# Is the Standard Model breaking down in flavour physics ?

Ulrik Egede, Imperial College London

Seminar, Edinburgh 11 January 2018

© Ulrik Egede 2018, license CC-BY-4.0

# Why flavour physics?

Any physics model (SM or NP) has to deal with the observed flavour structure we observe



# Why flavour physics?

TeV

Any NP model with new flavoured particles or flavour breaking interactions must "hide" behind SM interactions

NP mass scale very large

>~100 TeV or

NP mimics Yukawa couplings minimal flavour violation

Both choices can be argued to be un-natural

Further measurements required

10<sup>4</sup> searches 1000  $\epsilon_{K}$ Direct 100  $\mu \rightarrow ev$ µ→3e 10 b→sµµ LHC

Flavour observables

Andreas Crevellin

# **Potential for discovery of NP**

For a given prospective measurement, we need to ask the questions Can we learn something from the measurement?

- What are the theoretical uncertainties and can they be reduced?
- Do we know SM parameters well enough?
- What level of statistical accuracy is expected?
- How will experimental systematic uncertainties be controlled?

How can everything be cross checked?

#### **The LHCb experiment**



#### **The LHCb experiment**



#### What can beauty reveal?

Typical beauty meson decay



Ulrik Egede

#### What can beauty reveal?

Rare beauty meson decay



## What can beauty reveal?

#### Rare beauty meson decay



# The uncertainty principle

Quantum mechanics allows to create a massive object for a very short time period

$$\frac{\mathsf{Energy} * \mathsf{time} \sim \hbar/2}{\mathsf{E} = \mathsf{mc}^2} \Rightarrow t \leq \frac{\hbar}{2 \, \mathsf{mc}^2}$$

A particle with mass 10 times above what can be produced directly at LHC, can exist for 10<sup>-29</sup> seconds

#### **These decays are called penguins**



Most calculations of expected decay rates are done using Feynman diagrams



Most calculations of expected decay rates are done using Feynman diagrams



Most calculations of expected decay rates are done using Feynman diagrams



Most calculations of expected decay rates are done using Feynman diagrams

Works just like a Taylor expansion

But can in just the same way turn problematic

Strong coupling constant too large so series may not converge



Strong

force

#### **Measurements**

Look at measurements with leptons to improve theory predictions

Electroweak penguins

 $B \rightarrow K^{(*)} \mu^+ \mu^-$ 

Lepton universality

 $B \longrightarrow K^{(*)}\mu^{+}\mu^{-} vs B \longrightarrow K^{(*)}e^{+}e^{-}$  $B \longrightarrow D^{(*)}\mu^{-}v vs B \longrightarrow D^{(*)}T^{-}v$ 



# The penguin laboratory

The decay  $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ ,  $K^{*0} \rightarrow K^- \pi^+$  is in the SM only possible at loop level

On the other hand NP can show up at either tree or loop level

Angular analysis of 4-body K- $\pi$ + $\mu$ + $\mu$ - final state brings large number of observables

Interference between these





# Topology of $B^0 \to K^{\bigstar 0} \mu^+ \mu^-$

The loop (SM) loop level diagram interferes with tree level  $B \rightarrow (cc)J/K^0$  followed by  $(cc) \rightarrow \mu^+\mu^-$ 

Gives multiple regions in  $q^2 = m^2_{\mu\mu}$ 

In addition three angles in 4-body decay

Special combination ("observables") reduce uncertainty from form factors



# $B^+ \to K^+ \mu^+ \mu^- \ branching \ fraction$

With knowledge of the form factors, the branching fraction can tell about the Wilson coefficients

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2 \alpha^2 |V_{tb} V_{ts}^*|^2}{128\pi^5} |\mathbf{k}| \beta \left\{ \frac{2}{3} |\mathbf{k}|^2 \beta^2 \left| \mathcal{C}_{10} f_+(q^2) \right|^2 + \frac{4m_{\mu}^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left| \mathcal{C}_{10} f_0(q^2) \right|^2 + |\mathbf{k}|^2 \left[ 1 - \frac{1}{3} \beta^2 \right] \left| \mathcal{C}_{9} f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\}$$

The  $C_9$  we measure has interference from vector resonances

$$\mathcal{C}_9^{\text{eff}} = \mathcal{C}_9 + \sum_j \eta_j e^{i\delta_j} A_j^{\text{res}}(q^2)$$

# $B^+ \rightarrow K^+ \mu^+ \mu^-$ branching fraction



Branching fraction is below SM expectation

This is seen in all other electroweak penguin decays with muons

# $B^0 \to K^{\star 0} \mu^+ \mu^- \ angular \ analysis$



# $B^0 \rightarrow K^{*0}I^+I^-$ angular analysis

Result from BELLE supports the deviation from SM expectation



11 January 2018

Ulrik Egede

# $B^0 \to K^{*0} I^+ I^- \text{ angular analysis}$

#### The BELLE result can also be split into electrons and muons



Ulrik Egede

# Check list for $B^0 \rightarrow K^{*0}I^+I^-$ angular analysis

The strengths and weaknesses are different Can we learn something from the measurement? Solution Solution 10 and 10 Angles provide all the observables at the same time What are the theoretical uncertainties and can they be reduced? The effect of charm loops will need much work in the future Do we know SM parameters well enough? What level of statistical accuracy is expected? How will experimental systematic uncertainties be controlled? How can everything be cross checked?

# Lepton non-universality

Lepton universality is one of the key features of the Standard Model

The only difference for decays with electrons, muons and taus is from their mass

Effect of this is easy to correct for in predictions

Discovery of lepton flavour non-universality is a key signature of New Physics

Unfortunately the identification of leptons is anything but universal!

# **Muon identification**

Muons are the perfect particles for identification

- No radiation (as they are heavy)
- They are stable within a particle physics detector
- No strong interaction so they are the only charged particles passing through absorber

# **Electron identification**

Electrons are very light

When they pass through material they emit bremsstrahlung

Curvature in magnetic field will measure too low momentum

Photons can convert and fake electrons

Background from  $\pi_0 \rightarrow \gamma \gamma$  decay that can fake electrons

Bremsstrahlung recovery can (partially) fix this



# **Tau identification**

The identification of a tau lepton is really hard

A short lifetime of 10<sup>-12</sup> s means we only see decay products

Hadronic decays with pions and a neutrino

Semileptonic decay,  $\tau \rightarrow \mu \overline{\nu} \nu$ has just one track and two neutrinos

Mass and lifetime very similar to D<sub>s</sub> which has very similar decays



The effect of the cc resonances very different in two decays



Ulrik Egede

The dependence on the efficiency of reconstructing electrons can be reduced through double ratio

$$\mathcal{R}_{K^{*0}} = \mathcal{B}(B^{0} \to K^{*0}\mu^{+}\mu^{-}) / \mathcal{B}(B^{0} \to K^{*0}e^{+}e^{-})$$

$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^{0} \to K^{*0}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{*0}J/\psi(\to \mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B^{0} \to K^{*0}e^{+}e^{-})}{\mathcal{B}(B^{0} \to K^{*0}J/\psi(\to e^{+}e^{-}))}$$

The J/ $\psi \rightarrow l^+l^-$  proceed through virtual photon and is measured to be lepton-universal

Reconstructed peaks in the muon and electron modes



The measured ratio is 2-2.5 below SM expectation in each bin



Ulrik Egede

# **Check list for lepton universality**

Here the challenge is moving to the experimental side

- Can we learn something from the measurement?
- What are the theoretical uncertainties and can they be reduced?
- Do we know SM parameters well enough?
- What level of statistical accuracy is expected?
- ... but more data is on the way and BELLE-II will be equal competitor
- How will experimental systematic uncertainties be controlled?

Comparisons between electrons and muons will always be a challenge

How can everything be cross checked? ☑

The test for lepton universality can also be extended to taus

Electroweak penguin decays with taus extremely challenging and so far never observed

Instead look at the SM tree level semileptonic decays



Latest measurement from LHCb look at  $\tau \rightarrow \pi^+ \pi^- \pi^+ \nu$  final states

$$R(D^*) = \frac{BF(B \rightarrow D^* \tau \nu)}{BF(B \rightarrow D^* \mu \nu)} \stackrel{\text{SM}}{=} 0.252 \pm 0.003$$

Normalisation done though a very similar known final state

$$K_{had}(D^*) = \frac{BR(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} = \frac{N(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{N(B^0 \to D^{*+} \pi^- \pi^+ \pi^-)} \times \frac{1}{BR(\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau})} \times \frac{\varepsilon(B^0 \to D^{*+} \pi^- \pi^+ \pi^-)}{\varepsilon(B^0 \to D^{*-} \tau^+ \nu_{\tau})}$$

And value then determined from

$$R(D^*) = K_{had}(D^*) \times \frac{BR(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}{BR(B^0 \to D^{*-}\mu^+\nu_{\mu})} \qquad [\text{PDG 2016}]$$
[PDG 2016]

The similar topology of signal and normalisation reduce systematic uncertainty



R(D\*)=0.285±0.019(stat)±0.025(syst)



Ulrik Egede



First of all the effect is large!

20% effect against SM for muons in electroweak penguins

30% effect against SM for taus in tree level decays

Many constraints to consider

No signs of NP at CMS and ATLAS, push mass scale to above few TeV

Effect is small or absent in  $B-\overline{B}$  oscillations

Proton decay constraints

 $\mu{\rightarrow}e$  conversion constraints

Explanation will tell us something fundamental about what **flavour** is

Huge number of models proposed

U. Haisch et al. 1308.1959, Buras et al. 1311.6729 W. Altmannshofer et al. 1403.1269, AC. et al. 1501.00993,

# Leptoquarks

Gudrun Hiller, Martin Schmaltz arXiv:1411.4773 B. Gripaios, M. Nardecchia, S.A. Renner. arXiv:1412.1791 D. Bečirević, N. Košnik, O. Sumensari, R. Zukanovich Funchal, arXiv:1608.07583 L. Calibbi, AC. T. Ota, PRL 2015



...

■ Z'

Look at a global fit to all of the electroweak penguin decays

The fits are favouring NP in the Wilson coefficients  $C_9$  and  $C_{10}$ 

If only C<sub>9</sub> points to Z' models

If both points to LQ models

Fit shown here has in total 175 experimental measurements

tension with SM at  $5\sigma$  level!



The lepton universality observables give us a unique way to separate the impact of  $C_9$  and  $C_{10}$ 

A measurement is required in both  $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  and  $B^+ \rightarrow K^+ \mu^+ \mu^-$ 

More data required, but route is very clear from theory

Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi arXiv: 1704.05446



#### From null test to classification

If NP is there, we need to understand its properties

 $B^{*} \rightarrow \pi^{*} \mu^{*} \mu^{-}$  BF compared to  $B^{*} \rightarrow K^{*} \mu^{*} \mu^{-}$ 

Can help us understand if NP observes minimal flavour violation

```
Search for B^+ \rightarrow K^+ e^+ \mu^-, B^+ \rightarrow K^+ \tau^+ \mu^-
```

Is NP flavour diagonal in lepton sector

Measure  $R_{\kappa}$  and  $R_{\kappa^*}$  in b→d transitions,  $B \rightarrow \pi/\rho/p\overline{p} I^*I^-$ 

Does NP depend on quark sector

Measure  $B^+ \rightarrow p\overline{p}\tau^+ v$  relative to  $B^+ \rightarrow p\overline{p}\mu^+ v$ 

Does new physics care about  $b \rightarrow c vs. b \rightarrow u$  transitions?

#### What about direct searches?

If there is new physics at the TeV scale, we might be able to see a resonance at the LHC.

For a tree-level mediated NP effect, we are sensitive to  $\lambda^2/M^2$  in B decays

$$\frac{\lambda^2}{M^2} = 20\% \,\mathrm{SM} \sim 20\% \frac{g^4}{m_W^2} \frac{1}{16\pi^2} V_{tb} V_{ts}^* \sim \frac{1}{(30 \,\mathrm{TeV})^2}$$

Or in a minimal flavour violating model (where NP follows CKM structure)

$$\frac{\lambda^2}{M^2} = 20\% \text{SM} \sim 20\% \frac{g^4}{m_W^2} \frac{1}{16\pi^2} \sim \frac{1}{(6\,\text{TeV})^2}$$

# A no-lose theorem for an LHC energy upgrade?

- An obvious signal is looking for  $Z'{\rightarrow}\mu{+}\mu{-}$
- LHC @ 13 TeV covers up to a few TeV
- HE-LHC @ 33 TeV gives complete coverage given other constraints



# LQ production @ LHC 13 TeV

When the LQ mass goes above ~ 2 TeV, single production is favoured discovery mode





Ulrik Egede

#### Conclusion

If NP is there for discovery in Flavour Physics, we have a rich programme ahead of us to understand it!

