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Why flavour physics?

Any physics model (SM or NP) has to deal with the observed flavour 
structure we observe

In SM this is through the 
Yukawa couplings to the 
Higgs field and the weak force

Misalignment of these gives 
structure of CKM matrix

Wide range: 
mu = O(10-5) mt

|Vub|=O(10-3) |Vtb|

Why???

Marina Artuso
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Why flavour physics?

Any NP model with new flavoured particles or flavour breaking 
interactions must “hide” behind SM interactions

NP mass scale very large 

>~100 TeV or

NP mimics Yukawa couplings

minimal flavour violation

Both choices can be argued to be 
un-natural

Further measurements required
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Flavour observables

Andreas Crevellin
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Potential for discovery of NP

For a given prospective measurement, we need to ask the questions

Can we learn something from the measurement?

What are the theoretical uncertainties and can they be reduced?

Do we know SM parameters well enough?

What level of statistical accuracy is expected?

How will experimental systematic uncertainties be controlled?

How can everything be cross checked?



11 January 2018 Ulrik Egede 5/47

The LHCb experiment
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The LHCb experiment
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What can beauty reveal?

Typical beauty meson decay
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What can beauty reveal?

Rare beauty meson decay
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What can beauty reveal?
Rare beauty meson decay

Even very heavy particles can exist inside this loop

This is the key!
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The uncertainty principle
Quantum mechanics allows to create a massive object for a 
very short time period

A particle with mass 10 times above what can be produced 
directly at LHC, can exist for 10-29 seconds

Energy∗time∼ℏ/2

E=mc2
  }    ⇒    t⩽

ℏ

2mc2
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These decays are called penguins
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Strong force in the way

Most calculations of expected decay rates are done using Feynman 
diagrams

Works just like a Taylor expansion

Leading order
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Strong force in the way

Most calculations of expected decay rates are done using 
Feynman diagrams

Works just like a Taylor expansion

But can in just the same way
turn problematic

Strong coupling constant too
large so series may not converge
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Measurements

Look at measurements with 
leptons to improve theory 
predictions

Electroweak penguins

B→K(*)µ+µ-

Lepton universality

B→K(*)µ+µ- vs B→K(*)e+e-

B→D(*)µ-ν vs B→D(*)τ-ν
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The penguin laboratory

The decay B0→K*0µ+µ-, K*0→K-π+ is in the SM only possible at loop 
level

On the other hand NP can show up at either tree or loop level

Angular analysis of 4-body K-π+µ+µ- final state brings large number of 
observables 

Interference between these

... and their right-handed counterparts
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Topology of B0→K*0µ+µ- 

The loop (SM) loop level diagram 
interferes with tree level B→(cc)J/K0 

followed by (cc)→µ+µ-

Gives multiple regions in q2=m2
µµ

In addition three angles in 4-body 
decay

Special combination (“observables”) 
reduce uncertainty from form factors 
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B+→K+µ+µ- branching fraction

With knowledge of the form factors, the branching fraction can tell 
about the Wilson coefficients

The C9 we measure has interference from vector resonances
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B+→K+µ+µ- branching fraction
EPJ C77 (2017), 161

Branching fraction is below SM expectation

This is seen in all other electroweak penguin decays with muons

http://dx.doi.org/10.1140/epjc/s10052-017-4703-2
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B0→K*0µ+µ- angular analysis

Results based on 3 fb-1 from LHCb
© CERN, CC-BY-4.0 
JHEP 02 (2016) 104

http://dx.doi.org/10.1007/JHEP02(2016)104
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B0→K*0l+l- angular analysis

Result from BELLE supports the deviation from SM expectation
 PRL 118, 111801 (2017)

http://link.aps.org/doi/10.1103/PhysRevLett.118.111801
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B0→K*0l+l- angular analysis

The BELLE result can also be split into electrons and muons

 PRL 118, 111801 (2017)

http://link.aps.org/doi/10.1103/PhysRevLett.118.111801
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Check list for B0→K*0l+l- angular analysis

The strengths and weaknesses are different

Can we learn something from the measurement?

Angles provide all the observables at the same time 

What are the theoretical uncertainties and can they be reduced?

The effect of charm loops will need much work in the future

Do we know SM parameters well enough?

What level of statistical accuracy is expected?

How will experimental systematic uncertainties be controlled?

How can everything be cross checked?
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Lepton non-universality

Lepton universality is one of the key features of the Standard Model

The only difference for decays with electrons, muons and taus is from 
their mass

Effect of this is easy to correct for in predictions

Discovery of lepton flavour non-universality is a key signature of New 
Physics

Unfortunately the identification of leptons is anything but universal! 
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Muon identification

Muons are the perfect particles for identification

No radiation (as they are heavy)

They are stable within a particle physics detector

No strong interaction so they are the only charged particles passing 
through absorber
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Electron identification
Electrons are very light

When they pass through material they 
emit bremsstrahlung

Curvature in magnetic field will 
measure too low momentum

Photons can convert and fake 
electrons

Background from π0→γγ decay that 
can fake electrons

Bremsstrahlung recovery can 
(partially) fix this
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Tau identification
The identification of a tau lepton is really hard

A short lifetime of 10-12 s 
means we only see decay 
products

Hadronic decays with pions
and a neutrino

Semileptonic decay, τ→µνν 
has just one track and two 
neutrinos

Mass and lifetime very similar 
to Ds which has very similar decays
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B→K(*)µ+µ- vs B→K(*)e+e-

The effect of the cc resonances very different in two decays 
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B→K(*)µ+µ- vs B→K(*)e+e-

The dependence on the efficiency of reconstructing electrons can be 
reduced through double ratio

The J/ψ→l+l- proceed through virtual photon and is measured to be 
lepton-universal
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B→K(*)µ+µ- vs B→K(*)e+e-

Reconstructed peaks in the muon and electron modes

Muons

Electrons
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B→K(*)µ+µ- vs B→K(*)e+e-

The measured ratio is 2-2.5σ below SM expectation in each bin
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Check list for lepton universality

Here the challenge is moving to the experimental side

Can we learn something from the measurement? 

What are the theoretical uncertainties and can they be reduced?

Do we know SM parameters well enough?

What level of statistical accuracy is expected?

… but more data is on the way and BELLE-II will be equal competitor

How will experimental systematic uncertainties be controlled?

Comparisons between electrons and muons will always be a challenge

How can everything be cross checked?
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Semileptonic decays

The test for lepton universality can also be extended to taus

Electroweak penguin decays with taus extremely challenging and so far 
never observed

Instead look at the SM tree level semileptonic decays
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Semileptonic decays

Latest measurement from LHCb look at                      final states 

Normalisation done though a very similar known final state

And value then determined from

R (D∗
)=
BF (B→D∗

τ ν)

BF (B→D∗
μ ν)

 =
SM

 0.252±0.003

τ→π
+
π

−
π

+
ν
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Semileptonic decays

The similar topology of signal and 
normalisation reduce systematic 
uncertainty

R(D*)=0.285±0.019(stat)±0.025(syst)

A Romero Vidal
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Semileptonic decays
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Possible New Physics interpretations
quantumdiaries.org
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Possible New Physics interpretations
First of all the effect is large!

20% effect against SM for muons in electroweak penguins

30% effect against SM for taus in tree level decays

Many constraints to consider

No signs of NP at CMS and ATLAS, push mass scale to above few TeV

Effect is small or absent in B-B oscillations

Proton decay constraints

µ→e conversion constraints

Explanation will tell us something fundamental about what flavour is
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Possible New Physics interpretations

Huge number of models proposed Andreas Crevellin
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Possible New Physics interpretations

Look at a global fit to all of the electroweak penguin decays

The fits are favouring NP in the
Wilson coefficients C9 and C10

If only C9 points to Z’  models

If both points to LQ models

Fit shown here has in total 175 
experimental measurements

tension with SM at 5σ level!

Capdevila, Crivellin, Descotes-Genon, Matias, Virto 2017
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Possible New Physics interpretations

The lepton universality observables 
give us a unique way to separate 
the impact of C9 and C10

A measurement is required in both 
B0→K*0µ+µ- and B+→K+µ+µ-

More data required, but route is 
very clear from theory

Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi
arXiv: 1704.05446
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From null test to classification

If NP is there, we need to understand its properties

B+ → π+µ+µ- BF compared to B+ → K+µ+µ-

Can help us understand if NP observes minimal flavour violation

Search for B+→K+e+µ-, B+→K+τ+µ-

Is NP flavour diagonal in lepton sector

Measure RK and RK* in b→d transitions, B→π/ρ/pp l+l-

Does NP depend on quark sector

Measure B+→ppτ+ν relative to B+→ppµ+ν

Does new physics care about b→c vs. b→u transitions?
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What about direct searches?

If there is new physics at the TeV scale, we might be able to see a 
resonance at the LHC.

For a tree-level mediated NP effect, we are sensitive to λ2/M2 in B 
decays

Or in a minimal flavour violating model (where NP follows CKM 
structure)

λ
2

M 2 =20%SM∼20%
g4

mW
2

1

16π
2V tbV ts
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∼

1

(30 TeV )
2
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A no-lose theorem for an LHC energy upgrade?

An obvious signal is looking 
for Z’→µ+µ-

LHC @ 13 TeV covers up to 
a few TeV

HE-LHC @ 33 TeV gives 
complete coverage given 
other constraints

B C Allanach,B Gripaios, T You, arXiv:1710.06363

https://arxiv.org/abs/1710.06363
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LQ production @ LHC 13 TeV

When the LQ mass goes 
above ~ 2 TeV, single 
production is favoured 
discovery mode

G. Hiller, D Loose, I Nisandzic (in preparation)
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Conclusion

If NP is there for discovery in Flavour Physics, we have a rich 
programme ahead of us to understand it!

?
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