Chasing Ultra-High Energy vs above Antarctica with the Antarctic Impulsive Transient Antenna (ANITA)

Ben Strutt

Department of Physics and Astronomy University of California, Los Angeles

16th November 2018

Ben Strutt (UCLA)

Chasing UHEvs with ANITA

 \sim 60 people across 11 institutions (9 USA, 1 UK, 1 Taiwan)

Are there cosmogenic neutrinos?

What could they tell us?

Probe new regions of the universe

- Use Earth as a shield to measure neutrino cross-section, σ_ν
 - Constrain physics beyond the Standard Model

Radio detection of UHE particles (Askaryan effect)

UCLA

time, ns

Ben Strutt (UCLA)

Ultra-high energy neutrinos

UCLA

è

- ANITA flies ~ 37 km, horizon is 700km, -6° below the horizontal
- Earth skimming ultra-high energy vs interact in the ice
- Askaryan RF impulse emitted along Cherenkov cone
 - Radio attenuation lenth in ice, O(1km)
 - ANITA observes O(10⁶)km³ ice
- Top of RF cone refracts through the surface of the ice
 - Geometry + fresnel effects \rightarrow mostly vertical polarization (VPol)
- Signal propagates through atmosphere to ANITA

Completed flights of ANITA

ANITA-1 (2006)

- 35 day flight
- Banded linear pol trigger

ANITA-2 (2008)

- 30 day flight
- Banded VPol-only trigger

ANITA-3 (2014)

- 22 day flight
- Single band HPol and VPol trigger

ANITA-4 (2016)

- 29 day flight
- Single band linear pol trigger

ANITA-5 (????)

 Proposal with completely new trigger and digitizer system

Ultra-high energy cosmic rays

UCLA

- Ultra high energy CRs produce Extended Air Shower
- Earth's geo-magnetic field separates charge
- Transverse currents produce impulsive RF emission
 - $\blacksquare \perp$ to shower axis, $\perp ~$ B-field \rightarrow mostly horizontal polarization (HPol)
- Reflected (or direct) propagation to ANITA
 - Reflected CRs have inverted waveforms

CR

Ultra-high energy cosmic rays

reflected normalized field strength 35 40 direct -135 40 50 55 45 time, ns CR

Ultra-high energy cosmic rays

reflected normalized field strength 35 40 direct -135 40 50 55 45 time, ns CR

Ben Strutt (UCLA)

Chasing UHEvs with ANITA

UCLA

Ben Strutt (UCLA)

Chasing UHE√s with ANITA

16th November 2018 9 31

Ben Strutt (UCLA)

Chasing UHEvs with ANITA

Ben Strutt (UCLA)

Chasing UHEvs with ANITA

Ben Strutt (UCLA)

Chasing UHEvs with ANITA

- Lower thresholds by requiring multi-channel coincidence in space and time!
 - $\blacksquare~$ Bandwidth + power limits $\rightarrow \sim 50~Hz$ to disk
 - Single channel scalar rate: $O(5 \times 10^5)$ Hz
- For ANITA-3: separate VPol and HPol triggers
 - L1 trigger is single channel above threshold
- For ANITA-4: combine VPol and HPol to make linear pol trigger
 - Mix V+H into left + right circular polarization (LCP+RCP)
 - L0 is either LCP or RCP above threshold
 - L1 trigger is single channel above threshold

Φ -sectors

Group 48 antennas \rightarrow 16 sets of 3 vertically aligned Φ -sectors

Ben Strutt (UCLA)

Chasing UHEvs with ANITA

L2 and L3 triggers

- L2 (Φ-sector) trigger requires 2/3 antennas in a φ-sector
- Each L1 trigger opens window:
 - Bottom 16ns
 - Middle 12ns
 - Top 4ns

 L3 (event) requires 2× L2 triggers in adjacent φ-sectors within 8ns

ANITA data

ANITA-3 diffuse ν search 10.1103/PhysRevD.98.022001

- ANITA-3 recorded > 80 million events
 At most a few events of interest
- All others are backgrounds:
 - Thermal noise from the sun and ice
 - Satellite Continuous Wave (CW) signals
 - Human activity on the continent
 - On-payload noise...

Directional reconstruction

UCLA

Ben Strutt (UCLA)

Chasing UHEvs with ANITA

Summing cross-correlations

Event number 60841774 - Cross-correlation 15TH & 1MH

(b) 1MH & 15TH

Event number 60841774 - Cross-correlation 15TH & 1BH

Event reconstruction

- Iterative sine-wave subtraction (reduce satellite CW)
- Directional reconstruction*
 - Antenna positions: $\delta t(\phi, \theta)$
 - Inter-channel cross-correlation: $\rho(\delta t)$
 - Interferometric map $\rho(\phi, \theta)$
 - $(\phi_{peak}, \theta_{peak}) \rightarrow \text{direction}$
- 3 Coherently average: delay channels by $\delta t(\phi_{peak}, \theta_{peak})$ and average
- **Dedisperse:** Remove 4 frequency dependent delay introduced by signal chain

arXiv:1304 5663

Interferometric Map

Calibration pulsing

Sub-degree resolution in azimuth (left) and elevation (right)

Satellites use frequencies in the ANITA band (200-1200 MHz)

- ANITA-3: remove in software
 - Iterative sine wave fitting and subtraction
- ANITA-4: remove in hardware
 - Installed dynamic narrow band notches

Software filtering

Before sine subtraction algorithm

Ben Strutt (UCLA)

Chasing UHEvs with ANITA

Two Impulsivity metrics \mathcal{I} and \mathcal{G}

Compute Hilbert Envelope

Normalize area = 1

- Do bi-directional integration out from peak
- $\mathfrak{I} = \mathfrak{I} = 2\mathfrak{A} \mathfrak{1}$, where $\mathfrak{A} = \mathfrak{mean}$ value of integral vs. distance

Find smallest window

time

time

Background separation

- Fisher Discriminant created from map peak, waveform impulsivity metrics (coherent average + de-dispersed)
 - Monte Carlo (MC) neutrinos as signal (icemc)
 - Events that point above horizontal as non-impulsive sideband
 - Ionosphere is dispersive in ANITA band

- Ray trace ~ 600, 000 remaining events along (φ_{peak}, θ_{peak}) onto model of Antarctica
- Diffuse flux of v and CRs should be isotropic so require isolation
- Reject events near known human activity
- Reject clusters with N_{events} > 1

Clustering output

Find 1 VPol event on expected background of 0.7^{+0.5}_{-0.3}

- Find 25 HPol events on expected background of 0.7^{+0.5}_{-0.3}
 - Identified as cosmic rays* by separate, dedicated CR search

Combined Limits

■ Combined with ANITA-1 & ANITA-2, set the worlds best limit on diffuse flux of UHEv above 10^{19.5} eV

Ben Strutt (UCLA)

Second such event

- ANITA-1 anomaly 10.1103/PhysRevLett.117.071101
- Consistent with direct (i.e. *unreflected*) cosmic ray event
- Steeply upcoming angle (-35°), clearly comes from ice *should* be inverted
- Very isolated
 - No nearby humans
 - Nothing subthreshold

Second anomalous event

• One idea: v_{τ} propagates through Earth

- Interacts near edge of ice τ escapes!
- Decays in air → Extensive Air Shower
- Same geo-magentic RF generation mechanism as CRs
 - No inversion!
- Not very satisfying explanation...
 - \blacksquare Path through Earth in tension with SM σ_{ν}
 - Flux in tension with Auger + IceCube limits
- Other (unsatisfying) attempts at explanations:
 - Transition radiation? 10.1103/PhysRevD.95.043004
 - Sterile neutrinos? 10.1103/PhysRevD.98.043019

 ${\cal V}_{-}$

- ANITA-3 produced the worlds best limits on the diffuse flux of ultra-high enery neutrinos $E > 10^{19.5}$ eV
 - Over 25 Cosmic Ray like events in ANITA-3 data
 - Second anomalous event also discovered in flight data
 - Ongoing effort to understand these events
- ANITA-4 flight completed in 2016
 - \blacksquare Initial ν and CR analysis nearly complete
 - Expected higher sensitivity than ANITA-3
- ANITA-5 proposal
 - Significant upgrades to trigger and digitizer electronics will increase sensitivity

Thank you for your attention

