Edinburgh PPE seminar - 14 May 2021

self-interacting dark matter and mass stripping of cluster galaxies

Ellen Sirks Supervisors: Richard Massey & Carlos Frenk Collaborators: Kyle Oman & Andrew Robertson

Institute for Computational Cosmology

The ACDM model

<u>The Standard Model of Cosmology</u>

- Cosmological Constant A:
 --> Dark Energy
- Cold Dark Matter (CDM)
- Ordinary Matter

Structure growth

Hierarchical: Gravitational evolution Population of DM haloes Contain a population of subhaloes

Galaxies form at centres of (sub)haloes

(dark matter)

spiral disk (visible stars)

(dark matter)

Galaxy clusters

~100 - 1000 galaxies

In high density environments: mainly red passive ellipticals

Largest gravitationally bound objects

Effects of environment

In clusters:

galaxies subject to violent interactions with environment

jellyfish galaxy credit: HST

ram pressure stripping harassment & mergers

dynamical friction & <u>tidal stripping</u>

2021 14 MAY SEMINAR | РРЕ

Tidal stripping

t=0 Gyr $f_{bound} = 0.988$ t=5.08 Gyr f_{bound}=0.362

Due to strong tidal forces

Scales with galaxy mass cubed & inversely with cluster radius cubed

'Outside-in' stripping

Tidal stripping (constant tidal field strength)

02 \sim MΑΥ 4 EMINAR S Ш ЧЧ

Tidal stripping in **ACDM** simulations

Observed as well, e.g. Dvornik et al. (2020)

CDM paradigm explains observations on large scales O(Mpc) well

Discrepancies on **subgalactic scales**,

Solutions?

Tension between **DM-only** simulations & observations --> Include baryons?

--> Or not collisionless, but self-interacting DM (SIDM)?

DM Self-Interactions

DM particles scatter elastically with each other at astrophysically interesting rates

for 1 interaction per particle per Hubble time:

 $\sigma/m \sim 1 \, {\rm cm}^2 {\rm g}^{-1}$

thermalisation: heated particles --> orbits with larger apocentres

Why look at clusters?

Rates scales with density +Local velocity dispersion Look at massive systems, i.e. **clusters!**

DM distribution can be probed by strong and weak gravitational lensing

Merging clusters

'Cosmic collider'

Higher DM-DM velocities than in Dark Mati isolated galaxy clusters bar

Dark Matter separated from main baryonic component

The Bullet cluster simulated

However: small sample, i.e. no statistical analysis

Current cluster constraints Strong lensing: Halo shapes: $\sigma/m < 0.1 \ {\rm cm}^2 {\rm g}^{-1}$ $\sigma/m \lesssim 1 \ {\rm cm}^2 {\rm g}^{-1}$

Rocha et al. 2012

Peter et al. 2012

 $\overline{}$ \sim 0 \sim MΑΥ 4 $\overline{}$ EMINAR S Ш Δ

In SIDM: same environmental effects as with CDM

However: additional interactions between galaxy (subhalo) DM and cluster DM

Subhalo DM is scattered out by cluster DM evaporation

PPE SEMINAR | 14 MAY 2021

Cluster DM

subhalo moves through cluster

Effects on the Stellar-to-Halo-Mass-Relation

In SIDM cluster: Enhanced DM loss, but stellar mass similar --> SHMR higher?

<u>Outside cluster:</u> No difference between CDM & SIDM

 $\overline{}$ \sim 0 \sim MΑΥ 4 EMINAR S Ш Δ Λ

This Project

Compare DM loss of subhaloes in CDM & SIDM cosmological simulations

<u>Is there a clear difference?</u> Is it observable?

Simulations

C-EAGLE (CE) Two clusters run with CDM & SIDM

EAGLE (E) 50 Mpc Box Also run with CDM & SIDM

galaxies in clusters

Implementation of self-interactions

<u>At each time-step:</u>

- DM particles search for neighbours within a radius hSI
- Scatter isotropically with probability:

Cross section

$\sigma/m = 1 \text{ cm}^2/\text{g}$ - 'foot ball' ~Order limit constrained by bullet cluster

Adapted from Robertson et al. (2018)

In simulations: Can follow individual particles + Follow evolution of properties from infall to later time

PPE SEMINAR | 14 MAY 2021

In simulations: Can follow individual particles + Follow evolution of properties from infall to later time

PPE SEMINAR | 14 MAY 2021 -

In simulations: Can follow individual particles + Follow evolution of properties from infall to later time

PPE SEMINAR | 14 MAY 2021

In simulations: Can follow individual particles + Follow evolution of properties from infall to later time

PPE SEMINAR | 14 MAY 2021 -

Distribution of mass loss

- More SIDM galaxies have disrupted - SIDM satellites have lost more mass by z=0

Distribution of mass loss

More SIDM galaxies have disrupted
 SIDM satellites have lost more mass by z=0

PPE SEMINAR | 14 MAY 2021

Orbits unaffected by SIDM

On average, orbits the same

Only mass loss affected

Effects of SIDM observable?

We can see enhanced mass loss due to DM self-interactions

What do the SHMRs in the simulations look like?

PPE SEMINAR | 14 MAY 2021

Effects hard to see

CDM

differences ~15%, but: shape similar

 $M_* [M_\odot] (CDM)$

Hard to observe!

 $+ \times$

2021 MΑΥ 14 SEMINAR | РРЕ

SHMR shapes similar

precise masses needed to see difference?

In other words...

- Self-interactions enhance mass loss
- SHMR differences between SIDM & CDM ~15% --> Not insignificant, but no shape difference: challenging to observe
- Cross-section used arguably already ruled out --> Observational signatures for smaller cross-sections even harder to find

Perhaps in the future look at more clusters? Next project: halo shapes!

And also: **SuperBIT**!

SuperBIT The Super-pressure Balloon-borne Imaging Telescope

- Wide-field (0.4 deg) instrument
- Visible-to-near-UV bands (300-900 nm)
- Diffraction-limited resolution of 0.25 arc seconds.

Use strong and weak lensing to map distribution of dark matter around 100s of galaxy clusters

Restores capability in era of IR missions after HST

 \sim \sim MΑΥ 4 EMINAR S ш

SuperBIT

Data retrieval

<u>Retrieve data midflight:</u>

- Mitigate risk of total data loss
- Use early results to optimise later data acquisition

Via satellite: bandwidth too low & expensive The (SuperBIT) Data Retrieval System:

 \sim \sim MΑΥ 4 **~** EMINAR S ш ЧЧ

The DRS

A toolkit of hardware & software to retrieve assets from a stratospheric balloon platform

SD cards on parachutes! Can hold up to ~5 TB

PPE SEMINAR | 14 MAY 2021

Landing Locations

Safety + Practical requirements (We cannot just drop stuff from the sky)

Need to know where it will land

PyBalloon: 1) predict where parachutes will land (safety) 2) estimate where it did land (recovery)

Calibrate using past flights

 \sim \sim MΑΥ 4 EMINAR S

The code: <u>https://github.com/EllenSirks/pyBalloon</u>

SuperBIT 2019 **Commissioning Flight**

- Launch: September 17, 2019 at 20:34 GMT-4
- Centre National d'Études Spatiales (CNES) through the Canadian Space Agency (CSA)
- Launch Site: Timmins, Ontario
- Flight termination: September 18, 2019 at ~14:00 GMT-4

~3.5 hours of science observations

The DRS Test

Dropped two DRS capsules: 1 TB of storage instead of max. 5 TB.

- First: just before ceiling
- Second: just before descent

used prediction software to target an area of forest without lakes or population + close to road

 \sim 0 \sim МΑΥ 4 EMINAR S ш Ц Ц

Capsule 1

Deviation: ~600m

Capsule 2

Deviation: ~1100m

Recovery

Found in 5 minutes!

