

Quarkonium production in the LHC era: From puzzles to understanding

PPE seminar, Edinburgh, October 28th 2014

Valentin Knünz (HEPHY Vienna)

Supported by FWF grant P 24167-N16

Many thanks to C. Lourenço, P. Faccioli, H. Wöhri, J. Seixas and I. Krätschmer for various inputs used in this presentation

1) Motivation & introduction: the pre-LHC puzzles

- Why do we study quarkonium production?
- Quarkonium spectrum & feed-down decays
- Quarkonium production models: Non-Relativistic QCD
- Puzzles in the pre-LHC era
- 2) Quarkonium production measurements at CMS
- 3) Interpretation of the results: a polarized perspective

- 1) Motivation & introduction: the pre-LHC puzzles
- 2) Quarkonium production measurements at CMS
 - Improved data analysis methodologies
 - Summary of relevant CMS data analyses
 - Overview of LHC quarkonium production results
- 3) Interpretation of the results: a polarized perspective

- 1) Motivation & introduction: the pre-LHC puzzles
- 2) Quarkonium production measurements at CMS
- 3) Interpretation of the results: a polarized perspective
 - Review of existing NRQCD analyses
 - A data-driven perspective
 - Towards the solution of the `quarkonium polarization puzzle'

1) Motivation & introduction: the pre-LHC puzzles

- 2) Quarkonium production measurements at CMS
- 3) Interpretation of the results: a polarized perspective

The big picture in a nutshell

Only 0.1% of the mass in the universe exists as truly elementary particles (Higgs mechanism); almost all the visible matter is made of *hadrons*

The "dark sector" is a mystery, but hadron formation is not well understood either

"QCD is full of surprises and challenges" (Joe Lykken, summary talk, LHCP 2013)

Quarkonium production is an ideal probe to study hadron formation, part of the non-perturbative QCD sector \rightarrow how do quarks combine into a bound state?

Quarkonia are bound states of a heavy quark and it's antiquark (cc, bb) and exist in "families" of several states (colorless, neutral mesons) → QCD analogues of the hydrogen atom

Quark production and quarkonium formation are well separated processes at distinct timescales

The big picture in a nutshell

Only 0.1% of the mass in the universe exists as truly elementary particles (Higgs mechanism); almost all the visible matter is made of *hadrons*

The "dark sector" is a mystery, but hadron formation is not well understood either

"QCD is full of surprises and challenges" (Joe Lykken, summary talk, LHCP 2013)

Quarkonium production is an ideal probe to study hadron formation, part of the non-perturbative QCD sector \rightarrow how do quarks combine into a bound state?

Quarkonia are bound states of a heavy quark and it's antiquark (cc, bb) and exist in "families" of several states (colorless, neutral mesons) → QCD analogues of the hydrogen atom

Quark production and quarkonium formation are well separated processes at distinct timescales

The big picture in a nutshell

Only 0.1% of the mass in the universe exists as truly elementary particles (Higgs mechanism); almost all the visible matter is made of *hadrons*

The "dark sector" is a mystery, but hadron formation is not well understood either

"QCD is full of surprises and challenges" (Joe Lykken, summary talk, LHCP 2013)

Quarkonium production is an ideal probe to study hadron formation, part of the non-perturbative QCD sector \rightarrow how do quarks combine into a bound state?

Quarkonia are bound states of a heavy quark and it's antiquark ($c\bar{c}$, $b\bar{b}$) and exist in "families" of several states (colorless, neutral mesons) \rightarrow QCD analogues of the hydrogen atom

Quark production and quarkonium formation are well separated processes at distinct timescales

Quarkonium spectra & feed-down considerations

Prompt contribution = Direct production + charmonium feed-down

Quarkonium spectra & feed-down considerations

We need heavy quarks to "see" hadron formation

What's the problem?

Quarkonium spectrum very well understood

Quarkonium decays very well understood

The problem is that quarkonium production has been plagued with *experimental puzzles*, preventing reliable progress in our physics understanding

In the early 90's, CDF measured a ψ (2S) cross section 50 times larger than expected in the color singlet model (CSM): "the ψ ' anomaly"

In 1995, Bodwin, Braaten and Lepage developed the NRQCD (non-relativistic QCD) approach, which solved the ψ' anomaly by adding a series of color octet terms, with free normalizations; given the extra freedom, the data could be reproduced

The validity of NRQCD was then probed by fixing those free parameters and comparing the resulting predictions to independent measurements; this is where the polarization enters... The outcome is well known: NRQCD predicts transverse polarization at high p_{T} , not observed in data

In the early 90's, CDF measured a $\psi(2S)$ cross section 50 times larger than expected in the color singlet model (CSM): "the ψ ' anomaly"

In 1995, Bodwin, Braaten and Lepage developed the NRQCD (non-relativistic QCD) approach, which solved the ψ' anomaly by adding a series of color octet terms, with free normalizations; given the extra freedom, the data could be reproduced

The validity of NRQCD was then probed by fixing those free parameters and comparing the resulting predictions to independent measurements; this is where the polarization enters... The outcome is well known: NRQCD predicts transverse polarization at high p_{T} , not observed in data

In the early 90's, CDF measured a $\psi(2S)$ cross section 50 times larger than expected in the color singlet model (CSM): "the ψ ' anomaly"

In 1995, Bodwin, Braaten and Lepage developed the NRQCD (non-relativistic QCD) approach, which solved the ψ' anomaly by adding a series of color octet terms, with free normalizations; given the extra freedom, the data could be reproduced

The validity of NRQCD was then probed by fixing those free parameters and comparing the resulting predictions to independent measurements; this is where the polarization enters... The outcome is well known: NRQCD predicts transverse polarization at high p_{T} , not observed in data

5

In the early 90's, CDF measured a $\psi(2S)$ cross section 50 times larger than expected in the color singlet model (CSM): "the ψ ' anomaly"

5

In 1995, Bodwin, Braaten and Lepage developed the NRQCD (non-relativistic QCD) approach, \leq which solved the ψ' anomaly by adding a series of color octet terms, with free normalizations; given the extra freedom, the data could be reproduced

The validity of NRQCD was then probed by fixing those free parameters and comparing the resulting predictions to independent measurements; this is where the polarization enters... The outcome is well known: NRQCD predicts transverse polarization at high p_{T} , not observed in data

Quarkonium production in two not-so-easy steps

NRQCD is an effective field theory that factorizes quarkonium production in two steps:

- 1) production of the initial quark-antiquark pair (perturbative QCD)
- 2) hadronization of the quark pair into a bound quarkonium state (non-perturbative QCD)

$$\sigma(\mathcal{Q}) = \sum_{n} \sigma[q\bar{q}(n)] \left\langle \mathcal{O}^{\mathcal{Q}}(n) \right\rangle \Big|_{\mathcal{Q}}$$

$$n = {}^{2S+1}L_{J}^{[C]}$$
, C = 1,8

Quantum numbers of the heavy quark pair S, L, J = spin, orbital and total ang. momentum

NRQCD predicts the existence of intermediate color-octet (CO) states in nature, that subsequently evolve into physical color-singlet (CS) quarkonia by non-perturbative emission of soft gluons.

Quarkonium production in two not-so-easy steps

NRQCD is an effective field theory that factorizes quarkonium production in two steps:

- 1) production of the initial quark-antiquark pair (perturbative QCD)
- 2) hadronization of the quark pair into a bound quarkonium state (non-perturbative QCD)

The LDMEs should follow a hierarchy in powers of v, the relative velocity of the quark pair in the quarkonium system \rightarrow Non-relativistic approximation ($v^2 \sim 0.3$ for the ψ and ~ 0.1 for the Υ):

- \rightarrow Truncation of v-expansion for S-wave states
- → NRQCD includes 4 terms (intermediate states):

```
CS term {}^3S_1 (same n as {\cal Q} ) CO terms: {}^1S_0,\, {}^3S_1,\, {}^3P_J
```

Fitting the theory to the data: a pedagogical example

The J/ ψ cross section is fitted adding the (free) ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{3}P_{J}$ octets to the (fixed) ${}^{3}S_{1}$ singlet

Note: the fit starts at $p_T = 3$ GeV feed-down not taken into account

Fitting the theory to the data: a pedagogical example

The J/ ψ cross section is fitted adding the (free) ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{3}P_{J}$ octets to the (fixed) ${}^{3}S_{1}$ singlet

Note: the fit starts at $p_T = 3$ GeV feed-down not taken into account → This is why NRQCD predicts transverse polarization at high p_{T}

Missions to be accomplished in the LHC-era

2. We need "better" theory!

- Improved understanding of pQCD inputs \rightarrow
- Consistent NRQCD model vs. data comparisons \rightarrow

1) Motivation & introduction: the pre-LHC puzzles

2) Quarkonium production measurements at CMS

3) Interpretation of the results: a polarized perspective

The CMS detector: quarkonium performance

 $\mu^+\mu^-$ + γ

Powerful DAQ

Excellent decay length resolution

The CMS detector: quarkonium performance

Charming and beautiful CMS measurements: S states

Charming and beautiful CMS measurements: S states

Very good dimuon mass resolution

 \rightarrow better than ATLAS; worse than LHCb

High p_T dimuon coverage \rightarrow much better than LHCb; similar to ATLAS

Excellent secondary vertexing

 \rightarrow Crucial to remove non-prompt charmonia

Charming and beautiful CMS measurements: S states

Very good dimuon mass resolution

 \rightarrow better than ATLAS; worse than LHCb

High p_{T} dimuon coverage

ightarrow much better than LHCb; similar to ATLAS

Excellent secondary vertexing

 \rightarrow Crucial to remove non-prompt charmonia

Charming and beautiful CMS measurements: P states

Charming and beautiful CMS measurements: P states

Low energy photon conversions

- \rightarrow "Sub-optimal" efficiency
- ightarrow Excellent mass resolution (~5 MeV)

Current CMS results limited to measurements of the χ_{c2} / χ_{c1} and $\chi_{b2}(1P)$ / $\chi_{b1}(1P)$ cross-section ratios

Future CMS measurements will include "absolute" cross sections of the P-wave charmonium and bottomonium systems

LHC: Quarkonium cross sections

Differential cross sections at mid-rapidity, for 7 different quarkonium states, measured by CMS and ATLAS, as function of p_T/M ^(*)

Shapes are well described by a single empirical power-law (for pT/M>3), common to all considered results (5 S-wave and 2 P-wave states, with highly varying feed-down characteristics)

LHC: Quarkonium cross sections

Differential cross sections at mid-rapidity, for 7 different quarkonium states, measured by CMS and ATLAS, as function of p_T/M ^(*)

Shapes are well described by a single empirical power-law (for pT/M>3), common to all considered results (5 S-wave and 2 P-wave states, with highly varying feed-down characteristics)

LHC: Quarkonium cross sections

Differential cross sections at mid-rapidity, for 7 different quarkonium states, measured by CMS and ATLAS, as function of p_T/M ^(*)

Shapes are well described by a single empirical power-law (for pT/M>3), common to all considered results (5 S-wave and 2 P-wave states, with highly varying feed-down characteristics)

CMS: Quarkonium polarization analyses

Quarkonium polarizations are measured from the angular decay distributions in dimuon decays

We measure the full angular distribution and report the λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ polarization parameters (in 3 frames) for five S states, vs. p_{τ} and in several |y| ranges. We further measure the frame-invariant parameter $\tilde{\chi}$

The underlying continuum background is removed using the invariant mass distribution; and the non-prompt charmonia using the decay length

CMS: Quarkonium polarization analyses

Quarkonium polarizations are measured from the angular decay distributions in dimuon decays

We measure the full angular distribution and report the λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ polarization parameters (in 3 frames) for five S states, vs. p_{T} and in several |y| ranges. We further measure the frame-invariant parameter $\tilde{\lambda}$

The underlying continuum background is removed using the invariant mass distribution; and the non-prompt charmonia using the decay length

CMS: Quarkonium polarization analyses

Quarkonium polarizations are measured from the angular decay distributions in dimuon decays

We measure the full angular distribution and report the λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ polarization parameters (in 3 frames) for five S states, vs. p_T and in several |y| ranges. We further measure the frame-invariant parameter λ

The underlying continuum background is removed using the invariant mass distribution; and the non-prompt charmonia using the decay length

Events / 5 MeV

J/w

|v| < 0.6

2.95

PLB 727 (2013) 382

3

CMS: Quarkonium polarization analyses

Quarkonium polarizations are measured from the angular decay distributions in dimuon decays

We measure the full angular distribution and report the λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ polarization parameters (in 3 frames) for five S states, vs. p_{T} and in several |y| ranges. We further measure the frame-invariant parameter $\tilde{\lambda}$

The underlying continuum background is removed using the invariant mass distribution; and the non-prompt charmonia using the decay length

We calculate the multi-dimensional posterior probability density as result of the analysis

Main experimental challenges:
♦ reliable background modeling (sidebands)
♦ precise mapping of (di)muon efficiencies (T&P)

Uncertainties are dominated by systematics at low $p_{\rm T}$ and by statistics at high $p_{\rm T}$

Good consistency between CMS, LHCb, ALICE and CDF. Previous experimental inconsistencies overcome due to novel and more robust analysis techniques (*EPJC 69 (2010) 657*).

- \rightarrow no dependencies on p_T or rapidity
- \rightarrow no strong changes between S-states with very different P-wave feed-down characteristics
- ightarrow no evident differences between charmonium and bottomonium states

Good consistency between CMS, LHCb, ALICE and CDF. Previous experimental inconsistencies overcome due to novel and more robust analysis techniques (*EPJC 69 (2010) 657*).

- \rightarrow no dependencies on p_T or rapidity
- \rightarrow no strong changes between S-states with very different P-wave feed-down characteristics
- ightarrow no evident differences between charmonium and bottomonium states

Good consistency between CMS, LHCb, ALICE and CDF. Previous experimental inconsistencies overcome due to novel and more robust analysis techniques (*EPJC 69 (2010) 657*).

- \rightarrow no dependencies on p_T or rapidity
- \rightarrow no strong changes between S-states with very different P-wave feed-down characteristics
- ightarrow no evident differences between charmonium and bottomonium states

Good consistency between CMS, LHCb, ALICE and CDF. Previous experimental inconsistencies overcome due to novel and more robust analysis techniques (*EPJC 69 (2010) 657*).

- \rightarrow no dependencies on p_T or rapidity
- \rightarrow no strong changes between S-states with very different P-wave feed-down characteristics
- ightarrow no evident differences between charmonium and bottomonium states

Good consistency between CMS, LHCb, ALICE and CDF. Previous experimental inconsistencies overcome due to novel and more robust analysis techniques (*EPJC 69 (2010) 657*).

- \rightarrow no dependencies on p_T or rapidity
- \rightarrow no strong changes between S-states with very different P-wave feed-down characteristics
- ightarrow no evident differences between charmonium and bottomonium states

Good consistency between CMS, LHCb, ALICE and CDF. Previous experimental inconsistencies overcome due to novel and more robust analysis techniques (*EPJC 69 (2010) 657*).

- \rightarrow no dependencies on p_T or rapidity
- \rightarrow no strong changes between S-states with very different P-wave feed-down characteristics
- ightarrow no evident differences between charmonium and bottomonium states

Lessons from the LHC: Two data-driven observations

1. Cross section data

 → "p_T/M scaling": All quarkonium states are produced in a very similar way
 → Likely dominated by one color octet mechanism

2. Quarkonium polarization data

- → All S-wave quarkonia are produced unpolarized
- \rightarrow The dominating CO contribution is

suspected to be the unpolarized ¹S₀^[8] term

- 1) Motivation & introduction: the pre-LHC puzzles
- 2) Quarkonium production measurements at CMS

3) Interpretation of the results: a polarized perspective

LHC-era state-of-the-art NRQCD analyses: Y(nS)

GWWZ Fit: Hadroproduction data, including CMS $\Upsilon(nS)$ polarization results, to fit the LDMEs

The $\Upsilon(1S)$ and $\Upsilon(2S)$ predictions include the feeddown decays of P-wave states, while the $\Upsilon(3S)$ is assumed to be 100% directly produced

The *unknown* feed-down fractions and polarizations of the P states give the model the freedom needed to fit the $\Upsilon(1S)$ and $\Upsilon(2S)$ data

Kinematic region: **p**_T > 8 GeV

LHC-era state-of-the-art NRQCD analyses: $\psi(nS)$

BK Fit: Hadro- and photoproduction data, **not** including polarization data, **not** including feed-down decays to fit the LDMEs Kinematic region: $p_T > 3 \text{ GeV}$

GWWZ Fit: Hadroproduction data, **not** including polarization data, including feed-down decays to fit the LDMEs Kinematic region: **p**_T > 7 GeV PRL 108 (2012) 242004

CMSWZ Fit: Hadroproduction data, including polarization data, not including feed-down decays to fit the LDMEs Kinematic region: p_T > 7 GeV

State-of-the-art NRQCD analyses

- \rightarrow Starting from compatible pQCD inputs
- \rightarrow Various differences in the LDME fit
- → Contradictory results
- → Completely different physics conclusions!

NLO NRQCD ≠ NLO NRQCD...? What is going on?

A matter of NRQCD validity domain?

> The crucial hypothesis of NRQCD: factorization

It is well known that factorization and pQCD calculations are only valid for $p_T >> M$

Most NRQCD analyses use data down to rather low values of p_T/M

GWWZ :	ψ(nS)	p _T / M > 2	Ƴ(nS)	p _T / M > 0.8
CMSWZ :	ψ(nS)	p _T / M > 2		
BK :	J/Ψ	р _т / М > 0.95		

Implications of these choices have not been tested!

Problem: Lowest- p_{T} data points have smallest uncertainties \rightarrow determine the LDME fit results

 \rightarrow Are the fitted LDME values very sensitive to the exact value of $p_{\text{T,min}}$?

The high- p_{T} reach of the LHC measurements allows us to progressively exclude the lowest- p_{T} data

 \rightarrow Search for the domain of validity of NRQCD calculations!

Towards better NRQCD global fits

"Technical" choices:

Cross sections and polarizations are simultaneously used in the fit

Experimental correlated uncertainties (e.g. luminosity) and polarization-dependent acceptances are accounted for, correlating the individual observables and measurements (never done before)

Theoretical uncertainties are accounted for directly in the fit, as difference between LO and NLO calculations, correlating the individual quarkonium states (never done before)

The pQCD inputs are taken from the NLO calculations of Butenschön and Kniehl

Strategic choices:

Only LHC measurements are used; earlier results were ambiguous, incomplete or at too low p_{T}

The analysis is restricted to the ψ (2S) and Υ (3S) data, to minimise the number of free LDMEs; we neglect the χ_b (3P) feed-down contamination in the Υ (3S)

To get more reliable results, the "wild" ³P_J^[8] octet is not included in the initial fits When we include it, the fit quality does not improve and the results are not affected

Towards better NRQCD global fits

"Technical" choices:

Cross sections and polarizations are *simultaneously* used in the fit

Experimental correlated uncertainties (e.g. luminosity) and polarization-dependent acceptances are accounted for, correlating the individual observables and measurements (never done before)

Theoretical uncertainties are accounted for directly in the fit, as difference between LO and NLO calculations, correlating the individual quarkonium states (never done before)

The pQCD inputs are taken from the NLO calculations of Butenschön and Kniehl

Strategic choices:

Only LHC measurements are used; earlier results were ambiguous, incomplete or at too low p_{T}

The analysis is restricted to the $\psi(2S)$ and $\Upsilon(3S)$ data, to minimise the number of free LDMEs; we neglect the $\chi_b(3P)$ feed-down contamination in the $\Upsilon(3S)$

To get more reliable results, the "wild" ³P_J^[8] octet is not included in the initial fits When we include it, the fit quality does not improve and the results are not affected

Illustration of a $\psi(2S)$ fit, starting from 3 GeV

Illustration of a $\psi(2S)$ fit, starting from 5 GeV

Illustration of a $\psi(2S)$ fit, starting from 6 GeV

Illustration of a $\psi(2S)$ fit, starting from 7 GeV

Illustration of a $\psi(2S)$ fit, starting from 10 GeV

Illustration of a $\psi(2S)$ fit, starting from 12 GeV

Illustration of a $\psi(2S)$ fit, starting from 13 GeV

All data are equal but some are more equal than others

What happens at higher p_T ?

The ${}^{3}S_{1}^{[8]}$ term could be dominant at higher p_{T}/M values than currently covered

At very high p_T , $\Upsilon(3S)$ should tend to be transversely polarized (**but:** neglected the $\chi_b(3P)$ decays...)

PLB 736 (2014) 98

An unexpected hierarchy

According to NRQCD velocity-scaling rules, LDMEs are of similar magnitude:

 ${}^{1}S_{0} \approx {}^{3}S_{1} \approx {}^{3}P_{J}$

It is remarkable to see that the ${}^{3}S_{1}^{[8]}$ LDME is less than 6% of the ${}^{1}S_{0}^{[8]}$ LDME, at 95% CL

The ${}^{3}S_{1}^{[8]}$ transition is practically forbidden

Cross check: fits including the ${}^{3}P_{J}{}^{[8]}$ octet \rightarrow Small (and *negative*...) contribution: \rightarrow the fit quality is not improved, the results not affected

This analysis suggests a strong internal hierarchy between the three LDMEs, for the $\psi(2S)$ and $\Upsilon(3S)$:

$${}^{1}S_{0} >> {}^{3}S_{1} >> {}^{3}P_{J}$$

These are non-trivial observations, important to understand how the quarks interact with each other

- → the QQbar bound states are preferably formed from two quarks of:
- 1) different colours (rather than in an already neutral configuration)
- 2) smaller relative angular momentum and spin than the ones of the bound state

An unexpected hierarchy

According to NRQCD velocity-scaling rules, LDMEs are of similar magnitude:

 ${}^{1}S_{0} \approx {}^{3}S_{1} \approx {}^{3}P_{J}$

It is remarkable to see that the ${}^{3}S_{1}^{[8]}$ LDME is less than 6% of the ${}^{1}S_{0}^{[8]}$ LDME, at 95% CL

The ${}^{3}S_{1}^{[8]}$ transition is practically forbidden

Cross check: fits including the ${}^{3}P_{J}^{[8]}$ octet \rightarrow Small (and *negative*...) contribution:

 \rightarrow the fit quality is not improved, the results not affected

This analysis suggests a strong internal hierarchy between the three LDMEs, for the $\psi(2S)$ and $\Upsilon(3S)$:

These are non-trivial observations, important to understand how the quarks interact with each other

- \rightarrow the QQbar bound states are preferably formed from two quarks of:
- 1) different colours (rather than in an already neutral configuration)
- 2) smaller relative angular momentum and spin than the ones of the bound state

All quarkonia are equal (?)

Can we generalize these findings? Are these new hierarchies valid for all quarkonia? ...and even for **hadrons in general**?

The $\psi(2S)$ and $\Upsilon(3S)$ LDMEs are independent free parameters in the fit \rightarrow Consistent with being identical:

 $O({}^{1}S_{0}^{[8]}, \psi(2S)) = O({}^{1}S_{0}^{[8]}, \Upsilon(3S)) = 0.0185 \text{ GeV}^{3}$ $O({}^{3}S_{1}^{[8]}, \psi(2S)) = O({}^{3}S_{1}^{[8]}, \Upsilon(3S)) = 0.0020 \text{ GeV}^{3}$

Analysis work in progress:

"All-charmonium" global phenomenological interpretation

→ Simultaneous fit of all LHC data of J/ ψ , ψ (2S), χ_{c1} , χ_{c2} cross sections and polarizations

- \rightarrow Including all feed-down cascades
- \rightarrow LDMEs of P-wave states + direct J/ ψ
- \rightarrow Missing experimental input: χ_{cJ} polarizations

"All-bottomonium" global analysis requires more data from the LHC: $\chi_{bJ}(nP)$

Analysis work in progress:

- "All-charmonium" global phenomenological interpretation
- → Simultaneous fit of all LHC data of J/ ψ , ψ (2S), χ_{c1} , χ_{c2} cross sections and polarizations
- → Including all feed-down cascades
- \rightarrow LDMEs of P-wave states + direct J/ ψ
- → Missing experimental input: χ_{cJ} polarizations

"All-bottomonium" global analysis requires more data from the LHC: $\chi_{bJ}(nP)$

26

Tevatron-era: Quarkonium production through color singlet: not enough! Color octet required

Quarkonium polarization puzzle: NRQCD \rightarrow transverse polarization, not seen in Tevatron data...

→ But: Data inconsistent and ambiguous

Quarkonium production at the LHC: Improved analysis methodologies, higher p_T reach

→ Cross section data: p_T/M - scaling, "all quarkonia produced similarly, through one CO process"

 \rightarrow Polarization data: Experimental consistency! Data unpolarized \rightarrow "dominant ${}^{1}S_{0}^{[8]}$ term"

NRQCD analyses with LHC data: Same pQCD inputs \rightarrow very different results!

New phenomenological approach: A data-driven polarized perspective!

→ Domain of validity of NRQCD pQCD calculations identified (high p_T/M)

→ Quarkonium production dominated by ¹S₀^[8] intermediate state (for ψ (2S) and Υ (3S)) → Solution to the "polarization puzzle"

Tevatron-era: Quarkonium production through color singlet: not enough! Color octet required

Quarkonium polarization puzzle: NRQCD \rightarrow transverse polarization, not seen in Tevatron data...

→ But: Data inconsistent and ambiguous

Quarkonium production at the LHC: Improved analysis methodologies, higher p_T reach

→ Cross section data: p_T/M - scaling, "all quarkonia produced similarly, through one CO process"

 \rightarrow Polarization data: Experimental consistency! Data unpolarized \rightarrow "dominant ${}^{1}S_{0}^{[8]}$ term"

NRQCD analyses with LHC data: Same pQCD inputs \rightarrow very different results!

New phenomenological approach: A data-driven polarized perspective!

→ Domain of validity of NRQCD pQCD calculations identified (high p_T/M)

→ Quarkonium production dominated by ¹S₀^[8] intermediate state (for ψ (2S) and Υ (3S)) → Solution to the "polarization puzzle"

Tevatron-era: Quarkonium production through color singlet: not enough! Color octet required

Quarkonium polarization puzzle: NRQCD \rightarrow transverse polarization, not seen in Tevatron data...

→ But: Data inconsistent and ambiguous

Quarkonium production at the LHC: Improved analysis methodologies, higher p_T reach

 \rightarrow Cross section data: p_T/M - scaling, "all quarkonia produced similarly, through one CO process"

 \rightarrow Polarization data: Experimental consistency! Data unpolarized \rightarrow "dominant ${}^{1}S_{0}^{[8]}$ term"

NRQCD analyses with LHC data: Same pQCD inputs \rightarrow very different results!

New phenomenological approach: A data-driven polarized perspective!

→ Domain of validity of NRQCD pQCD calculations identified (high p_T/M)

→ Quarkonium production dominated by ¹S₀^[8] intermediate state (for ψ (2S) and Υ (3S)) → Solution to the "polarization puzzle"

Tevatron-era: Quarkonium production through color singlet: not enough! Color octet required

Quarkonium polarization puzzle: NRQCD \rightarrow transverse polarization, not seen in Tevatron data...

→ But: Data inconsistent and ambiguous

Quarkonium production at the LHC: Improved analysis methodologies, higher p_T reach

- \rightarrow Cross section data: p_T/M scaling, "all quarkonia produced similarly, through one CO process"
- \rightarrow Polarization data: Experimental consistency! Data unpolarized \rightarrow "dominant ¹S₀^[8] term"

NRQCD analyses with LHC data: Same pQCD inputs \rightarrow very different results!

New phenomenological approach: A data-driven polarized perspective!

→ Domain of validity of NRQCD pQCD calculations identified (high p_T/M)

→ Quarkonium production dominated by ¹S₀^[8] intermediate state (for ψ (2S) and Υ (3S)) → Solution to the "polarization puzzle"

Tevatron-era: Quarkonium production through color singlet: not enough! Color octet required

Quarkonium polarization puzzle: NRQCD \rightarrow transverse polarization, not seen in Tevatron data...

→ But: Data inconsistent and ambiguous

Quarkonium production at the LHC: Improved analysis methodologies, higher p_T reach

 \rightarrow Cross section data: p_T/M - scaling, "all quarkonia produced similarly, through one CO process"

 \rightarrow Polarization data: Experimental consistency! Data unpolarized \rightarrow "dominant ${}^{1}S_{0}^{[8]}$ term"

NRQCD analyses with LHC data: Same pQCD inputs \rightarrow very different results!

New phenomenological approach: A data-driven polarized perspective!

→ Domain of validity of NRQCD pQCD calculations identified (high p_T/M)

→ Quarkonium production dominated by ¹S₀^[8] intermediate state (for ψ (2S) and Υ (3S)) → Solution to the "polarization puzzle"

Tevatron-era: Quarkonium production through color singlet: not enough! Color octet required

Quarkonium polarization puzzle: NRQCD \rightarrow transverse polarization, not seen in Tevatron data...

→ But: Data inconsistent and ambiguous

Quarkonium production at the LHC: Improved analysis methodologies, higher p_T reach

 \rightarrow Cross section data: p_T/M - scaling, "all quarkonia produced similarly, through one CO process"

 \rightarrow Polarization data: Experimental consistency! Data unpolarized \rightarrow "dominant ${}^{1}S_{0}^{[8]}$ term"

NRQCD analyses with LHC data:

Same pQCD inputs \rightarrow very different results!

New phenomenological approach: A data-driven polarized perspective!

→ Domain of validity of NRQCD pQCD calculations identified (high p_T/M)

→ Quarkonium production dominated by ${}^{1}S_{0}{}^{[8]}$ intermediate state (for $\psi(2S)$ and $\Upsilon(3S)$) → Solution to the "polarization puzzle"

What have we learned so far?

Tevatron-era: Quarkonium production through color singlet: not enough! Color octet required

Quarkonium polarization puzzle: NRQCD \rightarrow transverse polarization, not seen in Tevatron data...

→ But: Data inconsistent and ambiguous

Quarkonium production at the LHC: Improved analysis methodologies, higher p_T reach

 \rightarrow Cross section data: p_T/M - scaling, "all quarkonia produced similarly, through one CO process"

 \rightarrow Polarization data: Experimental consistency! Data unpolarized \rightarrow "dominant ${}^{1}S_{0}^{[8]}$ term"

NRQCD analyses with LHC data:

Same pQCD inputs \rightarrow very different results!

New phenomenological approach: A data-driven polarized perspective!

→ Domain of validity of NRQCD pQCD calculations identified (high p_T/M)

→ Quarkonium production dominated by ${}^{1}S_{0}^{[8]}$ intermediate state (for $\psi(2S)$ and $\Upsilon(3S)$) → Solution to the "polarization puzzle"

Unexpected hierarchies allow us to formulate conjectures about QCD bound state formation

What's next?

New hierarchies found in $\psi(2S)$ and $\Upsilon(3S)$ data have to be tested on other states (S- and P-wave)

Essential measurements to study charmonium LDMEs

- J/ ψ and $\psi(2S)$ cross sections up to very high p_T : ≈ 100 GeV reached by CMS, to be published soon
- χ_{c1} and χ_{c2} polarizations to be expected from CMS in 2015, first measurement of this kind
- χ_{c1} and χ_{c2} cross sections up to the highest possible p_T

Essential measurements to study bottomonium LDMEs

- Υ (nS) cross sections up to very high p_T: \approx 100 GeV reached by CMS, 200 GeV desirabe
- $\chi_{bJ}(nP)$ cross sections and feed-down fractions into $\Upsilon(nS)$, up to high p_T
- $\chi_b(1P)$ polarization, very challenging

The 2012 CMS dataset has not been exploited yet for quarkonium studies \rightarrow many results to be expected LHC RunII will significantly increase the p_{τ} reach, but more complicated analyses

What's next?

New hierarchies found in $\psi(2S)$ and $\Upsilon(3S)$ data have to be tested on other states (S- and P-wave)

Essential measurements to study charmonium LDMEs

- J/ ψ and $\psi(2S)$ cross sections up to very high p_T : ≈ 100 GeV reached by CMS, to be published soon
- χ_{c1} and χ_{c2} polarizations to be expected from CMS in 2015, first measurement of this kind
- χ_{c1} and χ_{c2} cross sections up to the highest possible p_T

Essential measurements to study bottomonium LDMEs

- Υ (nS) cross sections up to very high p_T: \approx 100 GeV reached by CMS, 200 GeV desirabe
- $\chi_{bJ}(nP)$ cross sections and feed-down fractions into $\Upsilon(nS)$, up to high p_T
- $\chi_b(1P)$ polarization, very challenging

The 2012 CMS dataset has not been exploited yet for quarkonium studies \rightarrow many results to be expected LHC RunII will significantly increase the p_{τ} reach, but more complicated analyses

Quarkonia at 13 TeV and beyond

Associated production: Quarkonia + VB / γ / Jets

"Orthogonal" information to polarization and production data

Higgs-qq̄ couplings: The decay Higgs to quarkonium + γ is the only means to measure Hcc̄ and Hbb̄ couplings directly at the LHC

→ Understanding quarkonium production is essential to interpret these measurements

 \rightarrow Seeing H \rightarrow Y + γ would imply new physics: large deviations of the Hq \bar{q} coupling from its SM value

LDME universality: Crucial prediction of NRQCD, cannot be tested in pp collisions

Same behavior for any $q\bar{q}$ pair, produced in pp, ee, pA, AA collisions or through Higgs decays...

Conclusion

Combination of

High quality measurements of quarkonium production at the LHC Data-driven physics interpretations of the LHC measurements

- \rightarrow turn quarkonium data into high-precision studies of (non-perturbative) QCD
- → open new paths to *finally* address **the interesting questions about hadron formation**

We have **learned a lot**, but even more **remains to be understood**!

