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Why flavour physics?

Any physics model (SM or NP) has to deal with the observed flavour
structure we observe

Marina Artuso
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Why flavour physics?

Any NP model with new flavoured particles or flavour breaking

interactions must “hide” behind SM interactions Andreas Creveliin
TeV

NP mass scale very large |
>~100 TeV or 104
NP mimics Yukawa couplings |

o o 1000
minimal flavour violation z

Both choices can be argued to be 100;
un-natural |

Direct searches

10
; b-osuu

Further measurements required

Flavour observables
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Potential for discovery of NP

For a given prospective measurement, we need to ask the questions
Can we learn something from the measurement?
What are the theoretical uncertainties and can they be reduced?
Do we know SM parameters well enough?
What level of statistical accuracy is expected?
How will experimental systematic uncertainties be controlled?

How can everything be cross checked?
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The LHCb experiment
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What can beauty reveal?

Typical beauty meson decay
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What can beauty reveal?

Rare beauty meson decay
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T
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What can beauty reveal?
Rare beauty meson decay

i
This is the key!
\ H
b < < 3
B 0 K* (]
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11 January 2018 Ulrik Egede 9/47



The uncertainty principle
Quantum mechanics allows to create a massive object for a

very short time period

Energy «time~7/2
E =mc*

\

h
> — t< 5
2mec

A particle with mass 10 times above what can be produced
directly at LHC, can exist for 10-2¢ seconds
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These decays are called penguins
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Strong force In the way

Most calculations of expected decay rates are done using Feynman
diagrams

Works just like a Taylor expansion T
o
b < < 5
Leading order
Bﬂ ﬁr#f]
d » d
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Strong force In the way

Most calculations of expected decay rates are done using Feynman
diagrams

Works just like a Taylor expansion pt
Ho
b < < 5
Next to leading order
Bﬂ Kf“—#ﬂ
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Strong force In the way

Most calculations of expected decay rates are done using Feynman
diagrams

Works just like a Taylor expansion e
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Strong force In the way

Strong
Most calculations of expected decay rates are done using force
Feynman diagrams 2
1.5 — T 74— //
Works just like a Taylor expansion o g VL
I E— J
0.5 — T 6 = ~J
0 log(1+x)
But can in just the same way 05 e %
turn problematic _1'; / l
2 /| Electroweak |
25 | force
Strong coupling constant too 3 // /
large so series may not converge 35 =)
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Measurements

Look at measurements with
leptons to improve theory
predictions

Electroweak penguins
B—K®

Lepton universality
B—K*u*u vs B—>K*ete

B—D™yv vs B—>D™1v
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The penguin laboratory
The decay B’ —K u*y, K°—K-1r+ is in the SM only possible at loop

level

On the other hand NP can show up at either tree or loop level

Angular analysis of 4-body K-1r+u+u- final state brings large number of

observables

Interference between these
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Topology of B? - K*u*y
The loop (SM) loop level diagram

interferes with tree level B—(cc)J/K® J/9(18)
followed by (cc)—p*u

Gives multiple regions in g*=m?, ¢’
In addition three angles in 4-body ? o0 0
decay e

Special combination (“observables”)
reduce uncertainty from form factors

4 [m(p)]?

$(28)

U

+(7) +(7)
(19 and (r 10
Long distance B
contributions from ¢'¢*
above open charm
threshold
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B* - K*y*p- branching fraction

With knowledge of the form factors, the branching fraction can tell
about the Wilson coefficients

drr  Gra?|VpViI? v 12 g 2
a2 = 1asps KPP
q*my
) 1 o) mp + mg o) .
+ Ik [1——;3] 20; fr(g)
3 mp—+mg

The Cy we measure has interference from vector resonances

Cgff — CQ + Z njeiéj AEGS(QQ)
J
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B*-K p |.I branching fraction

0 EPI C77 (2017), 161
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Branching fraction is below SM expectation

This is seen in all other electroweak penguin decays with muons
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http://dx.doi.org/10.1140/epjc/s10052-017-4703-2

B - K*u*p- angular analysis
Results based on 3 fb-1 from LHCb

© CERN, CC-BY-4.0
JHEP 02 (2016) 104

"m s : ' ! ' ! | ! ! ! ! 1 ' ! ! | :
SE- J
N LHCb -
1 I SM from DHMV -
L 4
Sa=e :
I e -
| E _— —+- ¢ E
2F -
il ] | 1 | -

0 5 10 15

11 January 2018 Ulrik Egede 21/47


http://dx.doi.org/10.1007/JHEP02(2016)104

B° - K*[*I' angular analysis

Result from BELLE supports the deviation from SM expectation

PRL 118, 111801 (2017)
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http://link.aps.org/doi/10.1103/PhysRevLett.118.111801

B° - K*[*I' angular analysis

The BELLE result can also be split into electrons and muons

PRL 118, 111801 (2017)
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http://link.aps.org/doi/10.1103/PhysRevLett.118.111801

Check list for B? - K*[*I- angular analysis

The strengths and weaknesses are different

Can we learn something from the measurement? @ &
Angles provide all the observables at the same time

What are the theoretical uncertainties and can they be reduced? O
The effect of charm loops will need much work in the future

Do we know SM parameters well enough? &

What level of statistical accuracy is expected? @

How will experimental systematic uncertainties be controlled? &
How can everything be cross checked? @

- o -,
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Lepton non-universality
Lepton universality is one of the key features of the Standard Model

The only difference for decays with electrons, muons and taus is from
their mass

Effect of this is easy to correct for in predictions

Discovery of lepton flavour non-universality is a key signature of New
Physics

Unfortunately the identification of leptons is anything but universal!
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Muon identification

Muons are the perfect particles for identification

No radiation (as they are heavy)
They are stable within a particle physics detector

No strong interaction so they are the only charged particles passing
through absorber
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Electron identification

Electrons are very light

When they pass through material they
emit bremsstrahlung

Curvature in magnetic field will Y
measure too low momentum

Magnet

Downstream

Photons can convert and fake Upstream A\
rem

b
electrons rem

Background from 1mo—yy decay that
can fake electrons

Air
Bremsstrahlung recovery can
(partially) fix this
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Tau 1dentification

The identification of a tau lepton is really hard

A short lifetime of 10" s
means we only see decay
products

Hadronic decays with pions
and a neutrino

Semileptonic decay, T—puvv
has just one track and two
neutrinos

Mass and lifetime very similar
to D, which has very similar decays
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B - K&u*p- vs B - K¥ete

The effect of the cc resonances very different in two decays
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B - K&u*p- vs B - K¥ete

The dependence on the efficiency of reconstructing electrons can be
reduced through double ratio

Ryo=  BB'— K%utu~) /|  B(B'— K*eter)

l

RK*U —_

B(B®— K*u*u~) B(B°— K*0¢te™)
B(B°— K*Jf) (- u*u‘))/ B(B°— K*0Jfp(— ete™))

The J/y—FF proceed through virtual photon and is measured to be
lepton-universal
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B - K&u*p- vs B - K¥ete

Reconstructed peaks in the muon and electron modes
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B - K&u*p- vs B - K¥ete

The measured ratio is 2-2.50 below SM expectation in each bin
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Check list for lepton universality

Here the challenge is moving to the experimental side
Can we learn something from the measurement? &
What are the theoretical uncertainties and can they be reduced? &
Do we know SM parameters well enough? &
What level of statistical accuracy is expected? (J
... but more data is on the way and BELLE-II will be equal competitor

How will experimental systematic uncertainties be controlled?(
Comparisons between electrons and muons will always be a challenge

How can everything be cross checked? @

-
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Semileptonic decays

The test for lepton universality can also be extended to taus

Electroweak penguin decays with taus extremely challenging and so far
never observed

Instead look at the SM tree level semileptonic decays

dI*™ (B — DX~ v,) _ G |Ves|? ‘P;(*)| g’ ( B m_%)z

dg? 9673 m3, q> (b)
universal and pl':z:se space factors
3)
m> 3m? B~ BY
[0 (14 3% ) + 35| *

.

hadronic effects
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Semileptonic decays

Latest measurement from LHCb look at t=>x"n =" v final states

R(D*)=BEIB2D wv) s 5554 0.003
BF (B->D"uv)

Normalisation done though a very similar known final state

BR(B' — D* 1'v,) _ N(B"—=D*1',) y 1 ) ¢(B"—=D*¥ ma'n)
BR(B" = D* n'n x") NB'-D* aa'n) BRa' —»n'na'(x’Ww) &B —=D*1'v)

K.’:cm‘ (D*) =

And value then determined from

0 ot at [~4% precision]
R(D*)=K, ,(D*)x BR(B :D f ) [PDG 2016)
BR(B" —= D u Vﬂ) [~2% precision]
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Semileptonic decays

K+ A Romero Vidal
i V T BoD*'na(+N)
DO
' : . y v onls ...
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uncertainty bt 3
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Semileptonic decays

BaBar had tag |
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Possible New Physics interpretations
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Possible New Physics interpretations

First of all the effect is large!
20% effect against SM for muons in electroweak penguins
30% effect against SM for taus in tree level decays

Many constraints to consider
No signs of NP at CMS and ATLAS, push mass scale to above few TeV
Effect is small or absent in B-B oscillations
Proton decay constraints

W—e€ conversion constraints

Explanation will tell us something fundamental about what flavour is

-
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Possible New Physics interpretations

Huge number of models proposed
, (%)
m/ R(D*)

U. Haisch et al. 1308.1959, Buras et al. 1311.6729

Andreas Crevellin

W. Altmannshofer et al. 1403.1269, AC. et al. 1501.00993, . au
m Leptoquarks £'/e
Gudrun Hiller, Martin Schmaltz
arXiv:1411.4773
B. Gripaios, M. Nardecchia, S.A. Renner. b—)Sp,l,l

arXiv:1412.1791

D. Becirevic, N. KosSnik, O. Sumensari,

R. Zukanovich Funchal, arXiv:1608.07583
L. Calibbi, AC. T. Ota, PRL 2015
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Possible New Physics interpretations

Look at a global fit to all of the electroweak penguin decays

Capdevila, Crivellin, Descotes-Genon, Matias, Virto 2017

The fits are favouring NP in the S
Wilson coefficients G and Cy, N N T R S S
If only Cq points to Z° models 1_' _________ o ATLAS
Py T, B
If both points to LQ models NESN @: Joooaa
z5 0: -~ | ]
-1 :_.--——-—:"""" _________________________

Fit shown here has in total 175 ol

experimental measurements E

. . | R e :
tension with SM at 50 level! 3 -2 -1 0 1 2 3
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Possible New Physics interpretations

The lepton universality observables
give us a unique way to separate
the impact of Cy and C,,

A measurement is required in both
B°—K 'y and B* K u*u-

More data required, but route is
very clear from theory

11 January 2018 Ulrik Egede
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From null test to classification

If NP is there, we need to understand its properties
B* — mr*u*u- BF compared to B+ — Kru+p-
Can help us understand if NP observes minimal flavour violation
Search for B'—»K'e*u, B"—=K'1*u-
Is NP flavour diagonal in lepton sector
Measure R, and R, in b—d transitions, B—11/p/pp I'I
Does NP depend on quark sector

Measure B*—ppt*v relative to B*—ppu*v
Does new physics care about b—c vs. b—u transitions?

-
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What about direct searches?

If there is new physics at the TeV scale, we might be able to see a
resonance at the LHC.

For a tree-level mediated NP effect, we are sensitive to A%M? in B

decays
3.2 g 1 . 1
M m,, 16 (30TeV)

Or in a minimal flavour violating model (where NP follows CKM
structure)
2 4
2 —20%sM~20%L 1~ T
M m;,, 16n° (6TeV)
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A no-lose theorem for an LHC energy upgrade?

An obvious Signa| IS |00king B C Allanach,B Gripaios, T You, arXiv:1710.06363

(33 o(pp— Z'—pfi) [fb], Mp=15TeV, Vs = 14 TeV  [33uu] o(pp— Z'—uf) [fb), M, =5 TeV, v5 = 14 TeV

for Z'—p+u- :

LHC @ 13 TeV covers up to »

a few TeV 2

HE-LHC @ 33 TeV giveS (EUD 0.01 0.02 0.03 0.04
91" =V Vislgf ~0.04 g 91" = Vi Vislg ~0. 04

complete coverage given
other constraints

Z'pf) [fb], M, =5 TeV, vs = 33 TeV 33pp2] o(pp— Z'— i) [fb], M, =10 TeV, v5 = 33 TeV
10

—————————————

e

oL 0
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0,035 0.00 0.02 0.04 0.06 0.08
] % .
g1 =|Vii Vislgi ~0.04 g7 91" = Vs Vislgf ~0.04 g7
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https://arxiv.org/abs/1710.06363

LQ production @ LHC 13 TeV

When the LQ mass goes
above ~ 2 TeV, Single G. Hiller, D Loose, | Nisandzic (in preparation)
production is favoured N Yepnre

discovery mode \\ el '
\\5\\\\3211 :
= a(pp - 5753
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/ < > 106
A ~ 1077
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b “.._ 10—8 \
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Conclusion

If NP is there for discovery in Flavour Physics, we have a rich
programme ahead of us to understand it!
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