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Overview

• Introduction:
- The CLIC accelerator

• Physics at CLIC:
- Standard Model physics
- Beyond Standard Model searches

• Implications for the detectors

• R&D for the CLIC vertex detector

• Summary and conclusions
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Introduction
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The CLIC accelerator

• Based on 2-beam acceleration scheme
• Operated at room temperature
• Gradient: 100 MV/m
• Staged construction: ≈350 GeV up to 3 TeV
• High luminosity (a few 1034 cm-2s-1) 

CLIC is the only mature option for a future multi-TeV e+e- collider
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2-beam acceleration scheme

Drive beam supplies RF power:
• 12 GHz bunch structure
• Low energy:
2.4 GeV – 240 MeV
• High current: 100 A

Main beam for physics:
• High energy: 9 GeV – 1.5 TeV
• Current: 1.2 A
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Comparison to hadron colliders

• Proton is compound object
→ Initial state unknown
→ Limits achievable precision

• High-energy circular colliders possible

• High rates of QCD backgrounds
→ Complex triggers
→ High levels of radiation

• High cross sections for coloured states

Hadron colliders: e+e− colliders:

• e+e− are pointlike
→ Initial state well-defined
(energy, polarisation)
→ High-precision measurements

• High energies require linear colliders

• Clean experimental environment
→ Trigger-less readout
→ Low radiation levels

• Well suited for electroweak states
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CLIC strategy and objectives
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CLIC energy stages
CLIC would be implemented in stages:
• Optimised running conditions over a wide energy range
• The energy stages are defined by physics (with additional technical considerations)
→ The strategy can be adapted to discoveries at the LHC at 13/14 TeV

Example scenario assumed for this talk:

• Stage 1: 350 / 375 GeV, 500 fb-1 (under discussion)
SM Higgs physics, tt threshold scan

• Stage 2: 1.4 TeV, 1.5 ab-1

Targeted at BSM physics,
rare Higgs processes and decays

• Stage 3: 3 TeV, 2 ab-1

Targeted at BSM physics, 
rare Higgs processes and decays

(each stage corresponds to 4-5 years)

350 GeV 1.4 TeV 3 TeV
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Selected CLIC parameters

Drive timing
requirements
for CLIC detector

CLIC at 3 TeV

L (cm-2s-1) 5.9 · 1034

Bunch separation 0.5 ns

#Bunches / train 312

Train duration 156 ns

Train rep. rate 50 Hz

Crossing angle 20 mrad

Particles / bunch 3.72 · 109

σ
x
/σ

y
 (nm) ≈ 45 / 1

σ
z 
(μm) 44

Very small beam profile
at the interaction point
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Beam-related backgrounds

• e+e- pairs
• γγ → hadrons

Coherent e+e- pairs:
7 · 108 per BX, very forward
Incoherent e+e- pairs:
3 · 105 per BX, rather forward
→ Detector design issue
(high occupancies)

γγ → hadrons
• “Only” 3.2 events per BX at 3 TeV
• Main background
in calorimeters and trackers
→ Impact on physics BX = bunch crossing

detector
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Standard Model physics:
• Higgs boson:

- Single Higgs production
- Other processes at higher energy
- Combined analysis

• top quark mass

Beyond Standard Model searches:
• Supersymmetry
• Indirect measurements

Physics at CLIC

Benchmark studies are based on full detector simulations (Geant4) 
and include the pile-up from γγ → hadrons interactions!
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Single Higgs production at CLIC

Higgs- 
strahlung σ ~ 1/s
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Single Higgs production at CLIC

Higgs- 
strahlung

WW
fusion

σ ~ 1/s

ZZ
fusion

σ ~ log(s)
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Some numbers

• Large samples of Higgs bosons produced at CLIC
• Measurements at high energy benefit from good detectors in the forward region

• Benchmark studies assume
unpolarised beams
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Higgsstrahlung at 350 GeV (1)
Higgsstrahlung process

Δ(σ
HZ

) / σ
HZ

 ≈ 4% → Δ(g
HZZ

) / g
HZZ

 ≈ 2% from Z → μ+μ- and Z → e+e-

e+e− → ZH → μ+μ−H

HZ events can be identified from Z recoil mass
→ model independent measurements of the g

HZZ
 coupling

μ+, e+

μ-, e-

CLIC
350 GeV
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Higgsstrahlung at 350 GeV (2)
Higgsstrahlung process

q

q

• Substantial improvement using hadronic Z decays
• Challenge: Z → qq reconstruction may depend on Higgs decay mode
• Even extreme variations of the SM Higgs BRs lead to bias ≤ ½ stat. error

Δ(σ
HZ

) / σ
HZ

 ≈ 1.8% → Δ(g
HZZ

) / g
HZZ

 ≈ 0.9% from hadronic Z decays

e+e− → ZH → qqH

CLIC
350 GeV
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σ x BR measurements at 350 GeV

Measurement Observable Stat. precision

σ(HZ) x BR(H → τ+τ-) g2

HZZ
g2

Hττ
 / Г

H
6.2%

σ(HZ) x BR(H → bb) g2

HZZ
g2

Hbb
 / Г

H
1% (estimated)

σ(HZ) x BR(H → cc) g2

HZZ
g2

Hcc
 / Г

H
5% (estimated)

σ(HZ) x BR(H → gg) 6% (estimated)

σ(HZ) x BR(H → WW*) g2

HZZ
g2

HWW
 / Г

H
2% (estimated)

σ(Hv
e
v

e
) x BR(H → bb) g2

HWW
g2

Hbb
 / Г

H
3% (estimated) A

ss
u

m
in

g
 

u
n
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In addition: BR(H → inv.) < 0.97% at 90% C.L.

q, μ+, e+

q, μ-, e-

τ+, b, c, g, W*, ...

τ-, b, c, g, W, ...
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Measurements using Hv
e
v

e
 events

Large Higgs samples produced 
in WW fusion at high energy:
→ Precision measurements of σ x BR
→ Access to rarer decay modes

Measurement Observable Stat. precision (1.4 TeV) Stat. precision (3 TeV) 

σ(Hv
e
v

e
) x BR(H → τ+τ−) g2

HWW
g2

Hττ
 / Г

H
4.2% tbd

σ(Hv
e
v

e
) x BR(H → bb) g2

HWW
g2

Hbb
 / Г

H
0.3% 0.2%

σ(Hv
e
v

e
) x BR(H → cc) g2

HWW
g2

Hcc
 / Г

H
2.9% 2.7%

σ(Hv
e
v

e
) x BR(H → gg) 1.8% 1.8%

σ(Hv
e
v

e
) x BR(H → μ+μ-) g2

HWW
g2

Hμμ
 / Г

H
38% 16%

σ(Hv
e
v

e
) x BR(H → γγ) 15% tbd

σ(Hv
e
v

e
) x BR(H → Zγ) 42% tbd

σ(Hv
e
v

e
) x BR(H → ZZ*) g2

HWW
g2

HZZ
 / Г

H
3% (estimated) 2% (estimated)

σ(Hv
e
v

e
) x BR(H → WW*) g4

HWW
 / Г

H
1.4% 0.9% (estimated)

τ+, b, c, g, W*, ...

τ-, b, c, g, W, ...

A
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Precision measurements
H → bb/cc/gg:
• Separation of the different hadronic 
final states using precise flavour tagging
• H → cc and gg impossible at hadron colliders
• In addition, the Higgs mass can be extracted 
from the H → bb invariant mass distribution
(±40MeV at 1.4 TeV, ±33MeV at 3 TeV)

Measurement 1.4 TeV 3 TeV

σ(Hv
e
v

e
) x BR(H → bb) ±0.3% ±0.2%

σ(Hv
e
v

e
) x BR(H → cc) ±2.9% ±2.7%

σ(Hv
e
v

e
) x BR(H → gg-) ±1.8% ±1.8%

3 TeV 3 TeV

CDR

CDR
CDR
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Rare decays

σ(Hv
e
v

e
) x BR(H → μ+μ-):

• Very small BR (≈ 0.022%) 
• Requires precision tracking
• Δ(σ x BR) = 38%(16%) at 1.4(3) TeV

σ(Hv
e
v

e
) x BR(H → γγ):

• BR(H→γγ) ≈ 0.23%
• Δ(σ x BR) = 15% at 1.4 TeV

σ(Hv
e
v

e
) x BR(H → Zγ):

• BR(H→Zγ) ≈ 0.16%
• Hadronic Z decays usable
(in contrast to hadron colliders)
• Δ(σ x BR) = 42% at 1.4 TeV

3 TeV

CDR
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Other processes at higher energy

ttH production:
maximum at
around 800 GeV
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Other processes at higher energy

ttH production:
maximum at
around 800 GeV

Double Higgs production:
requires high energy
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The ttH final state at 1.4 TeV
1.4 TeV

→ The ttH cross 
section is directly 
sensitive to the top 
Yukawa coupling g

ttH

g
ttH

2

Investigated final states:
“6 jets”: t(→qqb)t(→lνb)H(→bb)
“8 jets”: t(→qqb)t(→qqb)H(→bb)
→ Four b-quarks in the final state

Combination of both final states:
Δσ(ttH) / σ(ttH) = 8.4% 
→ Δg

ttH
 / g

ttH
 = 4.5%
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Double Higgs production at high energy
1.4 TeV 3 TeV

• The HHv
e
v

e
 cross section is 

sensitive to the Higgs self coupling, λ, and
the quartic HHWW coupling
• Only 225 (1200) e+e‒ → HHv

e
v

e
 events at 1.4 (3) TeV

→ high energy and luminosity crucial

Measurement 1.4 TeV 3 TeV

Δ(g
HHWW

) 7% (preliminary) 3% (preliminary)

Δ(λ) 32% 16%

Δ(λ) for P(e-) = -80% 24% 12%
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CLIC Higgs studies

*: preliminary
†: estimated
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Putting it all together

• Fully model-independent, only possible at a lepton collider
• All results limited by 0.8% from σ(HZ) measurement
• The Higgs width is extracted with 5 – 3.5% precision
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Analysis similar to LHC experiments

No invisible decays:
Sub-percent precisions 
at high energy
→ Results strongly dependent 
on fit assumptions
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Top mass

Δ
stat

(m
t
) 34 MeV

Δ
stat

(α
s
) 0.0009

tt threshold scan:

• Measurements at 10 different
centre-of-mass energies
(10 fb-1 each), data also useful 
for Higgs physics

• Theoretical uncertainty on the
order of 100 MeV when 
transforming the measured 1S 
mass to the MS mass scheme

• Precision at the LHC limited
to about 500 MeV
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Prospects for BSM physics

• Two approaches:

1.) Pair production of new 
particles if M ≤ √s / 2
→ CLIC especially attractive for 
electroweak states
→ Precision measurement of new particle
masses and couplings 

Many examples of SUSY particle production studied for CLIC CDR

2.) Indirect searches through precision observables
→ possibility to reach much higher mass scales (tens of TeV)

One of the priorities for future benchmarking studies
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Investigated SUSY models

CDR Model I, 3 TeV:
• Squarks
• Heavy Higgs

CDR Model II, 3 TeV:
• Smuons, selectrons
• Gauginos

CDR Model III, 1.4 TeV:
• Smuons, selectrons
• Staus
• Gauginos

Wider applicability than only SUSY: Reconstructed particles can be 
classified simply as states of given mass, spin and quantum numbers

Top squarks → Edinburgh
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The simplest case: sleptons at 3 TeV

• Slepton production very clean at CLIC
• Slepton masses ≈ 1 TeV
• Investigated channels include:

• Leptons and
missing energy

• Masses from
endpoints of
energy spectra

• Precisions of a few GeV achievableExample: Smuons

muons
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Hadronic final states: gauginos at 3 TeV

Chargino and neutralino pair production:

82%

17%

Reconstruct W±/Z/h in hadronic decays
→ four jets and missing energy

Precision on the measured
gaugino masses (few hundred GeV):
1 - 1.5%
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Heavy Higgs bosons at 3 TeV

Accuracy of the heavy Higgs mass measurements: ≈0.3%

Complex
final states

M(GeV) M(GeV)

Heavy Higgs bosons:
e+e- → HA → bbbb
e+e- → H+H- → tbbt
(H, A and H± almost degenerate in mass)
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Summary of the SUSY studies
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Precision studies of e+e- → μ+μ-

Minimal anomaly-free Z' model:
Charge of the SM fermions 
under U(1)' symmetry:
Q

f
 = g

Y
'(Y

f
) + g'

BL
(B-L)

f

Observables:
• total e+e- → μ+μ- cross section
• forward-backward-asymmetry
• left-right asymmetry 
(±80% e- polarisation)

If LHC discovers Z' 
(e.g. for M = 5 TeV):
Precise measurement of the 
effective couplings

Otherwise:
Discovery reach up to tens of TeV 
(depending on the couplings)
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Composite Higgs bosons

• Higgs as composite 
bound state of fermions

• m
ρ
: mass of the vector

resonance of the 
composite theory

• ξ = (v / f)2 measures the 
strengths of the Higgs 
interactions

CLIC provides an indirect probe of a Higgs composite scale of 70 TeV

from single Higgs production
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Implications
for the detectors
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Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 E
E

~3.5−5% for E=1000−50GeV

 d 0=a2b2⋅GeV 2/  p 2sin3  , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, H → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

√s = 500 GeV
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Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 d 0=a2b2⋅GeV 2/  p 2sin3  , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, H → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

 E
E

~3.5−5% for E=1000−50GeV
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Physics aims → detector needs

  pT 

pT
2 ~2×10−5GeV −1

 d 0=a2b2⋅GeV 2/  p 2sin3  , a≈5m ,b≈15m

• Momentum resolution
(e.g. Higgs recoil mass, H → μ+μ-,
leptons from BSM processes)

• Jet energy resolution
(e.g. W/Z/h separation)

• Impact parameter resolution
(b/c tagging, e.g. Higgs couplings)

• Lepton identification, very forward electron tagging

 E
E

~3.5−5% for E=1000−50GeV
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CLIC detector concepts
Instrumented return
yoke for muon ID

Strong
solenoids
(4-5 T)

3.) Fine grained
(PFA) calorimetry,
1+7.5 λ

2.) Main trackers:
silicon-based
(large pixels and strips)

1.) Ultra low-mass
vertex detector
with ≈ 25 x 25 μm2

pixels → more later

Complex forward region
with final beam focusing

≈ 7 m

e-

e+
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Background suppression

Triggerless readout of full bunch train:

t
0
 of physics event

1.) Identify t
0
 of physics event in offline event filter

• Define reconstruction window around t
0

• All hits and tracks in this window are passed to the reconstruction
→ Physics objects with precise p

T
 and cluster time information

2.) Apply cluster-based timing cuts
• Cuts depend on particle-type, p

T
 and detector region

→ Protects physics objects at high p
T

In addition: hadron-collider type jet algorithms (FastJet)

tCluster
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Time windows and hit resolutions

Used in the reconstruction software for CDR simulations:

• CLIC hardware requirements
• Achievable in the calorimeters with a
sampling every ≈ 25 ns
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Impact of the timing cuts

e+e- → tt at 3 TeV with background from γγ → hadrons overlaid

1.2 TeV background
in the reconstruction
window

100 GeV background
after timing cuts
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R&D for the
CLIC vertex detector
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Vertex detector requirements

CLIC_ILD
Vertex & forward tracking

Requirements:
• 3 μm single point resolution 
→ 25 x 25 μm2 pixel size with analog readout → ≈ 2 ͯ 109 pixels
• Material: 0.2% X

0
 per layer:

→ Very thin materials / sensors
→ Low-power design, power pulsing, low-mass cooling, aim: 50 mW / cm2

• Time stamping precision: ≈10 ns (to reject backgrounds)
• Radiation level: ≈1010 n

eq
 /cm2 /yr (10-4 of LHC) 
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Vertex-detector technology R&D
Readout ASICs Sensors Simulations

Interconnects Powering

Cooling

Light-weight supports Detector integration and assembly

Examples for recent developments → following slides
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Detector optimisation: flavour tagging

Example: comparison of vertex detector 
designs based single- or double-sided layers

Single-sided layers
(5 in barred, 4 forward)

Double-sided layers
(3 in barred and forward)

1.) Similar performance 
for both layouts:

2.) The material budget 
has a larger impact than
the geometry:  2 x material
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Cooling concept
• P ≈ 500 W in vertex detectors
• Spiral end-cap geometry:

• Mock-up to verify simulations:

• ANSYS finite 
element simulation 
of air-flow cooling
→ seems feasible

T
in
 = 0º C, 

m
flow

 = 20 g/s

Flavour-tagging 
performance for spiral 
and disk geometries:
mostly similar

disks
better

spirals
better
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Thin sensor assemblies

• Focus on hybrid concept:  thin depleted 
sensor + separate readout ASIC

• Ultimate goal: 50 μm sensor on 50 μm ASIC 
with 25 μm pitch

Through-Silicon-Vias (TSV):
• Vertical electrical connection → no wire bonds
• Chip/sensor assemblies buttable on all sides
• Large active surfaces → less material

Using the Medipix/Timepix 
readout chip family:
• Timepix: DESY test beam 2013, 
lab tests CERN, LNLS
• Timepix3: CERN PS test beam 2014
• CLICpix: CCPDv3 (capacitive coupling) in 
CERN PS & SPS test beams 2014,
future bump-bonding trials at SLAC

50 μm 
Si wafer

Medipix3RX with TSV
(CEA-LETI)
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Timepix test beam

• Thin sensors (50 – 300 μm) 
bump-bonded to Timepix chips
(55 x 55 μm2 pixel size)

• Data recorded at DESY:
- 5.6 GeV electron beam
- EUDET telescope

750 μm Timepix

50 μm sensor

50 μm sensor efficiency:
99.2% at operating threshold

100 μm sensor two-hit cluster
resolution: ≈4.5 μm

200 μm sensor depletion
voltage: ≈30 V
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CLICpix ASIC

• Commerical 65 nm CMOS technology
• Demonstrator chip with 64 x 64 pixel matrix
• 25 μm pixel pitch
• Simultaneous 4-bit time (TOA) 
and 4-bit energy (TOT) measurement per pixel
→ front-end time slicing < 10 ns
• Allows for power pulsing: P

avg
 < 50 mW/cm2
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CLICpix test beam
Capacitive coupled pixel detector (CCPv3):
• Active sensor with two-stage aplifier in each pixel
• Implemented in AMS H18 180 nm 
HV-CMOS process
• Capacitive coupling to CLICpix 
bond pads through layer of glue

Data taking:
• In October at PS and SPS
• This week again at SPS

CLICpix + CCPDv3

A
ID

A
 t

el
es

co
p

e
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Summary
and conclusions
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If you want to know more...

CLIC Conceptual Design 
Report (CDR) Vol. 2:
Physics and Detectors
(mostly at 3 TeV)

arXiv:1202.5940

CLIC CDR Vol. 3:
Staged construction, 
SUSY at 1.4 TeV, Z'

arXiv:1209.2543

Snowmass white paper:
Most of the Higgs studies

arXiv:1307.5288
(last update: 01/10/2013)
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The CLIC detector and physics study

• Collaboration of 23 institutes from 16 countries
• CERN acts as host laboratory
• More information: http://clicdp.web.cern.ch/
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Summary and conclusions

• CLIC is the only mature option for a multi-TeV 
electron-positron collider

• Very active R&D projects for accelerator and physics/detector

• Energy-staging → optimal for physics:

350 – 375 GeV: precision SM Higgs and top physics
1.4 TeV, 3 TeV: targeted at BSM physics (through direct and indirect
measurements), rare Higgs processes

• The energies of the TeV stages will depend on the LHC results

THANK YOU!
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