

Testing lepton-flavour universality with the LHCb experiment

@GreigCowan
Edinburgh seminar
26th May 2017

$B^0 \rightarrow K^{*0}(K^+\pi)e^+e^-$

Science & Technology Facilities Council

Introduction: why LFU?

- $\frac{\gamma, Z}{W_{2}^{*}} = \overline{v}_{\tau}$ $W^{+}_{2} = \overline{v}_{\tau}$ $\overline{t}, \overline{c}, \overline{u} \xrightarrow{2} = \overline{s}$ K^{0} $\overline{B} \left\{ \begin{array}{c} b \\ \overline{q} \end{array} \right\} = \overline{Q} \xrightarrow{2} \overline{Q} \xrightarrow{c} \overline{q} \\ \overline{q} \end{array} \right\} D^{(*)}$
- Recent data show intriguing hints of Lepton Flavour Universality violation. - b \rightarrow s neutral currents in e vs. μ (R_{K}, R_{K^*}, P_5 ' etc) - b \rightarrow c charged currents in T vs. e, μ (R_D, R_D*)
- 1. LFU is **not** a fundamental symmetry of the SM Lagrangian.
- 2. LFU tests do exist, but mostly constrain the gauge sector [LEP, Phys. Rept. 427 (2006) 257] or 1st and 2nd generation quarks and leptons [PIENU collab., PRL 115, 071801 (2015)]

Could there be New Physics where LFU is violated more in processes involving 3rd generation quarks and leptons?

The LHCb experiment

 Covers 4% of solid angle, but accepts 40% of heavy quark production cross section.

A typical LHCb event

nPVs ~ 2 nTracks ~ 200

LHCb data sample

SM

$$\frac{\partial H\mu^{+}\mu^{-}}{dq^{2}} dq^{2}$$

$$\frac{\partial He^{+}e^{-}}{dq^{2}} dq^{2}$$

Theoretical framework

Use effective Hamiltonian to describe $b \rightarrow s$ transitions.

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \left[\underbrace{C_i(\mu)O_i(\mu)}_{\text{left-handed part}} + \underbrace{C_i'(\mu)}_{\text{right-handed part}} \right]$$

0 in the SM

Ci Wilson coefficients: short-distance physics (perturbative) couplings, μ = energy scale.

Oi operators: long-distance (non perturbative) matrix elements, e.g. from lattice QCD.

New physics can modify C_i Wilson coefficients and/or add new operators.

right-handed part

i=7 photon penguin

i=9, 10, P, S

i = 1, 2	Tree
i = 3 - 6,8	Gluon penguin
i = 7	Photon penguin
i = 9,10	Electroweak penguin
i = S	Higgs (scalar) pengu
i = P	Pseudoscalar penguin

Theoretical framework

Compare muons to electrons

Electrons emit large amount of **Bremsstrahlung** as they traverse LHCb; leads to **degraded** momentum and invariant mass resolutions; migration between q^2 regions. [arXiv:1705.05802]

Electron reconstruction (a) LHCb

Bremsstrahlung photons emitted downstream of magnet will deposit energy in same ECAL cells as electron

Bremsstrahlung photons emitted upstream of magnet can be recovered during reconstruction.

4-momentum from photons deposited in ECAL is added to a matching electron track.

LHCb hardware trigger

Hardware trigger: L0 Muon $p_T > 1.5 - 1.8 \text{ GeV}$ L0 Electron $E_T > 2.5 - 3.0 \text{ GeV}$ L0 Hadron $E_T > 3.5$ GeV

Single category for muons

Three exclusive categories for electrons

Yields	low-q ²	central-q ²	J/psi	R-
μ+μ-	285±18	353±21	274k	n_{F}
e*e-	89±11	± 4	58k	

Cross-checks (1/2)

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0}J/\psi (\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi (\to e^+e^-))}$$

Measured to be ~independent of decay kinematics and event multiplicity.

 $\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)$ consistent with [LHCb arxiv:1606.04731]

If corrections to simulation are not accounted for, the ratio of the efficiencies (and thus R_{K*0}) changes by less than 5%

$(\frac{-)}{-}) = 1.043 \pm 0.006 \pm 0.045$

Compatible with expectations

Cross-checks (2/2)

low-q²

Compare backgroundsubtracted data distributions with simulation.

Good agreement between electrons/muons and data/ simulation.

Distributions normalised to same area.

Systematic uncertainties on R_K*

		ΔR	
	low- q^2		
Trigger category	LOE	L0H	
Corrections to simulation	2.5	4.8	
Trigger	0.1	1.2	
PID	0.2	0.4	
Kinematic selection	2.1	2.1	
Residual background		—	
Mass fits	1.4	2.1	
Bin migration	1.0	1.0	
$r_{J/\psi}$ ratio	1.6	1.4	
Total	4.0	6.1	

Double ratio means that many systematics cancel. Statistical dominated (~15%) due to small yields in electron mode.

Description of Brem tail in mass fits

Residual background contamination due to $B \rightarrow K^{*0} J/\psi$ (ee) events with a K \leftrightarrow e or $\pi \leftrightarrow$ e swap

R_K* likelihood scans

Good agreement between trigger categories

Comparison to theory and B-factories

BIP CDHMV EOS

• JC

flav.io

[arXiv:1605.07633] [arXiv:1510.04239, 1605.03156, 1701.08672] [arXiv:1610.08761, https://eos.github.io] [arXiv:1503.05534, 1703.09189, flav-io/flavio] [arXiv:1412.3183]

O(1%) uncertainty on the SM predictions.

Compatibility with SM is $2.1-2.3\sigma$ (low-q²) and 2.4-2.5 σ (central-q²)

Another hint of LFUV: R_K

$b \rightarrow s \mu^+ \mu^-$ branching fractions

Many BR's of similar decay modes are **lower than** predictions.

QCD effect, NP or some systematic?

Dominant systematic comes from BR of normalisation mode (typically measured by B factories)

$B^0 \rightarrow K^{*0}(K^+\pi)\mu^+\mu^-$

$$\frac{\mathrm{d}^4\Gamma[\bar{B}^0\to\bar{K}^{*0}\mu^+\mu^-]}{\mathrm{d}q^2\,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_{j=1}^{11} I_j(q^2)f_j(\vec{\Omega}), \quad I_j\to\bar{I}_j \text{ fo}$$
$$S_j = \left(I_j+\bar{I}_j\right) \Big/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^2}\right), \quad A_j = \left(I_j-\bar{I}_j\right) \Big/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^2}\right)$$

In the end we measure each S_j and A_j in each bin of q^2 .

2398 ± 57 events, excluding the charmonia.

Dimuon final state is experimentally clean, but BR ~ 10^{-7}

or B^0

dΓ dq^2

that are sensitive to NP [JHEP 02 (2016) 104]

Experimental challenges

Isolate signal events from two backgrounds:

Combinatorial - use machine learning (BDTs etc) built from kinematic and topological information.

Peaking - use particle ID information from the LHCb RICH to suppress contributions from decays that look like signal when one or more particles mis-ID.

Experimental challenges

Angular and q²-dependent efficiencies

Use simulation, corrected to look more like data in terms of detector occupancy, particle identification performance and production kinematics.

$B^0 \rightarrow K^{*0}(K^+\pi^-)\mu^+\mu^-$

S_i and A_i extracted using a maximum likelihood fit of the 3D angular distributions in bins of q^2

[JHEP 02 (2016) 104]

$B^0 \rightarrow K^{*0}(K^+\pi^-)\mu^+\mu^-$

Measure the S_i observables, but build "theoretically clean" observables that divideout the leading order form-factor uncertainties.

[Descotes-Genon et al., JHEP 05 (2013) 137]

New kids on the block

[LHCb-PAPER-2015-051, ATLAS-CONF-2017-023, CMS-PAS-BPH-15-008, Belle (PRL 118 (2017) no.11, 111801)]

New results from Belle on LFU

 $Q_i = 0$ would be indication of new physics.

Will likely hear more about these observables in the future (see later).

Observation of $B^0_s \rightarrow \mu^+ \mu^-$

CKM, loop and helicity suppressed ((mµ/mB)²).
 B(B⁰_s → µµ)_{SM} = (3.66 ± 0.23) × 10⁻⁹
 B(B⁰ → µµ)_{SM} = (1.06 ± 0.09) × 10⁻¹⁰
 [PRL 112, 101801 (2014)]

Sensitive to scalar and pseudoscalar NP couplings, e.g., in MSSM $\mathcal{B} \propto (\tan \beta)^6$

$B_s^0 \rightarrow \mu^+ \mu^- using Run 1+2$

[ATLAS EPJC 76 (2016) 513] [CMS+LHCb Nature 522, 68-72 (2015)]

[PRL 118, 191801 (2017)]
$$\mathcal{B}(B_s^0 o \mu^+ \mu^-) = (3.0 \pm 0.6 \substack{+0.3 \\ -0.2}) imes 10^{-9}$$

 $\mathcal{B}(B^0 o \mu^+ \mu^-) < 3.4 imes 10^{-10}$
 $au(B_s^0 o \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \,\mathrm{ps}$

Anomalies in $b \rightarrow s$ transitions

Observable	Experiment	Standard Model	Pull (σ)	[J.Virto, Instant workshop @ CE
$\langle P_5' \rangle_{[4,6]}$	-0.30 ± 0.16	-0.82 ± 0.08	-2.9	
$\langle P_5' angle_{[6,8]}$	-0.51 ± 0.12	-0.94 ± 0.08	-2.9	
$R_{K}^{[1,6]}$	$0.745\substack{+0.097\\-0.082}$	1.00 ± 0.01	+2.6	Most prominent out
$R_{K^*}^{[0.045,1.1]}$	$0.66\substack{+0.113\\-0.074}$	0.92 ± 0.02	+2.3	~I/U ODServables
$R_{K^*}^{[1.1,6]}$	$0.685\substack{+0.122\\-0.083}$	1.00 ± 0.01	+2.6	
$\mathcal{B}^{[2,5]}_{B_s ightarrow\phi\mu^+\mu^-}$	0.77 ± 0.14	1.55 ± 0.33	+2.2	
$\mathcal{B}^{[5,8]}_{B_s ightarrow\phi\mu^+\mu^-}$	0.96 ± 0.15	1.88 ± 0.39	+2.2	

Are these just statistical fluctuations? If not, do they make sense and what can we learn?

A smörgåsbord of global fits

A smörgåsbord of global fits

Different fitting groups exist, using different assumptions (e.g., form-factor parameterisations)

Pattern is the same: better fits obtained with new contributions to C_9 and/or C_{10} , mainly for muons.

[Altmannshofer et al., arXiv:1704.05435] [Ciuchini et al., arXiv:1704.05447] [Geng et al., arXiv:1704.05446] [...]

New physics interpretations

Instant workshop on B meson anomalies https://indico.cern.ch/event/633880/

Z' and lepto-quarks lead the way

[Buttazzo et al., JHEP 1608 (2016) 035], [Bauer et al., PRL 116 (2016) 141802], [Crivellin et al., PRL 114 (2015) 151801], [Altmannshofer et al., PRD 89 (2014) 095033] [Diptomoy et al., PRD 89 (2014) 071501], [Descotes-Genon et al., PRD 88 (2013) 074002]...

 B^0

Limits from direct searches providing complementary information to b meson decays.

But may be able to escape bounds with more elaborate models or fine tuning [Crivellin et al., arXiv:1703.09226]

Or is it QCD?

Potential problem with our understanding of contributions from $B \rightarrow [c\overline{c}](\rightarrow \mu^+\mu^-) K$ [Lyon and Zwicky, arXiv:1406.0566], [Altmannshofer and Straub arXiv:1503.06199], [Ciuchini et al., arXiv:1512.07157], but:

- [EPJC (2017) 77:161]
- 2. Global fits in bins of q^2 indicate no dependence

1. LHCb measurements of these effects in $B^+ \rightarrow K^+ \mu^+ \mu^-$ indicate this is not the explanation

			_		_	
						-
						-
						-
		-				-
	1					-
-				-	-	-
						_
						-
						-
						_
						_
•						_
						_
						_
						_
						_
						_
ι.	_	-	_	_	. h	
					1	
	-	-	-	-		
					Ľ	
	-		_			
	_		_	_		1
						1
	-	-	-	-	-	-
•						-
ł						-
						-
,						-
7	-	-	-	-	-	
						-
						-
						-
			1		- 1	

Lepton-flavour violation

 $B(B^0 \rightarrow e\mu) < 2.8 \times 10^{-9} @ 90\%$ Can translate into limits on lepto-quark masses

Future: study decays with tau-leptons in the final state since less constrained by existing data [BaBar PRD 86, 012004 (2012)] and often enhanced in NP models.

e.g., $B^+ \rightarrow K^+ \mu \tau$ predicted to be 10⁻⁶

[Glashow et al., Phys. Rev. Lett. 114 (2015) 091801] [Crivellin et al., Phys. Rev. D 92 (2015) 054013] [Guadagnoli and Lane PLB 751 (2015) 54]

b \rightarrow **c charged currents**

R(D*)

$$R(D^*) \equiv \frac{\mathcal{B}(\overline{B^0} \to D^{*+} \tau \nu_{\tau})}{\mathcal{B}(\overline{B^0} \to D^{*+} \mu \nu_{\mu})}$$

Experimental challenges at LHCb:

Missing neutrino, so no narrow peak to fit

Signal and normalisation mode have identical final state

Background from partially reconstructed decays

 $\mathcal{B}(\tau \to \mu \nu_{\mu} \nu_{\tau}) = (17.41 \pm 0.04)\%$

$R(D^*), R(D)$

Looking to the future

$R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$

Use available Run 2 data (~2.0 fb⁻¹) to update result.

Improvements in offline processing and increased cross-section at I 3 TeV.

~250 \rightarrow ~800 $B^+ \rightarrow K^+ e^+ e^-$ candidates.

 R_K uncertainty decreases by factor ~1.8.

Systematics should be data-driven.

Add high-q² region, but difficult due to part-reco backgrounds from higher K* resonances and $\Psi(2S)$ leakage.

R_{ω} R_X and other measurements

 R_{ϕ} is analogous, but using $B_s \rightarrow \phi l^+ l^-$ decays.

Signal suppressed by fs/fd ~ 0.25 and BR($\phi \neg$ experimental advantages (narrow φ).

NB: the electron yields will be of the order of 10's of events.

Effort starting on (K, K^*, φ) e searches; even some effort on μT and TTmodes.

Angular analyses will be important. [Gratrex, Zwicky PRD 93 (2016) 054008]

$$R_{\phi} = rac{\mathcal{B}(B_s^0 o \phi \mu^+ \mu^-)}{\mathcal{B}(B_s^0 o \phi e^+ e^-)}$$

Run I yields in muon modes Κμμ ~Ι200 **Κ*μμ ~600** φμμ ~100 ρΚμμ ~600 Κππμμ ~360 K^{**}µµ ~230∎ K_sμμ ~30 (*+μμ ~40

LHCb upgrade

LHCb-upgrade (phase I) will be installed in LS2 and operate during Run-3

Full Run-I+Run-II dataset will effectively have 5x statistics of Run-I

LHCb upgrade (phase 1)

LHCb upgrade (phase | b and 2)

Eol for LHCb-upgrade(s) in LS3 and LS4 so that it can operate in Run-4,5. Stations in the magnet (to improve reconstruction of multi-body final states). Improvements to PID via time-of-flight (TORCH project) Increase luminosity to 10^{34} .

https://cds.cern.ch/record/2244311?ln=en

Recent data show hints of LFU violation.

- b \rightarrow s neutral currents in e vs. μ (R_{K}, R_{K^*}, P_5 ' etc)
- b \rightarrow c charged currents in T vs. e, μ (R_D, R_D*)

More measurements (with more data) on the way.

Starting to plan for phase-1b and phase-2 upgrades to extend programme into HL-LHC era (~2035).

Theoreticiar Leptoquarks m · 113691004 charged Higgs, LQ

 B^0

LHCb upgrade (phase 1)

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi\gamma)/ au_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{ m FB}(B^0 o K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{ m I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	$\mathbf{2.4\%}$	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 ightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9 °	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0°	negligible
angles	$eta(B^0 o J/\psi K_{ m S}^0)$	1.7°	0.8°	0.31 °	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	_
$C\!P$ violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.1	—

LFV in lepton decays

 10^{-40} in the SM

Low-q² region and hadronic resonances

- In the low-q² bin there are hadronic resonances (φ , ρ , ω , η) that decay to dilepton final states.
- BR(B \rightarrow K*(ϕ , ρ , ω , η)) ~ 2-30 x 10⁻¹⁰ (compared to 10⁻⁷ for the signal modes).
- In this region, the electrons and muons are similar in the detector.
- We do not subtract these. They should actually contribute to increase R_{K^*} .
- Also can have $\eta \rightarrow l^+ l^- \gamma$ (BR's ~ 0.3-7 x 10⁻³) but where we miss a photon, leading to the partially reconstructed background.

Electron-muon universality test

- $R_{e/\mu} = \Gamma[(\pi \to e\nu(\gamma)]/\Gamma[(\pi \to \mu\nu(\gamma)])]$
 - $R_{e/\mu}^{\rm SM} = (1.2352 \pm 0.0002) \times 10^{-4}$
 - $R_{e/\mu}^{exp} = [1.2344 \pm 0.0023(stat) \pm 0.0019(syst)] \times 10^{-4}$

[PIENU collaboration, PRL 115, 071801 (2015)]

Gives sensitivity to new physics beyond the SM > O(500) TeV

Comparison between experiments

SM

NP

b -> s neutral currents

Hadronic uncertainties

Coloured bands represent different NP scenarios

Size of band indicates size of hadronic uncertainty

In models with LFUV this gets larger as there is no long a cancellation for e/mu

[Capdevilla et al., arXiv:1704.05340]

