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Talk Overview

• GRBs – what, where, how

• SGRBs from compact binary mergers!?

• Nearby SGRBs?

• GW associated GRB – GRB 170817A

• The afterglow – an off-axis 'regular' GRB?

• Jet structure and off-axis observations

• Alternative jet phenomenon – refreshed shocks, GRB 160821B as a 
GRB 170817A-like proxy



GRBS – WHAT, WHERE, AND HOW?

https://gammaray.nsstc.nasa.gov/batse/grb

• Isotropic – extragalactic,
〈V/Vmax〉 < ½ at low P (ph. flux)
• Variable – compact, relativistic
• Two populations – long and short

Mao & Paczynski 1992

https://gammaray.nsstc.nasa.gov/batse/grb


The Compactness Problem for cosmological GRBs

• Sub-second variability, dt

• Compact sources, size is R < c dt

• High energy and non-thermal implies 
optically thin source

• Gamma-ray photon pairs with > twice 
the electron rest energy (2me c2) will 
annihilate to produce e+e- pairs

• Ultra-relativistic motion towards the 
observer fixes the problem!!!

• Observed photons are blue shifted

• The size appears larger by a factor of 
the Lorentz factor squared

• Lorentz factor towards 
the observer, >100

https://gammaray.nsstc.nasa.gov/batse/grb



Fermi GBM

Narayan Bhat et al. 2016, Lien et al. 2016



Harrison et al. 1999

Highly energetic, relativistic explosion!!!

• The fireball will expand
• Sweeping up matter, like a snow plough
• When the mass of the swept-up matter is comparable to the 

explosion rest mass as M ~ E/Γ2c2, the outflow will decelerate
• A shock system forms – forward and reverse shock
• Broadband afterglow from synchrotron radiation

Angle = 1/Γ > θj

Jet angle = θj

• Early, 1/Γ < θj

• As the jet decelerates, 1/Γ > θj

• The jet edges become visible



LONG GRBs
Associated with Type Ic broadlined supernovae
Redshift, <z> = 1
Max. z < 9
Isotropic equivalent energies 10^53-54 erg

SHORT GRBs
Associated with macro/kilonovae (from compact binary mergers)
Redshift, <z> = 0.5
Max. z < 2.2
Isotropic equivalent energies 10^50-52 erg

Levan+ 2016, Tanvir+ 2013, Lamb+ 2019b



• What fraction of the compact binary 
merger population do SGRBs trace?
• The beaming fraction, fb = 1-cos(θj)

• Do all mergers result in jets?
• Do all jets produce GRBs?

• How will the afterglow look?



Compact binary system redshift distribution

• The distribution of 
supernovae with 
redshift will follow 
the star-formation 
rate

• For compact binary 
mergers – there is a 
delay time 
distribution

• Population synthesis 
and evolution models 
can predict this

Mandhai, Lamb, Tanvir, Bray & Nixon (in prep)

BHNS – black hole neutron star

NSNS – neutron star neutron star



Compact binary 
evolution – natal kicks

• A compact binary system 
will have received two natal 
kicks in its evolution

1. The supernova of the 
primary star

2. The supernova of 
the secondary star

• The system can travel a 
long way from its birth site 
and even 'leave' the 
host galaxy

• Localised short GRBs can 
have a significant host offset

Mandhai, Lamb, Tanvir, Bray & Nixon (in prep)

NOTE – 'Impact Parameter' is the observed 
apparent seperation on-the-sky for the 
burst location to the host galaxy



Mandhai, Lamb, Tanvir, Bray & Nixon (in prep)

Consider only mergers with a 

merger delay time of < 1 Gyr

BHNSs here have a mass ratio Q < 3

• Do mergers involving an 'old' neutron star 
fail to produce a GRB?

• The merger rate inferred from SGRBs is < the 
rate inferred from GW detections



Failed GRBs
• To successfully produce a 

GRB, the jet should have a 
very high bulk Lorentz 
factor, Γ>>1

• Efficient baryon loading, or 
inefficient acceleration, may 
result in a jets with Γ<20

• The photospheric radius ∝
(E/Γ)^(½)

• Whereas, the dissipation 
radius ∝ Γ^2

• The GRB producing 
dissipation radius falls below 
the photospheric radius and 
gamma-rays are suppressed

GRBs at a distance <300 Mpc

No observable

GRBs

~78%

For a population of GRBs that have jet Lorentz factors that follow:
N(Γ) ∝ Γ^-1.75​
and a Wanderman & Piran (2015) SGRB luminosity distribution.
The afterglow to a low-Γ jet will be brighter than 21st magnitude in 85% 
of cases (on-axis)​
Low-Γ jets may have wider opening angles​Lamb & Kobayashi 2016



INCLINATION OF A GW 
DETECTED MERGER

GW polarisation sums so that 
there is a larger strain for a 
face-on merger

Lamb & Kobayashi 2017



• GRBs are highly beamed, so we 
only see a fraction, 1-cos(θj) of the 
events.

• Off-axis, the structure of 
the outflow matters!

• The GRB seen at 200 Mpc

• No observed "off-axis" GRB, but 
still within the outflow opening 
angle

• Off-axis, outside of 
outflow opening angle

• 4 structures: 'Top-hat' (TH), 'Power-
law' (PL), '2-component' (2C), 
and 'Gaussian' (G)
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Lamb & Kobayashi 2017

What about structured jets?



Lamb & Kobayashi 2017

Gaussian structured jets as electromagnetic counterparts 
to gravitational wave detected neutron star mergers were 
not unprecedented prior to GW170817



Mandhai, Tanvir, Lamb, Levan & Tsang 2018

NGC 4993, 

the host galaxy



A LOCAL POPULATION 
OF SHORT GRBS?

• LIGO/Virgo O3 will have a 
NSNS horizon ~200 (300) Mpc

• We've been looking for GRBs 
for many years – what is the local 
rate?

• Observational constraints 
from BATSE, Fermi, and Swift

• BATSE and Fermi, < 100 Mpc, 
<12 per year

• Swift BAT, < 200 Mpc, <4 per year

• All consistent with 0 per year

• Mergers associated with a gamma-ray 
transient are likely very rare!

782 GRBs from BATSE and Fermi

<17% at 

2-sigma

Mandhai, Tanvir, Lamb, Levan & Tsang 2018



Swift GRBs <200Mpc!?

Using 2MASS galaxy catalogue (~91% of the sky, and 
97.6% redshift complete to K=11.75) estimate the 
minimum separation (Impact Parameter, <200kpc) for 
Swift bursts with T90<4s
9 candidates (5 new) – bursts below the line have 
host candidates that do not appear in 2MASS (111020A 
host was misclassified as a star!?)
Plus a visual inspection of 157 bursts!!! Thanks Soheb

NO Swift short GRBs, unambiguosly, <200Mpc
...but 4, from literature that are possibly <400Mpc
GRBs 050906, 070809, 090417A & 111020A

Mandhai, Tanvir, Lamb, Levan & Tsang 2018



THE AFTERGLOW TO GRB 170817A –
AN OFF-AXIS AND STRUCTURED JET!

100 days post-merger –
the afterglow is consistent 
with a structured jet

Also a choked jet cocoon! 
But it wasn't*, so we won't 
discuss this here

(see Kasliwal+ 2017, 
Mooley+ 2018 etc.)

*see the next few slides

10 degrees

20 degrees

Lamb & Kobayashi 2018; Lyman, Lamb, Levan+ 2018

Gaussian structures

See also a heap of other papers – including but not limited to
Dobie+ 2018, Ghirlanda+ 2019, Margutti+ 2018, Mooley+ 2018, Nynka+ 2018, Piro+ 2018, Resmi+ 2018, Troja+ 2018,

MCMC fits –

inclination 

28 degrees



THE POST-PEAK 
AFTERGLOW DECLINE

For the afterglow to GRB 170817A –
post-peak decline would distinguish 
between a wide-angled cocoon 
(choked jet) or a successful jet

• Outflow is core dominated 
and initially ultra-relativistic [jet]

• Dynamics are dominated 
by relativistic components until 
very late [jet]

• Leads to steeper decline [jet]

Lamb, Mandel & Resmi 2018



Lamb+ 2019a

A two-component jet structure also works (Lamb+ 2019a), and a 
power-law jet structure (see e.g. Margutti+ 2018, Ghirlanda+ 2019)



RADIO IMAGING OF GW170817 CONFIRMS A JET!

Radio Image

Ghirlanda+ 2019, see also Mooley+ 2019



• If jet structure profile is fixed we can 
use the off-axis afterglow shape to 
tell the inclination e.g. Wang & 
Giannios 2020

• Off-axis, the structure of 
the outflow matters!

• The GRB seen at 200 Mpc

• No observed "off-axis" GRB, but 
still within the outflow opening 
angle

• Off-axis, outside of 
outflow opening angle

• 4 structures: 'Top-hat' (TH), 'Power-
law' (PL), '2-component' (2C), 
and 'Gaussian' (G)
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Lamb & Kobayashi 2017

So, it's a structured jet*!

*it might not be... wait until a couple more slides!!!



AFTERGLOWS TO STRUCTURED JETS –
REVERSE SHOCKS

• When the 
outflow decelerates 
two shocks are 
established

• Forward shock has 
only been 
considered so far

• The reverse 
shock probes 
material 
back towards the 
central engine

• There can be 
a significant 
magnetic field

• The reverse shock 
can probe this!!!

Lamb & Kobayashi 2019b



Sideways Expansion

• Often overlooked as not 
important (as it only 
effects the post peak 
decline)

• Expansion shortens the 
jet break timescale

• Using the Wang & 
Giannios 2020 jet 
structure – thin line, no 
expansion; thick line, 
expansion

Lamb et al. (in prep)



Using the radio imaged 
centroid motion

Fernandez, Lamb & Kobayashi (in prep)

• Using a fixed jet structure 
(Gaussian here), the 
observed superluminial 
centroid motion can be 
used to better fit an 
afterglow model

• Independent afterglow 
script developed by Joe 
Fernandez

• Uses expansion 
description in Granot & 
Piran (2013)



On-axis analogues – GRB 160821B

Lamb et al. 2019b

Late time energy injection 
refreshes the afterglow

Hard upper 
limits on the flux

Radio data adds constraint

State-of-the-art macro/kilonova 
model from Kawaguchi et al.



This isn't a structured jet!? But how would it 
look off-axis?

Lamb, Levan & Tanvir 2020

• Using the GRB 160821B 
parameters

• Two refreshed shock models
• We produce lightcurves for 

increasing inclinations
• Note that the more energetic, but 

fainter on-axis refreshed episode, 
begins to dominate the emission 
for off-axis observers

• At approximately 3 times the jet 
opening angle, the afterglow has a 
shallow incline to peak (analogous 
to GRB 170817A)



A refreshed shock model fit to GRB 170817A data

Lamb, Levan & Tanvir 2020

• The two refreshd shock models fit to the data
• Early X-ray data is missed but these can be 

explained by inclusion of a cocoon associated 
with the jet's passage through the ejecta (see 
below)

• On-axis, these afterglows appear similar



Lamb, Levan & Tanvir 2020

GRB 160821B afterglow model 
at the same distance

Model 1: discrete energy injection

Model 2: continuous energy injection



Summary

• Gravitational wave detected neutron star mergers give an opportunity 
to observe short GRB afterglows 'off-axis'

• This can reveal the jet structure

• Caution that refreshed shocks can produce the same effect, and are 
observed for 'on-axis' events

• Understanding the structure/dynamics of short GRB afterglows will 
enable their better use with GWs as cosmology probes, H0

• No evidence for 'nearby' short GRBs in the GRB data archive – BATSE 
rate for <100 Mpc is consistent with zero



Compact 
binary 
merger 
rates

Mandhai, Lamb, Tanvir, Bray & Nixon (in prep)



Mandhai, Lamb, Tanvir, Bray & Nixon (in prep)



Lorenzo et al. 2020



Two populations of GRBs

Two populations of GRBs

Short GRBs: T90 < 2s
Long GRBs: T90 > 2s

These two populations 
are distinct – not only 
in duration, but also in spectra


