

The CMS High Granularity Calorimeter upgrade for HL-LHC

🕑 4:00pm until 5:00pm

- 🛗 11th June 2021
- L Dr Thorben Quast (CERN)
- **Q** Zoom

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

THE UNIVERSITY of EDINBURGH

Thorben Quast CERN

The medium-term future at CERN: High Luminosity LHC

Experimental testing of SM high-energy particle collisions: Large Hadron Collider (LHC) @ CERN.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

LHC upgrade to ~5x design luminosity = **HL-LHC**

LHC —> HL-LHC: More activity in the CMS detector

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

"Ultimate" 7.5E34 cm⁻²s⁻¹ luminosity

Increasing pile-up

• 140 - 200 collisions per bunch crossing >> 3-4x larger than in run 2.

HL-LHC: A lot of activity in the CMS detector

LHC —> HL-LHC: Increased radiation levels

HL-LHC necessitates detector upgrades

Experimental challenges	<u>LHC</u>	<u>HL-LHC</u>	General mitigation strategy
 inst. luminosity detector irradiation pile-up interactions 	2 x 10 ³⁴ s ⁻¹ cm ⁻² O(10 ¹⁴ neq/cm ²) O(40)	up to 7.5 x 10 ³⁴ s ⁻¹ cm ⁻² >O(10 ¹⁵ neq/cm ²) 140-200	 improved trigger & computing radiation-tolerant sensors & electronics timing and increased granularity

Compact Muon Solenoid (CMS) HL-LHC Upgrades Tracker: Radiation tolerant, high granularity, less materials, tracks in hardware trigger (L1), coverage up to $|\eta| = 3.8$

Barrel Calorimeter: New BE/FE electronics, ECAL: lower temp., HCAL: partially new scintillator

<u>other:</u>HLT up to 7.5kHzMIP timing detector

This presentation: The new CMS calorimeter endcap for HL-LHC

CMS High Granularity Calorimeter Endcap Upgrade

- Concept and design
- Components and prototyping

Proof-of-concept in test beam experiments

- HGCAL test beam prototype 2018
- Performance with positrons and charged pions

The Phase-2 Upgrade of the **CMS Endcap Calorimeter Technical Design Report**

CMS High Granularity Calorimeter Endcap Upgrade

high p_T jet O(500 GeV)

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

the longitudinal shower footprint

Concept and design

The case for high granularity

Real need to improve jet energy resolution for the next generation of calorimeters @ HL-LHC

<u>CMS follows the *particle flow* paradigm.</u>

- Accurate reconstruction of each particle within a jet.
- For each individual particle in a jet, use detector with best energy/ momentum resolution.
- Assignment of energy deposits to tracks: granularity* in the energy measurement.
- Granularity is more important than energy resolution.

* Rule of thumb:

Calorimeter can be considered granular if *readout pitch* is *smaller* than the *Molière radius*.

Endcap calorimeter upgrade proposal

An all-new 'imaging' calorimeter with unprecedented readout granularity that offers robustness and good performance through the full HL-LHC operational lifetime.

Radiation tolerance

fully preserving the energy resolution after 3000 fb⁻¹

Dense calorimeter

preserve lateral compactness of showers

Fine lateral granularity

two shower separation + observation of narrow jets, minimise pileup contributions in energy & timing measurements

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

CALICO - inspired idea

Requirements

Fine longitudinal granularity

fine sampling of the shower: good energy resolution, pattern recognition, pile-up discrimination, ...

Precision time measurement

high energy showers for pile-up rejection, primary vertex identification

Contribute to L1 (Hardware) trigger

New calorimeter endcap (CE): High-Granularity Calorimeter (HGCAL)

HGCAL = Sampling calorimeter

- Hexagonal silicon sensor based modules in CE-E and high radiation regions of CE-H.
- Scintillating tiles with on-tile SiPM readout in lowradiation regions of the CE-H.

Activeital	Both endcaps		<u>Silicon</u>		Scintillator		
	Area		~620m ²		~370m ²		
	#Modules		~27000		~4000		
	Channel size		0.5 - 1 cm ²		4-30 cm ²		
	#Channels		~6 M		~240k		
	Op. temp.		-30 ° C		-30 ° C		
Passive ial	Per endcap		CE-E	CE-H (Si)	CE-H	
	Absorber	Pb,	CuW, Cu	Sta	inless ste	eel, Cu	
	Depth	2	7.7 X ₀		10.0 /	10.0 λ	
	Layers		26	7		14	
	Weight		~	~230 t / e	ndcap		

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

10

Idea: HGCAL will be 3D imaging calorimeter

Simulated VBF H (yy) signatures in the granular endcap calorimeter

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities

CMS High Granularity Calorimeter Endcap Upgrade Components and prototyping

~620m² of 8" silicon sensors: Radiation hard and fast signals

- 8" hexagonal geometry: most efficient use of Si area.
- Bulk: p-type, found to be more irradiation-tolerant than n-type.
- Sensor thickness and cell size vary with radiation levels:
 - ► 120, 200, 300 µm thickness.
 - ▶ 0.5 and 1cm² cell size.

Operation at -30° C: Reduce increasing bulk leakage

Minimising degradation

- current.
- Increasing the bias voltage up to -800V to reduce signal loss.

Electrical sensor characterisation is crucial

Important: leakage current = power dissipation, capacitance ~ noise

★ Switching and probe-card setup

- Contact all cells via pogo-pin card, all pads biased while one is tested.
- Switch between channels using switching card.
- Temperature control of the sensor, important after irradiation to O(e14-e16) neq/cm².

Silicon modules and cassettes

Silicon modules

- Wire-bonding from PCB onto the silicon.
- CE-E: CuW baseplates act as absorbers.
- CE-H: PCB baseplates (good thermal properties and cheaper).

CE-E cassettes

with Pb plates.

Pb absorber ~ Motherboard ASICs Module PCB Silicon CuW baseplate Cu cooling plate // CuW baseplate

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

Sandwich of PCB, sensor, biasing/insulation layer and baseplate for rigidity/cooling.

~370m² of scintillator for regions of lower radiation

- Cheaper than silicon.
- Rely on experience from CALI and past CMS HCAL upgrade.

Radiation hardness of scintillators & Si-PMs

Arrangement of active modules

Silicon-only layer (in CE-E) showing "cassettes" and different sensor thicknesses.

Inner/Outer coverage: Best coverage by O(10) variants of hexagonal modules.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

coverage & complexity

Front-end electronics are challenging

HGCAL FE electronics requirements:

- Low noise (<2500e) and high dynamic range (0.2fC -10pC).
- Timing information to *tens of picoseconds*.
- Radiation tolerant.
- <20mW per channel (cooling limitation).
- Zero-suppression of data to transmit to DAQ.
- Computation of *trigger sums* for L1 trigger.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

19

HGCAL trigger = 3D clustering

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

CERN

Due to design: Requirements become features

Radiation tolerance

fully preserving the energy resolution after 3000 fb⁻¹

Dense calorimeter

preserve lateral compactness of showers

Fine lateral granularity

two shower separation + observation of narrow jets, minimise pileup contributions in energy & timing measurements

Many engineering challenges not mentioned:

- 2x 200 t detector to assemble and install.
- Operation at -30°C will require two-phase CO₂ cooling system.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

•

Fine longitudinal granularity

fine sampling of the shower: good energy resolution, pattern recognition, pile-up discrimination, ...

Precision time measurement

high energy showers for pile-up rejection, primary vertex identification

✓ Contribute to L1 (Hardware) trigger

Does the silicon-based HGCAL design meet the expectation?

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

All-new HGCAL: Design based on simulation and R&D.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

Proof-of-concept in test beam experiments HGCAL test beam prototype 2018

HGCAL test beam prototype module assembly

FH(1)

rond levage

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

1-module cassettes in electromagnetic part

7-module "daisy" layer in hadronic part

gluing

wire bonding

patte levage #1

420mm

560mm

HGCAL test beam prototype mechanics

- 94 prototype modules assembled by October 2018.
- Full CE-E prototype with 28 layers.
- Half-equipped CE-H(Si) prototype with 12 layers.

Test beam experiments at DESY II and at CERN's SPS

March 2018 @DESY II (T21)

1 + 2 HGCAL modules:

1 module: mounted on moving stage

1.6 - 6 GeV/c e-

silicon module design qualification

DATURA beam telescope

DESY II DATURA arm 1 DATURA arm downstream "calo-stack" central module inder test moving

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

Setup

Particles

Goal

Aux. detectors delay wire chambers (DWC), microchannel plates, threshold Cherenkov detectors

October 2018 @CERN SPS (H2)

94 HGCAL modules: 28-layer EE setup + 12-layer FH setup

 e^+ , μ^- , π^- up to 300 GeV/c

full in-situ calibration, performance+comparison to simulation

HGCAL = Imaging calorimeter

Proof-of-concept in test beam experiments

Performance with positrons and charged pions

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

QUALIFICATION, PERFORMANCE VALIDATION AND FAST GENERATIVE MODELLING OF BEAM TEST CALORIMETER PROTOTYPES FOR THE CMS CALORIMETER ENDCAP UPGRADE

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Thorben Quast M. Sc. RWTH

aus Salzgitter

Berichter: Universitätsprofessor Dr. Martin Erdmann Professor Dr. André David Tinoco Mendes

Tag der mündlichen Prüfung: 28 Mai 2020

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Energy scale calibration with minimum ionising particles (MIPs)

<u>MIP calibration => Energy scale</u>

- Signal spectrum induced by MIPs:
 - Tracking of MIPs within HGCAL prototype: -> Signal purification.
 - Calibration = maximum of (Landau x Gaussian) model.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

100

Energy linearity & resolution for electromagnetic (EM) showers

Longitudinal shower evolution for electromagnetic showers

EM: Longitudinal shower profile

:= mean energy deposit in a layer vs. depth.

Longitudinal profile: Good.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

EM: Shower depth

- := Maximum of longitudinal profile ("T") Expect: Depth ~ $\log(\text{#particles}) \sim \log(E)$.
- Log-scaling.

Depth scaling with energy: Good.

Positioning and angular resolution important for particle flow

<u>3-step procedure:</u>

Hadronic showers start at random depths

Shower start identification for hadronic showers

Use longitudinal segmentation to identify shower start depth. Shower start := significant increase in energy density.

Exponential decay function.

Signal sum for hadronic shower energy not sufficient

Advanced shower energy reconstruction

a) Different sampling configurations in EE and FH.

• Compartment weights w_{EE} and w_{FH} .

Granularity allows for software-based response compensation

Advanced shower energy reconstruction

a) Different sampling configurations in EE and FH.

• Compartment weights were and wFH.

"Software compensation"

SW) $E_{SW} := w_{EE} \times [\Sigma_{EE} E_i \times \phi(E_i/E_{tot})] + w_{FH} \times [\Sigma_{FH} E_i \times \phi(E_i/E_{tot})]$

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

b) Non-compensation: h/e < 1. Treat hadronic and electromagnetic constituents differently: Weights φ(x). x := energy density as a proxy. Relies on granularity.

CMS CERN

Energy linearity & resolution for hadronic showers

Machine learning-based e/π separation

e/π separation

Granularity for sophisticated task beyond classic calorimetry?
Shower "image" = input to CNN.
D_{e vs π}(e) -> 0, D_{e vs π}(π) -> 1. Training on simulated data.

Proof-of-principle demonstrated on test beam data.

Granularity exploitable for e/π separation: Good.
 Machine learning a suitable tool.

Last but not least: Timing performance

Per-channel timing performance

- 2 calibration ingredients:
 - TOA-nonlinearity.
 - Time walk due to fixed threshold discriminator.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

Time evolution of particle showers!

Does the silicon-based HGCAL design meet the expectation?

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

CMS HGCAL Upgrade Planning

Yes, it does.

HGCAL upgrade project: Outlook

- Important progress since the Technical Proposal (2015) and ongoing developments since the \checkmark Technical Design report (2018).
- <u>Currently, the focus is on:</u> •
 - Finalisation of design, prototyping towards final systems. ٠
 - Market surveys, orders. ٠
 - Preproductions, qualification of final components. ٠
- Next major step: Engineering Design Review due at the end of this year •
 - Validation of silicon sensors and SiPMs. •
 - Final version of very front-end ASIC. ٠
 - Si modules and scintillator tileboards designed.
 - Cassettes and mechanics design ready.

Production starting in 2022.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

٠

•

٠

Towards mass production of silicon modules around the world

27k silicon modules to be produced				Module	s have	
Module Type	300 µm	200 µm	120 µm	Sum		
Full	8820	7740	4356	20916		
Five	1158	144	0	1302		
Choptwo	0	0	312	312		
Semi	450	0	312	762	Half	Five
Half	1386	156	84	1626		
Full+Three	1092	0	0	1092		
Totals	13998	8040	5064	27102	Semi	Chop

Tooling development and preparation for large scale production:

- **Tooling** for low density full modules **ready**, soon also for high density full module.
- Design of gantry tooling for *partial modules ramping up* this year.

Module Assembly Centers (MACs) preparation is well advanced

- All 6 sites progressing on qualification of various module production steps.
- 5 sites fully equipped and on track to be qualified for assembly in 2021.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

ifferent shapes

wo

Full + Three

Production plan

- 10 modules/day per MAC with 6 MACs.
- Could achieve up to 24 modules / day per MAC.

Prototyping of services and passive absorber plates advancing

- **Mockup structures** to study installation steps and on-• detector services locations.
- Procurement process of 600 tons of stainless steel started.
- Achieved 1 mm flatness for CE-H steel absorber plates.
- Lead sandwich absorber development challenging due to • relative weakness and low workability.

Take home messages

Detector upgrades necessary High Luminosity LHC.

• Able to properly operate in harsh radiation environment, high pileup & occupancy.

One of them: CMS High Granularity Calorimeter which is an imaging calorimeter.

- Silicon as sensitive material in high radiation region, scintillator+SiPMs elsewhere.
- 3D energy & time measurement of particle showers.

HGCAL test beam results: Silicon-based HGCAL design meets expectation.

- Silicon-based prototype modules are functional.
- Calorimetric performance as expected:
 - Longitudinal shower evolution, energy linearity & resolution, positioning capabilities for particle flow.

Granularity helpful, especially for hadronic showers.

References / Additional reading

- <u>The Phase-2 Upgrade of the CMS Endcap Calorimeter</u>
- area silicon pad sensors
- <u>Software compensation in particle flow reconstruction</u>
- First beam tests of prototype silicon modules for the CMS High Granularity Endcap Calorimeter
- Qualification, Performance Validation and Fast Generative Modelling of Beam Test Prototypes for the CMS Calorimeter Endcap Upgrade
- The DAQ system of the 12,000 Channel CMS High Granularity Calorimeter Prototype
- <u>Construction and commissioning of CMS CE prototype silicon modules</u>

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

• ARRAY: An open source, modular and probe-card based system with integrated switching matrix for characterisation of large

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

Backup

Sophisticated offline reconstruction = The Iterative CLustering

Current TICL highlights

- Modular framework, written in C++.
- Works well with single EM provides, validated with test beam.
- Pattern recognition for b o block shower to be optimised.
- TICL reconstruction tt+200PU = O(100ms) on CPU, only ~5% of CMS phase 2 reconstruction budget.

Thorben Quast | TIPP 2021, 26 May 2021

Recent re-optimisation of longitudinal sampling

- Mobile-phone-size front-end embedded in industrial-size absorbers. - Absorber tolerances add up to ~height needed by front-end.
- Absorber plates must be ordered soon.
- Adapt to realistic absorber tolerances while preserving overall nuclear/radiation depths.

Thorben Quast | TIPP 2021, 26 May 2021

	Dec 2018	New: Scenario
# layers in CE-E, sampling layout	28, uniform	26; last fo thickene
# layers in CE-H (all Si)	8	7
# layers in CE-H (mixed)	14	14
CE-H: thickness of thin/ thick absorbers	35.0mm / 66.0 mm	41.5 mm 60.7 mn
Depth of CE-E	25.4 X ₀	27.7 X 0
Total depth	9.85 λ	9.97 λ

Number of layers reduced to minimise overall risk with minimal impact of performance.

- Hadronic showers with EM and HAD constituents.
- Response typically not identical, i.e. $e/h \neq 1$.
- Consequence: Non-linearities, worsened resolution for HAD showers.
- e/h = 1 = improved energy resolution via relative scaling of EM and HAD contributions.

Efficiency of detecting hadronic & em components differs from unity: non-compensation

HGCAL tile-modules

Tileboards

- Holds SiPMs, HGROCs, LEDs, ...
- Complex layout.
- Good: alive and sending data.
- Ongoing R&D: tile-board characterisation (electronically, thermo-mechanically).

a

Silicon

Technical challenges

- High-speed data transfer.
- Cooling of SiPMs through PCB.
- Thermo-mechanical rigidity +/-40 °C.
- Radiation hardness.

Longitudinal structure and lateral coverage

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

Longitudinal sampling

50 layers for total depth of ~9.8 λ CE-E: 28 fine samplings for 25 X_0 / 1.3 λ CE-H (1): 12 samplings in the first \sim 3.5 λ CE-H (2): 10 samplings in the last ~5 λ

Main constraint: fit into existing detector endcap -> limited space. • e.g. air gap in CE-E: limited space, very difficult for electrical components and connectors.

Planned calorimeter construction (x2)

Shower development in a nutshell

Charged particles

- Ionisation (Bethe-Bloch) and multiple scattering.
- **Minimum ionising** for $\beta \gamma = 3$ and $E < E_{crit}$: $dE/dX = O(1 \text{ MeV cm}^2/g)$.

Particle showers

<u>e+/-</u>

- Bremsstrahlung dominant loss above O(50 MeV): $e^{+/-} > e^{+/-} \gamma$.
- Positron annihilation: $e^+e^- \rightarrow \gamma \gamma$.

γ

- Photo effect and Compton scattering for E < O(1 MeV).
- Pair production dominant for high energies.
- **EM showers**: Compact. Scale: X₀.

<u>Hadrons</u>

- Nuclear reactions with target material and de-excitation processes.
- Only phenomenological descriptions available.
- HAD showers: Scale = $\lambda_n > X_0$. Sparser, wider, deeper than EM showers.
- $\pi_0 > \gamma \gamma$: EM component in hadronic showers.

MIP detection efficiency of Si-based prototype modules

MIP efficiency at cell-cell boundary

Efficiency to detect electron-MIPs measured at DESY. Integral component: Precise tracking with DATURA beam telescope.

- Close to 100% for exposed cells.
- Per-cell MIP efficiency falling quickly at cell boundary.
- ► No efficiency gap between cells.

➡ MIP signals confined to single cells: Good.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

Full module MIP efficiency maps

- 1. Denominator: Extrapolate µ-track from DWC.
- 2. Numerator: Check if active cell is in vicinity.
- Integrated efficiency close to 100% for most modules.
- ► 5 / 28 modules with areas of reduced efficiency.
 - 1x bad ASIC, 1x high leakage current,
 3x insufficient pad-chip bonding.

➡ MIP efficiency: Good.

Hit energy & timing calibration

- \checkmark Scale calibration with MIPs.
- ✓ Gain linearisation.

Hit energy spectrum: Data vs. simulation

- 6 interesting ranges: MIPs -> TOT.
- Allows for tuning of keV/MIP in simulation.

Energy calibration: Reasonable.

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

<u>Timing calibration</u>

(at least) 2 calibration ingredients:

- TOA-nonlinearity.
- Time walk due to fixed threshold discriminator.

Timing calibration (with ext. time reference): Feasible.

Principle of the timing measurements in test beam

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

laboratory time

EM shower timing resolution with >100 channels calibrated

AHCAL + HGCAL prototype: Joint data taking October 2018

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

200

300

HGCal: a₁ x E_{CE-E} + a₂ x E_{CE-H-Si} [GeV]

400

