

Electroweak Physics at CMS

David Futyan

Imperial College London

Outline

- Introduction
- Inclusive W and Z production cross-section
- W charge asymmetry
- W polarization
- Additional selected results:
 - WW cross-section
 - $Z \rightarrow \tau \tau$ cross-section
 - W,Z + jets
 - Drell-Yan do/dM
 - Z differential cross-sections: dσ/dy, dσ/dq_T
 - AFB and $sin^2\theta_W$

CMS Operation in 2010

- 47pb⁻¹ delivered by LHC and 43pb⁻¹ of data collected by CMS
 - Overall data taking efficiency ~92%.
 - ~84% of recorded data good quality for physics analysis \rightarrow ~36pb⁻¹
- Excellent performance in coping with more than 5 order of magnitude increase in instantaneous luminosity

Motivations for Electroweak Physics at CMS

- Although Electroweak processes are well understood from earlier experiments, precise measurements at LHC are important for many reasons:
- Detector and physics object commissioning:
 - W, Z: predominant source of isolated high p_T leptons
 - Benchmark for lepton reconstruction and identification (understand efficiency, resolution)
- Test of perturbative QCD, constrain proton PDFs
- Understand backgrounds for many new physics searches
- Deviations from standard model predictions can be a sign of new physics, e.g. anomalous TGCs in di-boson production
- Estimators of LHC Luminosity

David Futyan Imperial College London

W and Z: Signal and Background characteristics

■ W→lv Signal:

Single high p_T isolated lepton with significant missing transverse energy

■ Z→II Signal:

• Two high p_T isolated leptons with di-lepton invariant mass close to M_Z

■ W→Iv Backgrounds:

- QCD di-jets and γ+jets (for electrons)
 - Fake leptons, leptons from heavy flavour decays, photon conversions (for electrons)
- Drell-Yan including Z→II
- ∎ W→τv
- Small contributions from $Z \rightarrow \tau \tau$, di-bosons (WW, WZ, ZZ) and ttbar

■ Z→II Backgrounds:

• Very low: Small contributions from $Z \rightarrow \tau \tau$, di-bosons (WW, WZ, ZZ) and ttbar

W and Z: Event Selection

- One (W) or two (Z) isolated electrons or muons with p_T>25 GeV, passing ID and quality requirements
 - Explicit rejection of converted photons (for electron case)
 - Explicit rejection of cosmic muons (for muon case)
- No cut on missing E_T or transverse mass for W selection
- For Z require 60<M_{II}<120 GeV/c²

W and Z Cross-section Measurement

David Futyan Imperial College London

W Signal Extraction

- Signal extraction performed via a maximum likelihood fit to missing transverse energy distribution
- Missing transverse energy calculated using the Particle Flow algorithm
 - $-\Sigma p_T$ for all particles reconstructed in the event
 - Well reproduced by simulation

Signal shape modeling

- Accurate modeling of MET distribution difficult due imperfect simulation of low level physics and detector effects
- Z→II events in data are used to derive corrections for:
 - Lepton energy scale and resolution:
 - Apply a range of energy scale and resolution (smearing) factors to Z→II MC and minimize negative log likelihood of invariant mass distribution compared to data
 - Response and resolution of hadronic recoil:

Measure components of recoil u_{||}, u_⊥ parallel/perpendicular to boson p_T axis in Z→II data and MC events

11

- derive data/MC correction factors for means and widths of u_{\parallel} , u_{\perp} distributions as functions of boson p_T – apply corrections to W MC

QCD background modeling: $W \rightarrow ev$

Electrons: MET shape parameterized using a modified Rayleigh function

$$f(\mathcal{E}_{\mathrm{T}}) = \mathcal{E}_{\mathrm{T}} \times \exp\left(-\frac{\mathcal{E}_{\mathrm{T}}^{2}}{2(\sigma_{0} + \sigma_{1}\mathcal{E}_{\mathrm{T}})^{2}}\right)$$

- Shape parameters σ₀, σ₁ and normalization allowed to float in the fit
- Alternative method extracts MET shape from data using a control sample obtained by inverting one of the electron ID cuts (~uncorrelated with MET)
 - Signal contamination in the control sample (~1%) is estimated using the tag and probe technique with Z→ee events. Signal yield is corrected accordingly
- Yields from the two approaches agree to within 0.3%

QCD background modeling: $W \rightarrow \mu v$

MET shape constructed from control sample obtained by inverting isolation cut

- Control sample has high purity (negligible signal contamination) but MET shape suffers a bias due to a correlation between isolation and MET
 - Mean value of MET positively correlated with isolation
 - Correction derived by fitting the observed correlation in data:

$$\mathbb{E}_{\mathrm{T}}' = \mathbb{E}_{\mathrm{T}} / (1 + \alpha I_{\mathrm{comb}}^{\mathrm{rel}})$$

0.01

10

20

50

MET [GeV]

60

40

Electroweak Background

- Electroweak background composed of:
 - Z→ee + Z→ττ
 - ₩→τν
 - Di-boson: WW, WZ, ZZ
 - ttbar

- Shapes for $Z \rightarrow II$ and $W \rightarrow \tau v$ taken from MC with corrections as for signal
- Shapes for di-boson and ttbar directly from MC
- Normalization of each component w.r.t. signal fixed using theoretical cross -section ratios
 - Signal+EWK treated as a single fixed shape template in the fit
 - \rightarrow combined normalization as the only free parameter

Fit Results

David Futyan Imperial College London

Z→ee Signal Extraction

- Cut and count di-lepton events within invariant mass window 60<M_{e+e-}<120 GeV/c²
- Corrections applied for energy scale (data) and resolution (MC)

- EWK ($Z \rightarrow \tau \tau$, ttbar, di-boson) = 30.8 ± 0.4, from MC using NNLO cross-sections
- QCD negligible (consistent with 0 events from data driven estimates)

$Z \rightarrow \mu \mu$ Signal Extraction

A simultaneous fit is used to extract signal yield and selection efficiency

• Efficiency corrected yield from fits is $N_Z/\epsilon_Z = 13728 \pm 121$ events

Systematic Uncertainties

- Breakdown of systematic uncertainties (%)
- Data driven methods used to derive all experimental uncertainties

Source	W→ev	W→μν	Z→ee	Z→μμ
Lepton Reco & ID	1.3	0.9	1.8	-
Momentum scale & resolution	0.5	0.22	0.12	0.35
MET scale & resolution	0.3	0.2	-	-
BKG subtraction	0.35	0.4	0.14	0.28
Total experimental	1.5	1.1	1.8	0.7
PDF uncertainty for acceptance	0.6	0.7	0.9	1.2
Other theoretical uncertainties	0.7	0.8	1.4	1.6
Total theoretical	0.9	1.1	1.7	2.0
TOTAL	1.7	1.6	2.5	2.1

Uncertainty from integrated luminosity: 4%

David Futyan Imperial College London

Comparison with Theory

W Charge Asymmetry

- W+ produced in greater numbers than W- at LHC due to prevalence of u quarks w.r.t. d quarks in protons
- Measurement of asymmetry can provide important constraints on proton PDFs
 - Particularly sensitive to d(x)/u(x) ratio
- Experimentally accessible observable is the charge asymmetry as a function of lepton pseudorapidity:

$$\mathcal{A}_{exp}(\eta) = \frac{\frac{dN}{d\eta} \left(\ell^{+}\right) - \frac{dN}{d\eta} \left(\ell^{-}\right)}{\frac{dN}{d\eta} \left(\ell^{+}\right) + \frac{dN}{d\eta} \left(\ell^{-}\right)}$$

Analysis performed for both e and μ channels using 6 η bins

W charge asymmetry: Signal Extraction

- W→ev signal extraction as for inclusive measurement using a fit to particle flow missing E_T
- W→µv signal extraction with fit to modified isolation variable:
 - $\xi = \sum_{\Delta R < 0.3} [p_T(tracks) + E_T(em) + E_T(had)]$
 - Signal+EWK shape: convolution of Gaussian with Landau, with parameters fixed using Z→µµ
 - QCD shape: empirical parameterization: $\xi^{\alpha} e^{-\beta\sqrt{\xi}}$
 - α fixed from control sample
 - β allowed to float in the fit
 - EWK normalized to signal using theoretical cross-section ratios

David Futyan Imperial College London Electroweak physics at CMS Edinburgh, April 21st 2011 23

Charge Identification

For muons, curvature in Silicon Tracker unambiguous in this momentum range

- Charge mis-ID <10⁻⁵ in MC, <10⁻⁴ from cosmic data (track splitting method)
- Electron charge-ID challenging due to bremsstrahlung and conversions

Single MC electron, $p_T=35$ GeV

Charge identification

- Minimize charge mis-ID probability by requiring 3 charge assignment measurements to agree
 - Q(CKF track) = q(GSF track) = $q(\Delta \phi)$ Mis-ID rate < 0.5% Charge mis-ID 0.032 0.032 0.032 0.032 0.04 CMS Preliminary 2010,√s = 7 TeV L dt = 36 pb⁻¹ iority (data supercluster 0.02 0.015 first hit $\Delta \phi$ 0.01 Beam spot 0.005 0 EE-EB-EB+ EE+

- Asymmetry corrected for measured charge mis-ID
- Uncertainty on correction taken as a systematic

W charge asymmetry: Results

- Results quoted within two well defined regions of phase space:
 - p_T > 25=30 GeV, no cut on pT
- Good agreement between electron and muon results
 - First constraints on PDF's from LHC

W charge asymmetry: Combination with LHCb

W Polarization

- Dominant production mechanism for high p_T W-bosons (>50 GeV) at the LHC is valence quark gluon
 - Favours production of right handed W bosons, regardless of whether valence quark is u or d – i.e. true for both W+ and W-

processes contribute equally, canceling the effect

W Polarization: Lepton projection variable

- Polarization characterized by $cos(\theta^*)$
 - θ* is the polar angle of the charged lepton in the W rest frame w.r.t. the boson direction in the lab frame
- Cannot measure cos(θ*) directly because
 longitudinal component of neutrino momentum (and hence the boson momentum) is unknown
- Need a detector level quantity which is highly correlated with $cos(\theta^*) \rightarrow$ Lepton projection variable:

David Futyan Imperial College London

W Polarization: Fit results

- Fit templates from MC corresponding to each helicity state to the L_P distribution:
 - f_L = left handed
 - f_R = right handed
 - f₀ = longitudinal

- For electron case, QCD background is non -negligible
 - Template shape derived from data (inverted electron ID)
 - Normalization allowed to float in fit

W Polarization: Simultaneous fit

Perform simultaneous fit for electron and muon channels

WW Cross-Section Measurement

WW Cross-Section Measurement

- Provides a benchmark for Higgs and new physics searches
 - Standard Model WW production is the dominant background for the Higgs \rightarrow WW search
 - New physics inducing anomalous WW_γ and WWZ triple-gauge-boson couplings (aTGC) enhances the WW production cross section at high p_T

- Simple cut and count method
- Fully leptonic decay channels only (ee, μμ, eμ)
- Select events with two oppositely charged isolated high p_T leptons with significant missing transverse energy
 - Explicit Drell-Yan and top vetos

Limits on Anomalous Triple Gauge Couplings

Limits are consistent with SM and are comparable with current Tevatron results

Z→ττ Cross-section Measurement

Z→ττ Cross-section Measurement

■ Global fit of the $\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{had}$ channels with the cross-section fixed to the value measured for $Z \rightarrow ee, \mu\mu$ provides a 7% constraint on the hadronic tau reconstruction efficiency

W and Z +Jets

David Futyan Imperial College London

W +Jets signal extraction

39

W and Z + Jets cross-sections

David Futyan Imperial College London

Drell-Yan differential cross-section: $d\sigma/dM$

Correct for resolution effects using MC response matrix ("unfolding")

Imperial College London

Electroweak physics at CMS Edinburgh, April 21st 2011

Z Differential cross-sections: $d\sigma/dy$, $d\sigma/dp_T$

Z Forward-Backward Asymmetry

Measurement of Weak Mixing Angle $sin\theta_W$

- Unbinned maximum likelihood fit based on 3 variables:
 - di-lepton rapidity
 - cosθ_{CS}
 - di-lepton Invariant mass
- Probability density functions from theory with corrections for detector and acceptance effects

 $sin^2\theta_{eff} = 0.229 \pm 0.008(stat) \pm 0.004(syst)$

PDG value: 0.23116(13)

Tevatron: 0.232 ± 0.002

Summary of Results

36 pb⁻¹ at $\sqrt{s} = 7$ TeV CMS preliminary lumi. uncertainty: ±4% $\sigma \times B(W)$ $0.988 \pm 0.009_{exp} \pm 0.050_{theo}$ $0.982 \pm 0.017_{exp} \pm 0.047_{theo}$ $\sigma \times B(W^{\dagger})$ $0.993 \pm 0.019_{\, \text{exp}} \pm 0.054_{\, \text{theo}}$ $\sigma \times B(W)$ $1.003 \pm 0.010_{\,\rm exp} \pm 0.047_{\,\rm theo}$ $\sigma \times B(Z)$ $1.029 \pm 0.097_{exp} \pm 0.043_{theo}$ $\sigma \times B(Z \rightarrow \tau \tau)$ $1.121 \pm 0.177_{exp} \pm 0.077_{theo}$ $\sigma \times B(W\gamma)$ $0.969 \pm 0.121_{exp} \pm 0.042_{theo}$ $\sigma \times B(Z\gamma)$ $0.956 \pm 0.381_{exp} \pm 0.007_{theo}$ $\sigma \times B(WW)$ $1.055 \pm 0.236_{\rm exp} \pm 0.079_{\rm theo}$ $\sigma \times B(t\bar{t})$ I+jets $0.915 \pm 0.117_{exp} \pm 0.079_{theo}$ $\sigma \times B(t\bar{t})$ I+jets+b-tag $1.014 \pm 0.138_{exp} \pm 0.079_{theo}$ $\sigma \times B(t\bar{t})$ dilepton $0.963 \pm 0.115_{exp} \pm 0.079_{theo}$ σ×B(tt) $1.342 \pm 0.478_{exp} \pm 0.039_{theo}$ $\sigma \times B(t)$ $R_{w/z}$ $0.981 \pm 0.018_{exp} \pm 0.015_{theo}$ $0.994 \pm 0.013_{exp} \pm 0.035_{theo}$ R_{w+} $1.208 \pm 0.280_{exp} \pm 0.021_{theo}$ Z_{iet}→μμ α $0.992 \pm 0.199_{_{exp}} \pm 0.020_{_{theo}}$ $Z_{iet} \rightarrow ee \alpha$ $0.833 \pm 0.088_{\,\rm exp} \pm 0.017_{\,\rm theo}$ $W_{iet} \rightarrow \mu \nu \alpha$ $0.894 \pm 0.097_{\,\rm exp} \pm 0.017_{\,\rm theo}$ $W_{iet} \rightarrow ev \alpha$ $0.989 \pm 0.037_{\,\rm exp} \pm 0.001_{\rm theo}$ sin²0_w M_{top}/World Average $1.014 \pm 0.038_{exp} \pm 0.006_{theo}$ $1.000 \pm 0.272_{\,\text{exp}} \pm 0.185_{\,\text{theo}}$ $Z_{b-jet \rightarrow \mu\mu}/Z_{jet}$ $1.059 \pm 0.281_{\text{exp}} \pm 0.167_{\text{theo}}$ $Z_{b-iet \rightarrow ee}/Z_{jet}$ 1.5 0.5

David Futyan Imperial College London Electroweak physics at CMS Edinburgh, April 21st 2011 45

Summary

- The first year of data from CMS has allowed a large number of Standard Model measurements at a new energy scale
- Several to very high precision
 - W and Z cross-section measurement limited by theoretical uncertainties
- W polarization measured for the first time at a proton collider
- We are starting to put new constraints on:
 - PDF uncertainties
 - Standard Model Couplings
 - NNLO differential calculations
 - Associated jet production
- These results form the reference baseline for this year's data taking
- Experience from making these measurements has given us a high level of understanding of our detector and of the backgrounds for searches
 - Ready for new physics!

Backup

Signal shape modeling (contd)

Effect of hadronic recoil correction:

Tau ID efficiency vs fake rate

V + Jets: Berends-Giele scaling

