hard ISR:

- well described by fixed order pQCD

- NNLO: Melnikov & Petrillo PRD 74, 114017 ('06)

Z $p_{_{T}}$ also very useful for generator tuning!

- re-weight simulation to these data.

Jet Energy Scale

- Offset: energy not from hard scatter
 - noise, pile-up
 - measure in min bias events, 1-3 % effect
- **R x A:** Relative and absolute response corrections
 - fraction of total particle energy seen
 - primarily in back-to-back photon+jet
 - extrapolate forward with di-jets
- S: (detector) showering effects
 - finite calorimeter tower size;
 - magnetic field
 - hadron shower size
 - 1-5 % effect, function of η
 - again, measure in photon +jet
- **k:** any remaining biases:
 - effects of cell zero suppression
 - response sample selection bias

Jet Energy Scale

G. Hesketh

Particle Level

In simulation, construct "Z" and "W" from the particles entering the detector:

- 1) Consider all particles with ctau > 10 mm as "stable" (ie reach the detector)
- 2) Muon: any stable muon. ie after QED FSR, to mirror a tracking detector
- 3) Electron: combine EM energy in a cluster, to mirror a calorimeter eg, a cone with R=0.2 suitable for Tevatron, but not LHC
- 4) Missing ET: vector sum of all neutrinos in event
- 5) Dilepton (Z) selection should mirror data:
 - consider all leptons in acceptance range (eg | eta | <2.5)
 - make opposite sign pairs, keep those in mass range (eg 65 < M <115 GeV)
 - when >1 pair, pick "best" in same way as for data
 - eg closest to Z mass

5) Lepton + MET (W) selection should mirror data: eg highest pT lepton inside acceptance, combined with MET

Data must still be corrected for detector resolution and efficiency

"unfolding", a difficult subject worthy of several talks...

UC

FSR Properties

70

Does any of this actually make a difference?

Some test studies: ppbar->Z->ee and Z->mumu in Pythia 6.421, tune Perugia 6

- Tevatron example as we have the data, and know this tune does well
- simple analysis:
 - build the particle level leptons, require:
 - | lepton eta | <1.7
 - di-lepton mass 65<M<115 GeV

- compare to the generated Z, with the same cuts on the leptons before FSR

Recovering Old Results?

Gavin Hesketh

Previous publications of Z pT:

- corrected from measure leptons to Z
- corrected to 4pi acceptance

Is it possible to reproduce these using stable particles?

- ie in RIVET?

Try to catching more FSR:

- increase the electron cone size: 0.5 and 1.0
- 0.5 cone moves closer to Z
- 1.0 goes too far

- catch too many underlying event photons note: neither of these are observables!

Cannot reproduce previous measurements!

- without "cheating"

≜UCL

74

Measurement of 1st, 2nd and 3rd jet pT in Z events:

- $Z \rightarrow ee$, jet $p_T > 20 \text{ GeV}$, jet |y| < 2.5.
- normalize to inclusive Z production (cancel some uncertainties)

PLB 678, 45 (2009)

Leading jet in Z + jet + X

75

Measurement of 1st, 2nd and 3rd jet pT in Z events:

- $Z \rightarrow ee$, jet $p_T > 20 \text{ GeV}$, jet |y| < 2.5.
- normalize to inclusive Z production (cancel some uncertainties)

PLB 678, 45 (2009)

Leading jet in Z + jet + X

Second jet in Z + 2jet + X

Third jet in Z + 3jet + X

UCL

Investigate further: add a jet

 $-p_{T}>15 \text{ GeV}, |\eta_{jet}|<0.8, 1.5 < |\eta_{jet}|<2.5$

Triple differential:

- in jet η , photon η and photon $p_{_{T}}$

Something missing in the theory?

- higher orders, resummation, ..?
- LHC measurements will be very interesting!

γ + Heavy Flavour

Gavin Hesketh

78

Gluon splitting contribution

- dominates for high photon $p_{_{T}}$
- important as background elsewhere

heavy flavour sea contribution

- dominates at low photon $p_{_{T}}$
- LHC: larger contribution over all $p_{_{T}}$
- charm PDF has significant uncertainties