Heavy Flavour Jets with LHCb

Philip Ilten UNIVERSITY®BIRMINGHAM November 29, 2017

Edinburgh Seminar

QCD at the LHC

QCD at the LHC

QCD at the LHC

Factorising QCD

$$\mathrm{d}\sigma \approx \sigma \left(\frac{2\,\mathrm{d}\cos\theta}{\sin^2\theta}\right) \left(\frac{\alpha_s}{2\pi}\right) \left(\frac{N_c^2-1}{2N_c}\right) \left(\frac{1+(1-z)^2}{z}\right)\,\mathrm{d}z$$

• factorise into general form given any splitting kernel \mathcal{P}_i

$$\mathrm{d}\sigma \approx \sigma \sum_{i} \frac{\mathrm{d}\theta^{2}}{\theta^{2}} \mathcal{P}_{i}\left(z, \alpha_{s}\right) \,\mathrm{d}z$$

• diverges when collinear $(\theta \to 0, \pi)$ or infrared $(z \to 0)$

Sudakovs and Splitting Kernels

$$\Delta(Q_1^2, Q^2) = \exp\left[-\int_{Q^2}^{Q_1^2} \frac{1}{q^2} \int_{Q_0^2/q^2}^{1-Q_0^2/q^2} \mathcal{P}_i(z, \alpha_s) \,\mathrm{d}z \,\mathrm{d}q^2\right]$$

Reverse Engineering with Jets

- unfold final state particles to initial hard partons
 - \blacksquare collinear safe \rightarrow collinear emission changes nothing
 - **2** infrared safe \rightarrow soft emission changes nothing
 - 3 insensitive to non-perturbative effects
 - 4 applicable to both parton and hadron level
- inclusive sequential clustering is algorithm of choice at LHC

$$d_{ij} = \min(p_{\mathrm{T}i}^k, p_{\mathrm{T}j}^k) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = p_{\mathrm{T}i}^k$$

- 1 select minimum d
- **2** if d_{ij} , combine particle *i* and *j*
- **3** if d_{iB} , consider particle as jet and remove from clustering
- 4 terminate if no particles otherwise return to 1

 k_t

Flavours of Sequential Clustering

Cambridge/Aachen

anti- k_t

arXiv: 1111.6097

- Cambridge/Aachen considers only geometry
- k_t and anti- k_t also consider momentum
- anti- k_t provides circular jets in R at high- p_T

LHCb, JINST 10 (2015) P06013

From Theory to Detector

• jet properties depend on initiating parton

-

	c-hadron	b -hadron
mass	$2 {\rm GeV}$	$5 \mathrm{GeV}$
lifetime $(c\tau)$	$0.1 \mathrm{mm}$	$0.5 \mathrm{mm}$
multiplicity	≈ 2	≈ 3

8 / 46

Enter LHCb

Tagging Ingredients

Heavy Flavour Jets with LHCb

A Pinch of Machine Learning

- 10 total observables (3 jet related) input to boosted decision trees
- two BDTs: *udsg vs. cb* and *c vs. b*
- fit 2-dimensional distribution of the two BDTs

Tag and Probe

12 / 46

candidates 2000

1500

1000

500

LHCb data

udsg

D+jet

Efficiencies

N(probe SV)N(total)

- N(probe SV) from BDT fit
- N(total) from hardest χ^2_{IP} fit •

Vector Boson with a Jet

LHCb, Phys. Rev. D 92 (2015) LHCb, Phys. Rev. Lett. 115 (2015) Boettcher, Ilten and Williams,

Phys. Rev. D 93 (2016)

Vector Boson with a Jet

Probing the Proton

W with a Jet

- 1 trigger on a high $p_{\rm T}$ muon
- 2) build jets in the event
- **3** require jet containing muon j_{μ} and tagged jet j
- (1) bin data as a function of isolation, $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$
- **6** determine flavour in each isolation bin with BDT fit
- 6 fit isolation to determine signal

Flavour Determination

17 / 46

Signal Determination

Topping the W

A Tricky Background

- constrain Wb with Wj
- scale with Wb/Wj theory
- validate with Wc

Vector Boson with a Jet

Putting Everything Together

Intrinsic Charm

Bonus Intrinsic Charm

LHCb, Phys. Rev. Lett. 118 (2017)

The Polarization Puzzle

25 / 46

A Tale of Two Pictures

NRQCD hard process, octet states showered with QCD splittings
shower with NRQCD splittings, match with hard process

shower production

- build $J/\psi \to \mu\mu$ candidates
- build jets with J/ψ input
- select jets with $J/\psi s$
- $z \equiv p_{\rm T}(J/\psi)/p_{\rm T}({\rm jet})$

LHCb Trigger

- real-time calibration and full event reconstruction in Run 2
- full detector readout in Run 3

Dimuon Trigger

- fully reconstructed event written to disk, including particle flow
- jets can be fully reconstructed, sans hadronic calorimetry

Prompt and Displaced

- determine J/ψ signal yield with mass fits

• separate prompt (direct) from displaced $(b \to J/\psi)$ yields with pseudo-lifetime fits, $\tilde{\tau} \equiv (x_z - x_z(PV))m/p_z$

Unfolding

- correct for z resolution and $p_{\rm T}(j)$ resolution, $\approx 20 25\%$
- perform 2D unfolding in z and $p_{\rm T}(j)$ (iterative D'Agostini)

Displaced Results

3

Displaced Results

32 / 46

Prompt Results

Prompt Results

Ilten, Rodd, Thaler and Williams, Phys. Rev. D 96 (2017)

SoftDrop and Jet Sub-structure

- what happens with boosted topology when $Q_{\text{hard}} \gg Q_{\text{obs}}$, e.g. $W, Z, H \rightarrow q\bar{q}$?
- anti- k_t produces a single jet \rightarrow need jet sub-structure
- use jet sub-structure technique like SoftDrop

- \bigcirc create fat anti- k_t jets
- build Cambridge/Aachen tree for each fat jet
- **3** split j_0 into sub-jets j_1 and j_2
- (1) if j_1 and j_2 fulfil SoftDrop condition, terminate
- **(5)** otherwise, assign j_0 to larger $p_{\rm T}$ sub-jet and return to **(3)**

36 / 46

Averaged Massless Splittings

- SoftDrop provides direct access to the hardest $1 \rightarrow 2$ splitting

Jet Anatomy

- 1 find all tags in event and treat as *ghosts*
- 2 build anti- k_t jets with R = 1, including tags
- **3** apply SoftDrop with $z_{\rm cut} > 0.1$ and $\beta = 0$
- 4 consider sub-jet tagged if $p_{\rm T}^{\rm tag}/(p_{\rm T1}+p_{\rm T2}) > 0.05$

Heavy Flavour Jets with LHCb

Some Numbers

	$\sigma(\text{Pythia}) \ [\mu \text{b}]$	$\sigma(\text{Herwig}++) \ [\mu \text{b}]$
$(0,0)_{c}$	9.96×10^2	5.28×10^2
$(0,1)_{c}$	$7.56 imes 10^1$	$2.64 imes 10^1$
$(1,1)_{c}$	6.87×10^0	2.87×10^0
$(0,2)_{c}$	1.00×10^1	$5.64 imes 10^0$
$other_c$	8.86×10^{-1}	2.47×10^{-1}
$(0,0)_{b}$	1.07×10^3	5.52×10^2
$(0,1)_{b}$	$1.34 imes 10^1$	$9.58 imes 10^0$
$(1,1)_{b}$	$8.40 imes 10^{-1}$	$5.03 imes 10^{-1}$
$(0,2)_{b}$	9.50×10^{-1}	5.94×10^{-1}
$other_b$	1.13×10^{-2}	7.75×10^{-3}

- missed tags migrate category up \rightarrow minimal contamination
- efficiency of tagging well understood from data

*

39 / 46

Heavy Flavour Splittings

Quarkonia Splitting

Heavy Flavour Production

- understanding heavy flavour production critical for many signals
- two approaches typically taken
 - 1 hadron-level: good angular properties, poor energy proxy
 - 2) tagged jet-level: poor angular properties, good energy proxy

FlavorCone

- good angular properties, good energy proxy
- collinear and infrared safe by jet-axis definition

- 2 particles outside of R with an jet-axis is not clustered
- 3 remaining particles are clustered with nearest axis
- jet momenta is sum of constituents

43 / 46

Comparison

Variable Discrimination

45 / 46

Conclusions

Outlook

- LHCb's tagging capabilities provide a unique probe of QCD
 - valence and strange quark PDFs
 - top asymmetry
 - intrinsic charm
 - NRQCD in the context of jets
- SoftDrop allows access to fundamental $1 \rightarrow 2$ QCD splittings
- FlavorCone provides both good angular and energy properties for studying $Q\bar{Q}$ production

Thank you!