Physics and detectors at CLIC

Philipp Roloff (CERN) on behalf of the CLICdp collaboration

University of Edinburgh 11/11/2014

Overview

- Introduction:
 - The CLIC accelerator
- Physics at CLIC:
 - Standard Model physics
 - Beyond Standard Model searches
- Implications for the detectors
- R&D for the CLIC vertex detector
- Summary and conclusions

Introduction

The CLIC accelerator

CLIC is the only mature option for a future multi-TeV e⁺e⁻ collider

- Based on 2-beam acceleration scheme
- Operated at room temperature
- Gradient: 100 MV/m
- Staged construction: ≈350 GeV up to 3 TeV
- High luminosity (a few 10³⁴ cm⁻²s⁻¹)

Philipp Roloff

2-beam acceleration scheme

Philipp Roloff

Comparison to hadron colliders

Hadron colliders:

- Proton is compound object
- \rightarrow Initial state unknown
- \rightarrow Limits achievable precision
- High-energy circular colliders possible
- High rates of QCD backgrounds
- \rightarrow Complex triggers
- \rightarrow High levels of radiation
- High cross sections for coloured states

- e⁺e⁻ are pointlike
 → Initial state well-defined
 (energy, polarisation)
 → High-precision measurements
- High energies require linear colliders
- Clean experimental environment
- → Trigger-less readout
- → Low radiation levels
- Well suited for electroweak states

CLIC strategy and objectives

2013-18 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

2018-19 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects as FCC), take decisions about next project(s) at the Energy Frontier.

4-5 year Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2024-25 Construction Start

Ready for full construction and main tunnel excavation.

Construction Phase

Stage 1 construction of CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

Commissioning

Becoming ready for datataking as the LHC programme reaches completion.

11/11/2014

Philipp Roloff

CLIC energy stages

CLIC would be implemented in stages:

- Optimised running conditions over a wide energy range
- The energy stages are defined by physics (with additional technical considerations)
- \rightarrow The strategy can be adapted to discoveries at the LHC at 13/14 TeV

Example scenario assumed for this talk:

Selected CLIC parameters

Beam-related backgrounds

Coherent e^+e^- pairs: 7 · 10⁸ per BX, very forward **Incoherent** e^+e^- pairs: 3 · 10⁵ per BX, rather forward \rightarrow Detector design issue (high occupancies)

$\gamma\gamma \rightarrow hadrons$

- "Only" 3.2 events per BX at 3 TeV
- Main background in calorimeters and trackers
- \rightarrow Impact on physics

Philipp Roloff

Physics at CLIC

Standard Model physics:

- Higgs boson:
 - Single Higgs production
 - Other processes at higher energy
 - Combined analysis
- top quark mass

Beyond Standard Model searches:

- Supersymmetry
- Indirect measurements

Benchmark studies are based on full detector simulations (Geant4) and include the pile-up from $\gamma\gamma \rightarrow$ hadrons interactions!

Single Higgs production at CLIC

Single Higgs production at CLIC

Some numbers

• Measurements at high energy benefit from good detectors in the forward region

	Polarization	Enhance	ment factor
Benchmark studies assume	$P(e^-): P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^- \to H \nu_e \overline{\nu}_e$
unpolanseu beams	unpolarized	1.00	1.00
	-80%: 0%	1.18	1.80

Higgsstrahlung at 350 GeV (1)

HZ events can be identified from Z recoil mass \rightarrow model independent measurements of the g_{HZZ} coupling

 $\Delta(\sigma_{_{HZ}}) / \sigma_{_{HZ}} \approx 4\% \rightarrow \Delta(g_{_{HZZ}}) / g_{_{HZZ}} \approx 2\% \quad \text{from } Z \rightarrow \mu^{+}\mu^{-} \text{ and } Z \rightarrow e^{+}e^{-}$

Higgsstrahlung at 350 GeV (2)

- Substantial improvement using hadronic Z decays
- Challenge: $Z \rightarrow q\overline{q}$ reconstruction may depend on Higgs decay mode
- Even extreme variations of the SM Higgs BRs lead to bias $\leq \frac{1}{2}$ stat. error

 $\Delta(\sigma_{_{_{HZ}}}) / \sigma_{_{_{HZ}}} \approx 1.8\% \rightarrow \Delta(g_{_{_{HZZ}}}) / g_{_{_{HZZ}}} \approx 0.9\%$ from hadronic Z decays

σ x BR measurements at 350 GeV

Measurement	Observable	Stat. precision	
$\sigma(HZ) \ge BR(H \rightarrow T^{+}T^{-})$	$g^2_{HZZ} g^2_{HTT}$ / Γ_{H}	6.2%	S
$\sigma(HZ) \ge BR(H \rightarrow b\overline{b})$	$g^2_{_{_{_{HZZ}}}}g^2_{_{_{_{Hbb}}}}$ / $\Gamma_{_{_H}}$	1% (estimated)	ean
$\sigma(HZ) \ge BR(H \rightarrow c\overline{c})$	$g^2_{HZZ}g^2_{Hcc}$ / Γ_{H}	5% (estimated)	q pé
$\sigma(HZ) \ge BR(H \rightarrow gg)$		6% (estimated)	ning arise
$\sigma(HZ) \ge BR(H \rightarrow WW^*)$	$g^2_{HZZ}g^2_{HWW}$ / Γ_{H}	2% (estimated)	sum pola
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow b\overline{b})$	${ m g^2}_{ m HWW} { m g^2}_{ m Hbb}$ / ${ m \Gamma}_{ m H}$	3% (estimated)	As un

In addition: $BR(H \rightarrow inv.) < 0.97\%$ at 90% C.L.

11/11/2014

Measurements using Hv_ev_e events

Large Higgs samples produced in WW fusion at high energy:

- \rightarrow Precision measurements of σ x BR
- \rightarrow Access to rarer decay modes

Measurement	Observable	Stat. precision (1.4 TeV)	Stat. precision (3 TeV)
$\sigma(Hv_e^{-v_e}) \ge BR(H \rightarrow T^{+}T^{-})$	$g^2_{_{HWW}}g^2_{_{HTT}}$ / $\Gamma_{_{H}}$	4.2%	tbd
$\sigma(Hv_e^{}\overline{v}_e^{}) \ge BR(H \rightarrow b\overline{b})$	${g^2}_{_{HWW}}{g^2}_{_{Hbb}}$ / ${\Gamma}_{_{H}}$	0.3%	0.2%
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow c\overline{c})$	$g^2_{_{_{_{HVW}}}}g^2_{_{_{_{Hcc}}}}$ / $\Gamma_{_{_H}}$	2.9%	2.7%
$\sigma(Hv_e^{-v_e}) \ge BR(H \rightarrow gg)$		1.8%	1.8%
$\sigma(Hv_e^{-}\overline{v}_e) \ge BR(H \rightarrow \mu^+\mu^-)$	$g^2_{_{_{_{HWW}}}}g^2_{_{_{_{H\mu\mu}}}}$ / $\Gamma_{_{_H}}$	38%	16%
$\sigma(Hv_e^{}\overline{v}_e^{}) \ge BR(H \rightarrow \gamma\gamma)$		15%	tbd
$\sigma(Hv_{e}^{-}v_{e}^{-}) \ge BR(H \rightarrow Z\gamma)$		42%	tbd
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow ZZ^*)$	$g^2_{HWW}g^2_{HZZ}$ / $\Gamma_{_{ m H}}$	3% (estimated)	2% (estimated)
$\sigma(Hv_e^{-v_e}) \times BR(H \rightarrow WW^*)$	$g^4_{_{_{\hspace{1em}HWW}}}$ / $\Gamma_{_{_{\hspace{1em}H}}}$	1.4%	0.9% (estimated)

Assuming unpolarised beams

11/11/2014

Philipp Roloff

Precision measurements

Rare decays

Other processes at higher energy

Other processes at higher energy

Philipp Roloff

The ttH final state at 1.4 TeV

 \rightarrow The ttH cross section is directly sensitive to the top Yukawa coupling g_{#H}

Investigated final states:

"6 jets": $t(\rightarrow q\overline{q}b)\overline{t}(\rightarrow lv\overline{b})H(\rightarrow b\overline{b})$ "8 jets": $t(\rightarrow q\overline{q}b)\overline{t}(\rightarrow q\overline{q}\overline{b})H(\rightarrow b\overline{b})$ \rightarrow Four b-quarks in the final state

Combination of both final states: $\Delta\sigma(t\bar{t}H) / \sigma(t\bar{t}H) = 8.4\%$ $\rightarrow \Delta g_{_{\rm HII}} / g_{_{\rm HII}} = 4.5\%$

Double Higgs production at high energy

• Only 225 (1200) ere
$$\rightarrow$$
 HHV $_{e}$ events at 1.4 (

 \rightarrow high energy and luminosity crucial

Measurement	1.4 TeV	3 TeV
$\Delta(g_{_{HHWW}})$	7% (preliminary)	3% (preliminary)
$\Delta(\lambda)$	32%	16%
$\Delta(\lambda)$ for P(e ⁻) = -80%	24%	12%

CLIC Higgs studies

			Statistical precision		
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500 \ \mathrm{fb}^{-1}$	$1.5 { m ~ab^{-1}}$	$2.0 \mathrm{~ab}^{-1}$
ZH	Recoil mass distribution	m _H	120 MeV	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{invisible})$	$\Gamma_{ m inv}$	0.6%	_	_
ZH	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	tbd	_	_
$Hv_e\overline{v}_e$	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	—	40 MeV*	33 MeV*
ZH	$\sigma(\mathrm{HZ}) imes \mathit{BR}(\mathrm{Z} o \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \mathrm{q}\overline{\mathrm{q}})$	$g^2_{ m HZZ}$	1.8%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	$1\%^\dagger$	_	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HZZ} g^2_{ m Hcc}/\Gamma_{ m H}$	$5\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{gg})$		$6\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) imes \mathit{BR}(\mathrm{H} ightarrow au^+ au^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	6.2%	—	—
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g_{ m HZZ}^2 g_{ m HWW}^2 / \Gamma_{ m H}$	$2\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g^2_{ m HZZ} g^2_{ m HZZ}/\Gamma_{ m H}$	tbd	_	—
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	$3\%^{\dagger}$	0.3%	0.2%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW} g^2_{ m Hcc}/\Gamma_{ m H}$	_	2.9%	2.7%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		_	1.8%	1.8%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes BR(\mathrm{H} ightarrow \tau^{+} \tau^{-})$	$g^2_{ m HWW}g^2_{ m H au au}/\Gamma_{ m H}$	_	4.2%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g_{ m HWW}^2 g_{ m Huu}^2 / \Gamma_{ m H}$	_	38%	16%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\bar{\mathrm{v}}_{\mathrm{e}}) imes BR(\mathrm{H} ightarrow \gamma\gamma)$		_	15%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		_	42%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	1.4%	$0.9\%^\dagger$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\bar{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	_	$3\%^{\dagger}$	$2\%^\dagger$
He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	—	$1\%^\dagger$	$0.7\%^\dagger$
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	8%	tbd
$HH\nu_{e}\overline{\nu}_{e}$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_{\mathrm{e}}})$	<i>g</i> hhww	_	7%*	3%*
$HHv_{e}\overline{v}_{e}$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_e})$	λ	_	32%	16%
$HHv_{e}\overline{v}_{e}$	with $-80\% e^-$ polarization	λ	_	24%	12%

*: preliminary

†: estimated

11/11/2014

Putting it all together

- Fully model-independent, only possible at a lepton collider
- All results limited by 0.8% from $\sigma(HZ)$ measurement
- The Higgs width is extracted with 5 3.5% precision

Analysis similar to LHC experiments

Parameter	Measurement precision			
	350 GeV	+ 1.4 TeV	+3.0 TeV	
	500 fb^{-1}	$+1.5 \text{ ab}^{-1}$	$+2.0 \text{ ab}^{-1}$	
K _{HZZ}	0.44 %	0.31 %	0.23 %	
$\kappa_{ m HWW}$	1.5 %	0.17~%	0.11%	
$\kappa_{ m Hbb}$	1.7~%	0.37 %	0.22%	
$\kappa_{ m Hcc}$	3.1 %	1.1~%	0.75%	
$\kappa_{\rm H\tau\tau}$	3.7 %	1.5 %	1.2 %	
κ _{Ημμ}	—	14.1 %	5.5 %	
$\kappa_{\rm Htt}$	—	4.0~%	$\leq 4.0\%$	
$\kappa_{ m Hgg}$	3.6%	0.79%	0.55 %	
$\kappa_{\rm H\gamma\gamma}$	_	5.6 %	< 5.6 %	
$\Gamma_{\mathrm{H},md,derived}$	1.6 %	0.32 %	0.22 %	

 $\kappa_i^2 = \frac{\Gamma_i}{\Gamma_i^{\text{SM}}}$ No invisible decays: $\Gamma_{\text{H,model}} = \sum_i \kappa_i^2 \cdot BR_i^{\text{SM}}$ Sub-percent precisions at high energy → Results strongly dependent on fit assumptions

11/11/2014

Philipp Roloff

Top mass

tt threshold scan:

- Measurements at 10 different centre-of-mass energies (10 fb⁻¹ each), data also useful for Higgs physics
- Theoretical uncertainty on the order of 100 MeV when transforming the measured 1S

mass to the MS mass scheme

 Precision at the LHC limited to about 500 MeV

Philipp Roloff

Prospects for BSM physics

- Two approaches:
- 1.) Pair production of new particles if $M \le \sqrt{s} / 2$ \rightarrow CLIC especially attractive for electroweak states

 \rightarrow Precision measurement of new particle masses and couplings

Many examples of SUSY particle production studied for CLIC CDR

2.) Indirect searches through precision observables \rightarrow possibility to reach much higher mass scales (tens of TeV)

One of the priorities for future benchmarking studies

11/11/2014

Investigated SUSY models

11/11/2014

The simplest case: sleptons at 3 TeV

- Slepton production very clean at CLIC
- Slepton masses ≈ 1 TeV
- Investigated channels include:

$$\begin{split} e^+e^- &\rightarrow \tilde{\mu}^+_R \tilde{\mu}^-_R \rightarrow \mu^+ \mu^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \\ e^+e^- &\rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \\ e^+e^- &\rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^- W^+ W^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \end{split}$$

• Leptons and missing energy

• Masses from endpoints of energy spectra

 $m(\tilde{\mu}_{R}) : \pm 5.6 \text{ GeV}$ $m(\tilde{e}_{R}) : \pm 2.8 \text{ GeV}$ $m(\tilde{\nu}_{e}) : \pm 3.9 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) : \pm 3.0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{\pm}) : \pm 3.7 \text{ GeV}$

Precisions of a few GeV achievable

Hadronic final states: gauginos at 3 TeV

Precision on the measured gaugino masses (few hundred GeV): 1 - 1.5%

Philipp Roloff

Heavy Higgs bosons at 3 TeV

Heavy Higgs bosons:

 $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (H, A and H[±] almost degenerate in mass) Complex final states

Accuracy of the heavy Higgs mass measurements: ≈0.3%

11/11/2014

Summary of the SUSY studies

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
3.0	Sleptons	$\begin{split} \widetilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-} &\rightarrow \mu^{+} \mu^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \\ \widetilde{e}_{R}^{+} \widetilde{e}_{R}^{-} &\rightarrow e^{+} e^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \\ \widetilde{\nu}_{e} \widetilde{\nu}_{e} &\rightarrow \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} e^{+} e^{-} W^{+} W^{-} \end{split}$	II	$ \begin{array}{l} \tilde{\ell} \text{ mass} \\ \tilde{\chi}_1^0 \text{ mass} \\ \tilde{\ell} \text{ mass} \\ \tilde{\chi}_1^0 \text{ mass} \\ \tilde{\ell} \text{ mass} \\ \tilde{\ell} \text{ mass} \\ \tilde{\chi}_1^{\pm} \text{ mass} \end{array} $	1010.8 340.3 1010.8 340.3 1097.2 643.2	0.6% 1.9% 0.3% 1.0% 0.4% 0.6%
3.0	Chargino Neutralino	$ \begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array} $	II	$\widetilde{\chi}_1^{\pm}$ mass $\widetilde{\chi}_2^0$ mass	643.2 643.1	1.1% 1.5%
3.0	Squarks	$\widetilde{q}_R\widetilde{q}_R \to q\overline{q}\widetilde{\chi}_1^0\widetilde{\chi}_1^0$	Ι	\widetilde{q}_R mass	1123.7	0.52%
3.0	Heavy Higgs	$\begin{array}{c} H^0 A^0 \rightarrow b \overline{b} b \overline{b} \\ H^+ H^- \rightarrow t \overline{b} b \overline{t} \end{array}$	Ι	${ m H^0/A^0}\ { m mass}\ { m H^\pm}\ { m mass}$	902.4/902.6 906.3	0.3% 0.3%
1.4	Sleptons	$\begin{split} \widetilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-} &\to \mu^{+} \mu^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \\ \widetilde{e}_{R}^{+} \widetilde{e}_{R}^{-} &\to e^{+} e^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \\ \widetilde{\nu}_{e} \widetilde{\nu}_{e} &\to \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} e^{+} e^{-} W^{+} W^{-} \end{split}$	III	$ \begin{array}{c} \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^{\pm} \text{ mass} \end{array} $	560.8 357.8 558.1 357.1 644.3 487.6	$\begin{array}{c} 0.1\% \\ 0.1\% \\ 0.1\% \\ 0.1\% \\ 2.5\% \\ 2.7\% \end{array}$
1.4	Stau	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \to \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1$ mass	517	2.0%
1.4	Chargino Neutralino	$ \begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array} $	III	$ \begin{array}{l} \widetilde{\chi}_1^\pm \text{ mass} \\ \widetilde{\chi}_2^0 \text{ mass} \end{array} $	487 487	0.2% 0.1%

11/11/2014

Philipp Roloff

Precision studies of $e^+e^- \rightarrow \mu^+\mu^-$

11/11/2014

Composite Higgs bosons

- Higgs as composite bound state of fermions
- m_{ρ} : mass of the vector resonance of the composite theory
- $\xi = (v / f)^2$ measures the strengths of the Higgs interactions

CLIC provides an indirect probe of a Higgs composite scale of 70 TeV

11/11/2014

Philipp Roloff

Implications for the detectors

Physics aims \rightarrow **detector needs**

Momentum resolution

(e.g. Higgs recoil mass, $H \rightarrow \mu^{+}\mu^{-}$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \, GeV^{-1}$$

• Jet energy resolution (e.g. W/Z/h separation)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\%$$
 for $E = 1000 - 50 \, GeV$

• Impact parameter resolution (b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3 \theta)}, a \approx 5 \, \mu \, m, b \approx 15 \, \mu \, m$$

Lepton identification, very forward electron tagging

Physics aims \rightarrow **detector needs**

Momentum resolution

(e.g. Higgs recoil mass, $H \rightarrow \mu^+ \mu^-$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \, GeV^{-1}$$

• Jet energy resolution (e.g. W/Z/h separation)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\%$$
 for $E = 1000 - 50 \, GeV$

• Impact parameter resolution (b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2 / (p^2 \sin^3 \theta)}, a \approx 5 \, \mu \, m, b \approx 15 \, \mu \, m$$

Lepton identification, very forward electron tagging

11/11/2014

Physics aims \rightarrow detector needs

Momentum resolution

(e.g. Higgs recoil mass, $H \rightarrow \mu^{+}\mu^{-}$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 \times 10^{-5} \, GeV^{-1}$$

• Jet energy resolution (e.g. W/Z/h separation)

$$\frac{\sigma(E)}{E} \sim 3.5 - 5\%$$
 for $E = 1000 - 50 \, GeV$

Impact parameter resolution

(b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3 \theta)}, a \approx 5 \, \mu \, m, b \approx 15 \, \mu \, m$$

Lepton identification, very forward electron tagging

CLIC detector concepts

11/11/2014

Background suppression

Triggerless readout of full bunch train:

1.) Identify t_o of physics event in offline event filter

- Define reconstruction window around t_n
- All hits and tracks in this window are passed to the reconstruction \rightarrow Physics objects with precise p_{τ} and cluster time information
- 2.) Apply cluster-based timing cuts
 - Cuts depend on particle-type, $\textbf{p}_{_{T}}$ and detector region
 - \rightarrow Protects physics objects at high p_T

In addition: hadron-collider type jet algorithms (FastJet)

tCluster

Time windows and hit resolutions

Used in the reconstruction software for CDR simulations:

Subdetector	Reconstruction window	hit resolution
ECAL	10 ns	1 ns
HCAL Endcaps	10 ns	1 ns
HCAL Barrel	100 ns	🖌 1 ns
Silicon Detectors	10 ns	$10/\sqrt{12}$ ns
TPC	entire bunch train	n/a
	 CLIC hardware rec Achievable in the c 	<mark>quirements</mark> alorimeters with a

sampling every ≈ 25 ns

Impact of the timing cuts

$e^+e^- \rightarrow t\bar{t}$ at 3 TeV with background from $\gamma\gamma \rightarrow$ hadrons overlaid

1.2 TeV background in the reconstruction window

100 GeV background after timing cuts

R&D for the CLIC vertex detector

Vertex detector requirements

Requirements:

- 3 µm single point resolution
- \rightarrow 25 x 25 µm² pixel size with analog readout $\rightarrow \approx 2 \times 10^9$ pixels
- Material: 0.2% X_0 per layer:
- \rightarrow Very thin materials / sensors
- \rightarrow Low-power design, power pulsing, low-mass cooling, aim: 50 mW / cm²
- Time stamping precision: ≈10 ns (to reject backgrounds)
- Radiation level: ≈10¹⁰ n_{eq} /cm² /yr (10⁻⁴ of LHC)

11/11/2014

Philipp Roloff

Vertex-detector technology R&D

Interconnects

Light-weight supports

Examples for recent developments \rightarrow following slides

11/11/2014

Philipp Roloff

Detector optimisation: flavour tagging

Single-sided layers (5 in barred, 4 forward)

Example: comparison of vertex detector designs based single- or double-sided layers

Double-sided layers (3 in barred and forward)

1.) Similar performance for both layouts:

2.) The material budget has a larger impact than the geometry: 2 x material Dijets at 200 GeV Misidentification eff. arm Background double spirals +double spiral Background -double_spirals_v2 10 double spirals spirals 1.4 0.5 0.6 0.7 0.8 0.9

Beauty eff.

11/11/2014

Philipp Roloff

Cooling concept

• P ≈ 500 W in vertex detectors

Spiral end-cap geometry:

ANSYS finite
 element simulation
 of air-flow cooling
 → seems feasible

 $T_{in} = 0^{\circ} C,$ $m_{flow} = 20 g/s$

Mock-up to verify simulations:

Flavour-tagging performance for spiral and disk geometries: mostly similar

11/11/2014

Philipp Roloff

Thin sensor assemblies

- Focus on hybrid concept: thin depleted sensor + separate readout ASIC
- Ultimate goal: 50 μ m sensor on 50 μ m ASIC with 25 μ m pitch

Through-Silicon-Vias (TSV):

- Vertical electrical connection \rightarrow no wire bonds
- Chip/sensor assemblies buttable on all sides
- Large active surfaces \rightarrow less material

Using the Medipix/Timepix readout chip family:

- Timepix: DESY test beam 2013, lab tests CERN, LNLS
- Timepix3: CERN PS test beam 2014
- CLICpix: CCPDv3 (capacitive coupling) in CERN PS & SPS test beams 2014, future bump-bonding trials at SLAC

Medipix3RX with TSV (CEA-LETI)

11/11/2014

Philipp Roloff

Timepix test beam

• Thin sensors $(50 - 300 \ \mu m)$ bump-bonded to Timepix chips $(55 \ x \ 55 \ \mu m^2 \ pixel \ size)$

50 µm sensor efficiency:

99.2% at operating threshold

- Data recorded at DESY:
- 5.6 GeV electron beam- EUDET telescope

100 µm sensor two-hit cluster resolution: ≈4.5 µm

200 µm sensor depletion voltage: ≈30 V

11/11/2014

Philipp Roloff

CLICpix ASIC

 Commerical 65 nm CMOS technology • Demonstrator chip with 64 x 64 pixel matrix 25 µm pixel pitch • Simultaneous 4-bit time (TOA) and 4-bit energy (TOT) measurement per pixel \rightarrow front-end time slicing < 10 ns • Allows for power pulsing: $P_{avg} < 50 \text{ mW/cm}^2$ **FPGA Board Chip Board**

CLICpix test beam

AIDA telescope

-0.6

-0.8

-0.6

Capacitive coupled pixel detector (CCPv3):

- Active sensor with two-stage aplifier in each pixel
- Implemented in AMS H18 180 nm HV-CMOS process
- Capacitive coupling to CLICpix bond pads through layer of glue

Data taking:

- In October at PS and SPS
- This week again at SPS

11/11/2014

Philipp Roloff

Physics and detectors at CLIC

-0.4

-0.2

RMS x

RMS y

Cluster position (mm)

0.4

CLICpix + CCPDv3

0.2

0.4555

0.4569

0.8

0.6

Summary and conclusions

Philipp Roloff

If you want to know more...

DECAMPANISM ELECTRONIC POLICIA RECEICE MARCANE CERN LINOPEAN ORGANIZATION FOR MARCHE RESEARCH

THE CLIC PROGRAMME: TOWARDS A STAGED e⁺e⁺ LINEAR COLLIDER EXPLORING THE TERASCALE CUC CONSIDE DEBORRER

CLIC Conceptual Design Report (CDR) Vol. 2: Physics and Detectors (mostly at 3 TeV)

arXiv:1202.5940

CLIC CDR Vol. 3: Staged construction, SUSY at 1.4 TeV, Z'

arXiv:1209.2543

Snowmass white paper: Most of the Higgs studies

arXiv:1307.5288 (last update: 01/10/2013)

The CLIC detector and physics study

- Collaboration of 23 institutes from 16 countries
- CERN acts as host laboratory
- More information: http://clicdp.web.cern.ch/

11/11/2014

Summary and conclusions

- CLIC is the only mature option for a multi-TeV electron-positron collider
- Very active R&D projects for accelerator and physics/detector
- Energy-staging \rightarrow optimal for physics:

350 – 375 GeV: precision SM Higgs and top physics **1.4 TeV, 3 TeV:** targeted at BSM physics (through direct and indirect measurements), rare Higgs processes

• The energies of the TeV stages will depend on the LHC results

THANK YOU!