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How do we compare phase diagrams at weak and strong

coupling?

The phase diagram of SU(N) gauge theories at weak coupling can be
obtained by perturbation theory on small volume manifolds such as
the sphere [S1×S3].

This can be compared to the phase diagram at strong coupling
obtained using lattice gauge theory simulations on large volumes such
as the torus with one shorter dimension [S1×R

3].
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Example: adjoint QCD

Why useful?: Learn about QCD at large N from adjoint QCD.

orientifold planar equivalence:
(Armoni, Shifman, Veneziano)

The large N equivalence of
QCD(AS/S) and adjoint QCD

large N reduction:
(Kovtun, Unsal, Yaffe)

Volume independence within
adjoint QCD

How?: Formulating adjoint QCD on the sphere.

Compare: Results for the phase diagram of adjoint QCD as a function
of volume and fermion mass. Comparison of perturbation theory and
lattice results.
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Why not just study QCD directly?

QCD phase diagram. The natural state of ordi-

nary terrestrial matter is one in which quarks and

gluons are confined.

Confined phase

Quarks and gluons are
bound into hadrons.

Deconfined phase

Quarks and gluons are
free in the QGP.

Superconducting
phases

Cooper pairing of
quarks occurs at
neutron star densities.
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The coupling strength in QCD

Euclidean spacetime QCD partition function:

ZQCD = Tre−βH =

∫

DADψ̄Dψe−
∫ β
0 dτ

∫

d3xLQCD

Lagrangian:

LQCD =
1

4g2
TrF

(

FµνFµν
)

+ ψ̄ ( /D +M − γ4µ)ψ

running coupling strength:

g2(k) =
g2(k0)

1+ g2(k0)

(4π)2 (11
3 N − 2

3Nf )ln(k2/k2
0 )

In QCD N = 3 and Nf = 6:

g(k) ↑ as k ↓
◮ strong coupling at low energies (large distances)

◮ Perturbation theory is not valid in the low energy confined phase

of QCD
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What to do?
Lattice gauge theory works regardless of the coupling strength.
However, simulations can be computationally expensive.
Implement shortcut:

orbifold
equivalence

QCD(Adj)QCD(AS/S)
orientifold equivalence

orbifold−orientifold
equivalence

combined

inf

0

L

0

L

inf

C

Kovtun, Unsal and Yaffe: ”Volume independence in large Nc QCD-like
gauge theories” (hep-th/0702021).
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Conditions for equivalence

Orientifold equivalence: Charge conjugation symmetry cannot be
broken in QCD(AS/S).

Orbifold equivalence:
(volume independence)

Adjoint QCD, formulated on both volumes,
must have Z (N) symmetry intact.

Z (N) symmetry breaking is realized in terms of the Polyakov loop
order parameter P = eβA0 :

In the confined phase TrP = Tr(zP) = 0, where z ∈ Z (N).

In the deconfined phase TrP 6= Tr(zP) 6= 0.
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Relevant checks from the lattice
Orientifold planar equivalence: DeGrand, Hoffmann, Schaefer, and
Liu (2006) calculated the quark condensate in one-flavour QCD and
found it to agree with the SYM prediction.
Cossu and D’Elia (2009), Bringoltz and Sharpe (2009) performed
lattice simulations of adjoint QCD, but found potentially
contradictory results.
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Perturbative check?

Can formulate adjoint QCD on a finite volume to access the
Yang-Mills deconfinement transition in the large N limit (Aharony et
al (hep-th/0310285)).

adding massive fermions should allow for comparison with lattice
results, using the knowledge that β ∼ 1/LS1 .

9 / 28



Region of validity of 1-loop calculations

Properties of SU(N) gauge theories on S1×S3

Valid for min[RS1 ,RS3] ≪ Λ−1
QCD

◮ Small S1:
⋆ Good: Allows study at any N and in the limit of large 3-volume.

R
3 ×S1 : YM/QCD: m = 0,µ = 0: Gross, Pisarski, Yaffe (Rev.Mod.Phys.53:43,1981), µ 6= 0: Korthals

Altes, Pisarski and Sinkovics (hep-ph/9904305), m 6= 0: Meisinger and Ogilvie (hep-ph/0108026),

QCD(Adj/AS/S): m = 0,µ = 0: Unsal and Yaffe (hep-th/0608180), m 6= 0: Myers and Ogilvie

(arXiv:0903.4638)

⋆ Bad: Have to be in the limit of high temperatures (or small S1)

◮ Small S3:
⋆ Good: Allows study at any temperature (or any S1).

S3 ×S1 : YM: Aharony et al (hep-th/0310285), QCD(Adj/AS/S): m = 0: Hollowood and Naqvi

(hep-th/0609203), Unsal (hep-th/0703025), m 6= 0: Hollowood and Myers (arXiv:0907.3665)

⋆ Bad: Must be in small 3-volume. Finite N studies are more
complicated.
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1-loop Lagrangian

LE =− 1

2
Āa

0(D̃
2
0 (a)+∆(s))Āa

0−
1

2
Ba

i (D̃2
0 (a)+∆(v ,T ))Ba

i

− 1

2
C a

i (D̃2
0 (a)+∆(v ,L))C a

i − c̄(D̃2
0 (a)+∆(s))c + ψ̄( /DA(a)+m)ψ

where Ai = Bi +Ci .

Bi = transverse: ∇iBi = 0

Ci = longitudinal: Ci = ∇i f

and D̃0 ≡ ∂0 + αaT a
A

where α is the only zero mode

α ≡ 1

Vol(S1×S3)

∫

S1×S3
dτ d3x A0(x)
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1-loop partition function

The partition function, at one loop:

Z =det
1/2
l=0(−D̃2

0 (a)−∆(s))det−1(−D̃2
0 (a)−∆(v ,T ))detNf /4(− /D2(a)−∆(f ))

Eigenvalues and degeneracies of Laplacians on S3:

∆(type)Ωj ,l ,m1,m2
(θ1, ...,θ3) = −ε(type)2

l Ωj ,l ,m1,m2
(θ1, ...,θ3)

Example: scalars

ε(s)2
l = l(l +2)/R2

d
(s)
l = (l +1)2

for scalars and spinors l = 0,1, ...,
for vectors l = 1,2, ....
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1-loop partition function: S1 contribution

The eigenvalues of the Dirac operator can be computed in frequency space
in terms of the Matsubara frequencies:

D̃0 → iω+
n + α

where the Matsubara frequencies are

ω+
n = 2nπ/L

We define the Polyakov loop:

P(~x) = Pe
∫ L
0 dτ A0(x) = eLα = diag{e iθ1 , ...,e iθN}
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one-loop effective action

To get the effective action we need the lnZ . Calculating the sum over
Matsubara frequencies and simplifying one can show that

TrA
∞

∑
l=0

ln
(

−D̃2
0 + ε2

l

)

=
∞

∑
l=0

dl

[

Lεl −2
∞

∑
n=1

1

n
e−nLεl TrAPn

]

for the fermion contribution:

ε(f )
l → ωl =

√

ε(f )2
l +m2

Effective action is:

S1−loop = − lnZ

=
∞

∑
n=1

1

n

[

1−
∞

∑
l=0

d
(v ,T )
l e−nLε(v ,T )

l +2Nf

∞

∑
l=0

d
(f )
l e−nLω (f )

l

]

TrA(Pn)
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1-loop effective action in Yang-Mills theory [Aharony et al

(hep-th/0310285)]
In terms of the Polyakov loop P = diag{e iθ1, ...,e iθN } the effective action is

S(P) =
∞

∑
n=1

1

n
(1− zv(nL/R))TrAPn

=
∞

∑
n=1

1

n
(1− zv(nL/R))

N

∑
i ,j=1

cos[n(θi −θj)]

where

L is the length of S1

R is the radius of S3

zv(nL/R) =
∞

∑
l=0

d
(v ,T )
l e−nLε(v ,T )

l

=
∞

∑
l=0

2l(l +2)e−nL(l+1)/R

The weak-coupling analogue of the deconfinement transition temperature
can be calculated in the large N limit. It is TdR ≃ 0.759 or Ld/R ≃ 1.317.
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1-loop effective action: SU(N) gauge theories + fermions

The effective action for Nf Dirac flavours of fermions in representation R

with mass m and chemical potential µ is

S(P) =
∞

∑
n=1

1

n
(1− zv(nL/R))TrAPn

+2
∞

∑
n=1

(±1)n

n
Nf zf (nL/R ,mR)

[

enLµ TrR(P†n)+ e−nLµTrR(Pn)
]

where

zf (nL/R ,mR) = 2
∞

∑
l=1

l(l +1)e−nL
√

(l+1/2)2+m2R2/R

The effective action for Nf Majorana flavours of adjoint fermions with
mass m and µ = 0 simplifies to

S(P) =
∞

∑
n=1

1

n
(1− zv(nL/R)+Nf zf (nL/R ,mR))

N

∑
i ,j=1

cos[n(θi −θj)]
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Large N limit
In the limit of large N it is helpful to consider the distribution of the
Polyakov loop eigenvalues around the circle (following Aharony et al
hep-th/0502149):

Z (L/R) =
∫

[dθ ]e−∑∞
n=1

1
n
(1−zv (nL/R)+Nf zf (nL/R,mR))|TrPn |2

Take:

ρn ≡
∫

e inθ ρ(θ)dθ =
1

N
Tr(Pn), ρ(θ) =

1

N

N

∑
i=1

δ (θ −θi),

f (nL/R ,mR) ≡ (1− zv(nL/R)+Nf zf (nL/R ,mR)) .

Then

Z (L/R) =

∫

dρndρ̄ne
−N2 ∑∞

n=1
1
n
fn|ρn |2.

When N is large the path integral can be solved using the saddle point
approximation.
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Phases of large N

Z (L/R) =
∫

dρndρ̄ne
−N2 ∑∞

n=1
1
n
fn|ρn |2.

Fourier analyze the density:

ρ(θ) =
1

2π

∞

∑
n=−∞

ρne
inθ

where ρ0 = 1, and ρ∗
n = ρ−n.

Phases:

Confined: fn > 0 for all n, ρn = 1
N

TrPn = 0.

k-gap: fk < 0, ρk = 1
N

TrPk 6= 0, but TrP l = 0 for
mod [l ,k] 6= 0.

18 / 28



Large N: Phase diagram in (L/R,mL) plane
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The confined phase persists without phase transition for all L/R
below a critical mass (mR)c which increases with Nf .

For Nf ≥ 2 partially confined phases become possible.
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Large N: Phase diagram in (L/R,mR) plane

0

1

2

3

4

5

6

7

8

mR

0 1 2
L/R

1-gap

deconfined

confined

f1 = 0
(L

/R
) c

≃
1.

31
7

(mR)
c
≃ 1.225

NM
f = 1

2

3

4

5

6

7

mR

0 0.5 1 1.5 2
L/R

1-gap

deconfined

2
3...

confined

f1 = 0f2 = 0

(L
/R

) c
≃

1.
31

7

(mR)
c
≃ 3.203

NM
f = 2

The confined phase is only transition-free below (mR)c , and for
L/R > 1.317.
For Nf ≥ 2 the confined phase at small L/R and mR > (mR)c the
confined phase is pushed all the way to the (mR)-axis.
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Finite N

The phase diagram can also be calculated at finite N by numerically
minimizing the effective action directly (the saddle-point
approximation is only valid for large enough N).

Expectation values of observables can also be computed exactly by
performing the integrals over the gauge fields. This serves as a useful
check, but not used as the primary technique since there is no suitable
observable to distinguish the k-gap phases: 〈TrP〉 = 0 in all phases.

The finite N phase diagram is useful for several reasons

1 We can determine how the large N limit is approached and perhaps
show when the saddle point approximation becomes valid.

2 It is possible to compare with finite N results on R
3×S1 by taking

the limit L/R → 0.

3 The phase diagram at finite N and finite volume can be compared
more easily with lattice results.
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Finite N: Yang-Mills theory
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Even for N = 2, the weak-coupling deconfinement transition is clearly
indicated by the discontinuity in TrP .

The transition increases in sharpness as N is increased. The formation
of a discontinuity in the free energy that is sharpened with increasing
N is consistent with a first order phase transition in the large N limit.
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N = 3,4,5,6: Phase diagram in (L/R,mR) plane
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N = 3,4,5,6: Phase diagram in (L/R,mL) plane
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Comparison with N = 3 lattice results of

Cossu and D’Elia (arXiv:0904.1353)
Thanks go to Cossu and D’Elia for allowing us to show their figures.
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In the S3×S1 result the confined phase passes through for small enough
mR as R/L is increased. This is unclear for the lattice results. It might be
that the deconfined phase drops down to lower values of mR for larger
coupling, or it could be that the chiral limit has not been reached in the
simulations.
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Comparison of the Polyakov loop order parameter

For a fixed value of the fermion mass, we can also compare the behaviour
of the Polyakov loop with Cossu and D’Elia (arXiv:0904.1353):
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At a qualitative level the behaviour of the Polyakov loop appears to
agree for all L/R , even within the deconfined phase.
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Conclusions

The phase diagram of adjoint QCD on S3×S1 has a rich phase
structure.

This phase diagram can be calculated at large N limit using the
saddle point approximation. The confined phase is transition free for
all L/R if mR is below a critical value which increases with Nf .

At finite N the partition function can be evaluated numerically to get
a phase diagram which agrees with the R

3×S1 result in the L/R → 0
limit. It also approaches the large N result, and closely resembles the
lattice result of Cossu and D’Elia.
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Future work

A similar analysis can be performed for other gauge theories. One can
consider:

different fermion representation

different gauge field representation

adding scalar fields

different boundary conditions

incorporating finite chemical potential

other manifolds (eg. torus)
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