The Golem95 Library

The Thomas Binoth Symposium Edinburgh, 12.03.10

Tobias Kleinschmidt

The Golem Collaboration:

T. Binoth, G. Cullen, A. Guffanti, J.P. Guillet, G. Heinrich, S. Karg, N. Kauer, TK, E. Pilon, T. Reiter, M. Rodgers, I. Wigmore

arXiv: 0810.0992 lappweb.in2p3.fr/lapth/Golem/golem95.html

Tobias Kleinschmidt (IPPP)

The Golem95 Library

Edinburgh - 12.03.10

In Memory of Thomas

Outline

O Introduction

O The Golem95 Library

• Reduction Formalism for Scalar and Tensor Integrals

• Overview of Form Factors implemented in public version

• Going from massless to massive integrals

• Going from real masses to complex masses

O Summary

Why NLO?

Why NLO? Precision!

Why NLO? **Precision**!

- Reduce dependence on renormalization scale for observables including $\alpha(\mu)$
- Match experimental precision to extract important parameters used as input in further experiments/analyses (Luminosity, SM-benchmark processes, ...)
- Match experimental precision to obtain more accurate values for masses and couplings
- Better simulations for background to disentangle signals of new physics from standard model processes (inclusion of off-shell effects)

Why NLO? **Precision**!

- Reduce dependence on renormalization scale for observables including $\alpha(\mu)$
- Match experimental precision to extract important parameters used as input in further experiments/analyses (Luminosity, SM-benchmark processes, ...)
- Match experimental precision to obtain more accurate values for masses and couplings
- Better simulations for background to disentangle signals of new physics from standard model processes (inclusion of off-shell effects)

• Equally Valid for LHC and future linear collider:

The experimental accuracy should be matched by the theoretical precision. This involves the computation of multi-leg scattering amplitudes at NLO.

process	relevant for
$pp \rightarrow VV \text{ jet}$	$t\bar{t}H$, new physics
$pp \rightarrow t\bar{t}b\bar{b}$	$t\bar{t}H$
$pp \rightarrow t\bar{t} + 2 \text{ jots}$	$t\bar{t}H$
$pp \rightarrow ll + 2$ jets $pp \rightarrow VVb\bar{b}$ $pp \rightarrow VV + 2$ jets	$VBF \rightarrow H \rightarrow VV, \ t\bar{t}H, \text{ new physics}$ $VBF \rightarrow H \rightarrow VV$
$pp \rightarrow V+3 \text{ jet}$	various new physics signatures
$pp \rightarrow VVV$	SUSY trilepton

The LHC *priority* wishlist, Les Houches '05. [hep-ph/0604120]

process	relevant for
$pp \rightarrow VV$ jet	$t\bar{t}H$, new physics
$pp \rightarrow t\bar{t}bb$	$t\bar{t}H$
$pp \rightarrow t\bar{t} + 2$ jets	$t\bar{t}H$
$pp \rightarrow VVb\overline{b}$	$VBF \rightarrow H \rightarrow VV, t\bar{t}H, new physics$
$pp \rightarrow VV + 2$ jets	$VBF \rightarrow H \rightarrow VV$
$pp \rightarrow V + 3$ jet	various new physics signatures
$pp \rightarrow VVV$	SUSY trilepton

The LHC priority wishlist, Les Houches '05. [hep-ph/0604120]

- Lot of progress for 2 \rightarrow 3 processes at NLO in past years
- Few 2 \rightarrow 4 processes at NLO coming in now
 - $q\bar{q} \rightarrow bbt\bar{t}$ Bredenstein, Denner, Dittmaier, Pozzorini
 - $pp \rightarrow b\overline{b}b\overline{b}$ Golem
 - $pp \rightarrow W + 3j$ BlackHat (Dixon et. al.); Rocket (Ellis et. al.)
 - $pp \rightarrow t\overline{t} + 2j$ Helac (Bevilacqua et. al.)

process	relevant for
$pp \rightarrow VV$ jet	$t\bar{t}H$, new physics
$pp \rightarrow t \overline{t} b \overline{b}$	$t\bar{t}H$
$pp \rightarrow t\bar{t} + 2$ jets	$t\bar{t}H$
$pp ightarrow VV b \overline{b}$	$VBF \rightarrow H \rightarrow VV, t\bar{t}H, new physics$
$pp \rightarrow VV + 2$ jets	$VBF \rightarrow H \rightarrow VV$
$pp \rightarrow V + 3 \text{ jet}$	various new physics signatures
$pp \rightarrow VVV$	SUSY trilepton

The LHC priority wishlist, Les Houches '05. [hep-ph/0604120]

Lot of progress for 2 \rightarrow 3 processes at NLO in past years

• Few 2 \rightarrow 4 processes at NLO coming in now

- $q\bar{q} \rightarrow bbt\bar{t}$ Bredenstein, Denner, Dittmaier, Pozzorini
- $pp \rightarrow b\overline{b}b\overline{b}$ Golem
- $pp \rightarrow W + 3j$ BlackHat (Dixon et. al.); Rocket (Ellis et. al.)
- $pp \rightarrow t\overline{t} + 2j$ Helac (Bevilacqua et. al.)

Contribution by many people!

Andersen, Berger, Bern, Bevilacqua, Binoth, Bozzi, Bredenstein, Britto, Campaniero, Campbell, Dawson, del Duca, Denner, Dittmaier, Dixon, Ellis, Englert, Febres Cordero, Feng, Figy, Forde, Giele, Gleisberg, Glover, Guffanti, Guillet, van Hameren, Hankele, Ita, Jäger, Kallweit, Karg, Kauer, Kosower, Kunszt, Lazopoulos, Mahmoudi, Maitre, Mastrolia, McElmurry, Melnikov, Miller, Nagy, Oleari, Orr, Ossola, Papadopoulos, Petriello, Pittau, Pozzorini, Reina, Reiter, Reuter, Sanguinetti, Smillie, Soper, Spannowsky, Uwer, Wackeroth, Weinzierl, Zanderighi, Zeppenfeld,...and many others

Tobias Kleinschmidt (IPPP)

- Real emissions (Tree graphs) with n+1 final state partons Several generators for creation of efficient matrix elements: e.g. Alpha [Caravaglios et.al. '95], Comix [Gleisberg, Höche '08], MadGraph [Stelzer et.al. '03], O'Mega [Ohl et.al. '01].
 - Contain infrared soft and collinear divergences

Subtraction Terms

Cancel Divergences in real corrections locally Mainly used: [Catani, Seymour `96; Catani, Seymour, Dittmaier, Troscanyi `02]

Virtual Corrections

Contain Problems! 'Bottleneck part of NLO computations'

- Real emissions (Tree graphs) with n+1 final state partons Several generators for creation of efficient matrix elements: e.g. Alpha [Caravaglios et.al. '95], Comix [Gleisberg, Höche '08], MadGraph [Stelzer et.al. '03], O'Mega [Ohl et.al. '01].
 - Contain infrared soft and collinear divergences

Subtraction Terms

Cancel Divergences in real corrections locally Mainly used: [Catani, Seymour `96; Catani, Seymour, Dittmaier, Troscanyi `02]

Virtual Corrections

Contain Problems! 'Bottleneck part of NLO computations'

Level of Complexity rises due to:

- Length of Expressions
- Complexity of Integrals
- Infrared divergences, internal singularities

- Real emissions (Tree graphs) with n+1 final state partons Several generators for creation of efficient matrix elements: e.g. Alpha [Caravaglios et.al. '95], Comix [Gleisberg, Höche '08], MadGraph [Stelzer et.al. '03], O'Mega [Ohl et.al. '01].
 - **Contain infrared soft and collinear divergences**

Subtraction Terms

Cancel Divergences in real corrections locally Mainly used: [Catani, Seymour `96; Catani, Seymour, Dittmaier, Troscanyi `02]

Virtual Corrections

Contain Problems: 'Bottleneck part of NLO computations/nin0;
 I of Complexity rises due to:
 ngth of Expressions mplexity of Integrals rared divergences, internal singularities

Level of Complexity rises due to:

- Length of Expressions
- Complexity of Integrals
- Infrared divergences, internal singularities

- Real emissions (Tree graphs) with n+1 final state partons Several generators for creation of efficient matrix elements: e.g. Alpha [Caravaglios et.al. '95], Comix [Gleisberg, Höche '08], MadGraph [Stelzer et.al. '03], O'Mega [Ohl et.al. '01].
 - **Contain infrared soft and collinear divergences**

Subtraction Terms

Cancel Divergences in real corrections locally Mainly used: [Catani, Seymour `96; Catani, Seymour, Dittmaier, Troscanyi `02]

Virtual Corrections

Contain Problems: '<u>Bottleneck part of NLO computations</u>' Mineted of Complexity rises due to: ength of Expressions omplexity of Integrals frared divergences, internal singularities

Level of Complexity rises due to:

- Length of Expressions
- Complexity of Integrals
- Infrared divergences, internal singularities

Aim for Automation!

The Two Major Approaches for Loop Calculations

Feynman Diagram based

Unitarity based

- Start with individual Feynman graphs
- Tensor Reduction (PV-Style) Set of basis integrals
- Scalar integrals known analytically
- X Yields large expressions for coefficients
- X can have delicate numerical stability
- use modified reduction scheme to avoid inverse Gram determinants.

GOLEM

Denner, Dittmaier,...

- Start with Amplitude
- Decompose Amplitude into scalar integrals and coefficients.
- Coefficients are product of on-shell tree amplitudes, obtained by cutting techniques.
- X large expressions for coefficients...
- ...but simpler than from PV-style reductions?
- \checkmark P-algorithm ($\tau \propto N^9$ for N-gluon ampl.)

BlackHat: Bern, Dixon, Forde, Gleisberg, Kosower, Maitre,

Rocket: Ellis, Giele, Kunszt, Melnikov, Zanderighi

Helac-1Loop: Bevilaqua, Czakon, van Hameren, Papadopoulus, Pittau, Worek

The GOLEM Project

General One Loop Evaluator for Matrix Elements

- Aim at automated evaluation of numerically stable one-loop amplitudes for multi-leg processes
- Represent one-loop amplitudes as sum of diagrams, sorted by color:

$$\begin{aligned} \mathcal{A}^{\{c,\lambda\}}(\{p_j,m_j\}) &= \sum_{\{c_i\},\alpha} f^{\{c_i\}} \mathcal{G}^{\{\lambda\}}_{\alpha} \\ \mathcal{G}^{\{\lambda\}}_{\alpha} &= \int \frac{d^D k}{i\pi^{D/2}} \frac{\mathcal{N}^{\{\lambda\}}}{D_1 \dots D_N} = \sum_R \mathcal{N}^{\{\lambda\}}_{\mu_1,\dots,\mu_R} I^{\mu_1\dots\mu_R}_N(\{p_j,m_j\}) \end{aligned}$$

GOLEM95: Library providing form factors entering the calculation of one-loop amplitudes.

Reduction to a certain set of basis integrals by formalism avoiding inverse Gram determinants.

Tobias Kleinschmidt (IPPP)

The Golem95 Library

An algebraic/numerical formalism for one-loop multi-leg amplitudes [hep-ph/0504267]

 $r_i^\mu \to r_i^\mu + r_a^\mu$

Notation and Conventions

$$I_N^{n,\,\mu_1\dots\mu_r}(a_1,\dots,a_r;S) = \int d\bar{k} \, \frac{q_{a_1}^{\mu_1}\dots q_{a_r}^{\mu_r}}{\prod_{i\in S}(q_i^2 - m_i^2 + i\delta)}$$

$$q_i = k + r_i$$

Invariant under translations:

$$p_{N-2}$$
 p_{1} p_{2} p_{3} p_{2} p_{2} p_{2} p_{3} p_{2} p_{2} p_{3} p_{2} p_{2} p_{3} p_{3} p_{2} p_{3} p_{3} p_{2} p_{3} p_{3} p_{2} p_{3} $p_$

An algebraic/numerical formalism for one-loop multi-leg amplitudes [hep-ph/0504267]

Notation and Conventions

$$I_N^{n,\,\mu_1\dots\mu_r}(a_1,\dots,a_r;S) = \int d\bar{k} \, \frac{q_{a_1}^{\mu_1}\dots q_{a_r}^{\mu_r}}{\prod_{i\in S}(q_i^2 - m_i^2 + i\delta)}$$

$$q_i = k + r_i$$

Invariant under translations: $r_i^\mu
ightarrow r_i^\mu + r_a^\mu$

Shift invariant 4-vectors: $\Delta^{\mu}_{ij} = r^{\mu}_i - r^{\mu}_j = q^{\mu}_i - q^{\mu}_j$

Kinematic matrix: $S_{ij} = (r_i - r_j)^2 - m_i^2 - m_j^2$

An algebraic/numerical formalism for one-loop multi-leg amplitudes [hep-ph/0504267]

Notation and Conventions

$$I_N^{n,\,\mu_1\dots\mu_r}(a_1,\dots,a_r;S) = \int d\bar{k} \, \frac{q_{a_1}^{\mu_1}\dots q_{a_r}^{\mu_r}}{\prod_{i\in S}(q_i^2 - m_i^2 + i\delta)}$$

$$q_i = k + r_i$$

Invariant under translations: $r_i^\mu
ightarrow r_i^\mu + r_a^\mu$

Shift invariant 4-vectors: $\Delta_{ij}^{\mu} = r_i^{\mu} - r_j^{\mu} = q_i^{\mu} - q_j^{\mu}$ Kinematic matrix: $\mathcal{S}_{ij} = (r_i - r_j)^2 - m_i^2 - m_j^2$

Gram matrix: $G_{ij} = 2 r_i \cdot r_j$

Passarino-Veltman reduction induces numerical problems $\rightarrow det(G)^{-r}$

find better suited scheme for tensor reduction!

Tobias Kleinschmidt (IPPP)

The Golem95 Library

An algebraic/numerical formalism for one-loop multi-leg amplitudes [hep-ph/0504267] \

$$I_N^{n,\,\mu_1\dots\mu_r}(a_1,\dots,a_r;S) = \int d\bar{k} \, \frac{q_{a_1}^{\mu_1}\dots q_{a_r}^{\mu_r}}{\prod_{i\in S}(q_i^2 - m_i^2 + i\delta)}$$

An algebraic/numerical formalism for one-loop multi-leg amplitudes [hep-ph/0504267] \

$$f_N^{n,\,\mu_1\dots\mu_r}(a_1,\dots,a_r;S) = \int d\bar{k} \, \frac{q_{a_1}^{\mu_1}\dots q_{a_r}^{\mu_r}}{\prod_{i\in S}(q_i^2-m_i^2+i\delta)}$$

Tensor Integrals \rightarrow Form Factor Representation [Phys. Lett. B 263 (1991) 107]

$$I_{N}^{n,\,\mu_{1}\dots\mu_{r}}(a_{1},\dots,a_{r}\,;S) = \sum_{j,m} \tau_{m} \left[(g^{\cdots})^{\otimes m} \Delta_{j_{1}}^{\cdot} \cdots \Delta_{j_{r}}^{\cdot} \right]_{\{a_{1}\cdots a_{r}\}}^{\{\mu_{1}\cdots\mu_{r}\}} I_{N}^{n+2m}(j_{1}\dots,j_{r-2m}\,;S)$$

$$I_{N}^{n}(l_{1},\dots,l_{r};S) = (-1)^{N} \Gamma(N-\frac{n}{2}) \int \prod_{i=1}^{N} dz_{i} \,\delta(1-\sum_{l=1}^{N} z_{l}) z_{l_{1}}\dots z_{l_{r}} \left(R^{2}\right)^{n/2-N}$$

$$R^{2} = \sum_{j,m}^{1} z_{i} \sum_{j=1}^{N} z_{j} \sum_{l=1}^{N} z_{l} \sum_{j=1}^{N} z_{j} \sum_{j=1}^{N} z_$$

$$R^2 = -\frac{1}{2} z \cdot S \cdot z - i\delta$$

- Use similar representation for N={3,4}.
- Reduction and numerical evaluation possible

The Golem95 Library

 p_3

 p_2

 p_1

3

 p_{N-2}

2

N

 p_N

Split scalar N-point integral into IR-finite part and a simpler, possibly divergent part.

$$I_N^n(S) = I_{div}(S) + I_{fin}(S)$$

= $\sum_{i \in S} b_i(S) \int d\bar{k} \frac{(q_i^2 - m_i^2)}{\prod_{j \in S} (q_j^2 - m_j^2 + i\,\delta)} + \int d\bar{k} \frac{1 - \sum_{i \in S} b_i(S) (q_i^2 - m_i^2)}{\prod_{j \in S} (q_j^2 - m_j^2 + i\,\delta)}$

Split scalar N-point integral into IR-finite part and a simpler, possibly divergent part.

$$I_N^n(S) = I_{div}(S) + I_{fin}(S)$$

= $\sum_{i \in S} b_i(S) \int d\bar{k} \frac{(q_i^2 - m_i^2)}{\prod_{j \in S} (q_j^2 - m_j^2 + i\,\delta)} + \int d\bar{k} \frac{1 - \sum_{i \in S} b_i(S) (q_i^2 - m_i^2)}{\prod_{j \in S} (q_j^2 - m_j^2 + i\,\delta)}$

Introduce Feynman parameters, momentum shift to quadratic form of loop momentum:

$$1 - \sum_{i \in S} b_i(S) \left(q_i^2 - m_i^2 \right) = -(l^2 + R^2) \sum_{i \in S} b_i(S) + \sum_{j \in S} z_j \left[1 - \sum_{i \in S} b_i(S) \left\{ S_{ij} \right\} \right]$$

Split scalar N-point integral into IR-finite part and a simpler, possibly divergent part.

$$I_N^n(S) = I_{div}(S) + I_{fin}(S)$$

= $\sum_{i \in S} b_i(S) \int d\bar{k} \frac{(q_i^2 - m_i^2)}{\prod_{j \in S} (q_j^2 - m_j^2 + i\,\delta)} + \int d\bar{k} \frac{1 - \sum_{i \in S} b_i(S) (q_i^2 - m_i^2)}{\prod_{j \in S} (q_j^2 - m_j^2 + i\,\delta)}$

Introduce Feynman parameters, momentum shift to quadratic form of loop momentum:

$$1 - \sum_{i \in S} b_i(S) \left(q_i^2 - m_i^2 \right) = -(l^2 + R^2) \sum_{i \in S} b_i(S) + \sum_{j \in S} z_j \left[1 - \sum_{i \in S} b_i(S) \left\{ S_{ij} \right\} \right]$$

$$I_{fin}(S) = -B(S) \Gamma(N) \int_0^1 \prod_{i \in S} dz_i \, \delta(1 - \sum_{l \in S} z_l) \int \frac{d^n l}{i\pi^{n/2}} \frac{l^2 + R^2}{(l^2 - R^2)^N}$$

$$= -B(S) \left(N - n - 1 \right) I_N^{n+2}(S)$$

$$B(S) = \sum_{i \in S} b_i(S)$$

Tobias Kleinschmidt (IPPP)

Edinburgh – 12.03.10 11

- Reduction: $I_N^n(S) = I_{N-1}^n(S) + I_N^{n+2}(S)$
- Condition: $\sum_{i \in S} b_i(S) \mathcal{S}_{ij} = 1$, $j = 1, \dots, N$

- Reduction: $I_N^n(S) = I_{N-1}^n(S) + I_N^{n+2}(S)$
- Condition: $\sum_{i \in S} b_i(S) S_{ij} = 1$, $j = 1, \dots, N$
- S invertible, $N \le 6 \rightarrow$ Unique solution:

$$b_i = \sum_{k \in S} \mathcal{S}_{ki}^{-1}$$

- Reduction: $I_N^n(S) = I_{N-1}^n(S) + I_N^{n+2}(S)$
- Condition: $\sum_{i \in S} b_i(S) S_{ij} = 1$, $j = 1, \dots, N$
- S invertible, $N \le 6 \rightarrow$ Unique solution:

$$b_i = \sum_{k \in S} \mathcal{S}_{ki}^{-1}$$

Solve equivalent set of equations:

$$\sum_{i=1}^{N-1} G_{ki} b_i = B v_k \quad , \quad \sum_{l=1}^{N-1} v_i b_i = 1 \quad , \quad B = \sum_{i=1}^{N} b_i \quad , \quad v_i = \Delta_{iN}^2 - m_i^2$$

• Solutions b_i span Ker(G). B = 0

- Reduction: $I_N^n(S) = I_{N-1}^n(S) + I_N^{n+2}(S)$
- Condition: $\sum_{i \in S} b_i(S) \mathcal{S}_{ij} = 1$, j = 1, ..., N
- S invertible, $N \le 6 \rightarrow$ Unique solution:

$$b_i = \sum_{k \in S} \mathcal{S}_{ki}^{-1}$$

Solve equivalent set of equations:

$$\sum_{i=1}^{N-1} G_{ki} b_i = B v_k \quad , \quad \sum_{l=1}^{N-1} v_l b_i = 1 \quad , \quad B = \sum_{i=1}^{N} b_i \quad , \quad v_i = \Delta_{iN}^2 - m_i^2$$

• Solutions b_i span Ker(G). B = 0

⇒ Any N-point scalar integral (N>4) reduces to sum of (n+2) dimensional Box integrals and IR divergent Triangles!

$$I_{6}^{n}(S) = \sum_{j \in S} b_{j} \sum_{k \in S \setminus \{j\}} b_{k}^{\{j\}} \left[B^{\{j,k\}} I_{4}^{n+2}(S \setminus \{j,k\}) + \sum_{l \in S \setminus \{j,k\}} b_{l}^{\{j,k\}} I_{3}^{n}(S \setminus \{j,k,l\}) \right]$$

Tobias Kleinschmidt (IPPP)

The Golem95 Library

Completely analogue to scalar case!

Split scalar N-point integral into IR-finite part and a simpler, possibly divergent part.

$$I_{N}^{n,\mu_{1}...\mu_{r}}(a_{1},...,a_{r};S) = \int d\bar{k} \frac{\left[q_{a_{1}}^{\mu_{1}} + \sum_{j \in S} \mathcal{C}_{ja_{1}}^{\mu_{1}} \left(q_{j}^{2} - m_{j}^{2}\right)\right] q_{a_{2}}^{\mu_{2}}...q_{a_{r}}^{\mu_{r}}}{\prod_{i \in S} \left(q_{i}^{2} - m_{i}^{2} + i\delta\right)} \\ - \sum_{j \in S} \mathcal{C}_{ja_{1}}^{\mu_{1}} \int d\bar{k} \frac{\left(q_{j}^{2} - m_{j}^{2}\right) q_{a_{2}}^{\mu_{2}}...q_{a_{r}}^{\mu_{a_{r}}}}{\prod_{i \in S} \left(q_{i}^{2} - m_{i}^{2} + i\delta\right)}$$

Completely analogue to scalar case!

Split scalar N-point integral into IR-finite part and a simpler, possibly divergent part.

$$I_{N}^{n,\mu_{1}...\mu_{r}}(a_{1},...,a_{r};S) = \int d\bar{k} \frac{\left[q_{a_{1}}^{\mu_{1}} + \sum_{j \in S} \mathcal{C}_{ja_{1}}^{\mu_{1}} \left(q_{j}^{2} - m_{j}^{2}\right)\right] q_{a_{2}}^{\mu_{2}}...q_{a_{r}}^{\mu_{r}}}{\prod_{i \in S} \left(q_{i}^{2} - m_{i}^{2} + i\delta\right)} \\ - \sum_{j \in S} \mathcal{C}_{ja_{1}}^{\mu_{1}} \int d\bar{k} \frac{\left(q_{j}^{2} - m_{j}^{2}\right) q_{a_{2}}^{\mu_{2}}...q_{a_{r}}^{\mu_{a_{r}}}}{\prod_{i \in S} \left(q_{i}^{2} - m_{i}^{2} + i\delta\right)}$$

• Condition: $\sum_{j \in S} S_{ij} C^{\mu}_{ja} = \Delta^{\mu}_{ia}$

Completely analogue to scalar case!

Split scalar N-point integral into IR-finite part and a simpler, possibly divergent part.

$$I_{N}^{n,\mu_{1}...\mu_{r}}(a_{1},...,a_{r};S) = \int d\bar{k} \frac{\left[q_{a_{1}}^{\mu_{1}} + \sum_{j \in S} \mathcal{C}_{ja_{1}}^{\mu_{1}} \left(q_{j}^{2} - m_{j}^{2}\right)\right] q_{a_{2}}^{\mu_{2}}...q_{a_{r}}^{\mu_{r}}}{\prod_{i \in S} \left(q_{i}^{2} - m_{i}^{2} + i\delta\right)} \\ - \sum_{j \in S} \mathcal{C}_{ja_{1}}^{\mu_{1}} \int d\bar{k} \frac{\left(q_{j}^{2} - m_{j}^{2}\right) q_{a_{2}}^{\mu_{2}}...q_{a_{r}}^{\mu_{a_{r}}}}{\prod_{i \in S} \left(q_{i}^{2} - m_{i}^{2} + i\delta\right)}$$

- Condition: $\sum_{j \in S} S_{ij} C^{\mu}_{ja} = \Delta^{\mu}_{ia}$
- Solutions:

N≤6

N>7

$$\mathcal{C}_{ja}^{\mu} = \sum_{k \in S} \left(\mathcal{S}^{-1} \right)_{jk} \Delta_{ka}^{\mu} \qquad \qquad \mathcal{C}_{ja}^{\mu} = \dots \qquad \sum_{j \in S} \mathcal{C}_{ja}^{\mu} = 0$$

Completely analogue to scalar case!

Split scalar N-point integral into IR-finite part and a simpler, possibly divergent part.

$$I_{N}^{n,\mu_{1}...\mu_{r}}(a_{1},...,a_{r};S) = \int d\bar{k} \frac{\left[q_{a_{1}}^{\mu_{1}} + \sum_{j \in S} \mathcal{C}_{ja_{1}}^{\mu_{1}} \left(q_{j}^{2} - m_{j}^{2}\right)\right] q_{a_{2}}^{\mu_{2}}...q_{a_{r}}^{\mu_{r}}}{\prod_{i \in S} (q_{i}^{2} - m_{i}^{2} + i\delta)} \\ - \sum_{j \in S} \mathcal{C}_{ja_{1}}^{\mu_{1}} \int d\bar{k} \frac{(q_{j}^{2} - m_{j}^{2}) q_{a_{2}}^{\mu_{2}}...q_{a_{r}}^{\mu_{a_{r}}}}{\prod_{i \in S} (q_{i}^{2} - m_{i}^{2} + i\delta)}$$

- Condition: $\sum_{j \in S} S_{ij} C^{\mu}_{ja} = \Delta^{\mu}_{ia}$
- Solutions:

N>7

$$\mathcal{C}_{ja}^{\mu} = \sum_{k \in S} \left(\mathcal{S}^{-1} \right)_{jk} \Delta_{ka}^{\mu} \qquad \qquad \mathcal{C}_{ja}^{\mu} = \dots \qquad \sum_{j \in S} \mathcal{C}_{ja}^{\mu} = 0$$

$$I_N^{n,\mu_1...\mu_r}(a_1,\ldots,a_r;S) = -\sum_{j\in S} \mathcal{C}_{ja_1}^{\mu_1} I_{N-1}^{n,\mu_2...\mu_r}(a_2,\ldots,a_r;S\setminus\{j\}) \quad (N\geq 6)$$

Tobias Kleinschmidt (IPPP)

The Golem95 Library

- After reduction of higher N-point scalar/tensor integrals
- End point of (our) reduction: Basis functions:
 - Boxes (N=4): (4,6,8)-dimensional with up to (0,3,1) Feynman parameters in numerator
 - Triangles (N=3): (4,6)-dimensional with up to (3,1) Feynman parameters in numerator (possibly IR-divergent!)
 - Bubbles (N=2): Further reduction to 4-dimensional scalar integrals
 - P Tadpoles (N=1): 4-dimensional scalar integral
- Numerically stable functions! No inverse Gram determinants involved
- Further reduction can induces instabilities!

$$I_4^{n+2}(l;S) = \frac{1}{B} \left\{ b_l \, I_4^{n+2}(S) + \frac{1}{2} \sum_{j \in S} \mathcal{S}_{j\,l}^{-1} I_3^n(S \setminus \{j\}) - \frac{1}{2} \sum_{j \in S} b_j \, I_3^n(l;S \setminus \{j\}) \right\}$$

B proportional to Gram determinant!

$$I_4^{n+2}(l;S) = \frac{1}{B} \left\{ b_l \, I_4^{n+2}(S) + \frac{1}{2} \sum_{j \in S} \mathcal{S}_{j\,l}^{-1} I_3^n(S \setminus \{j\}) - \frac{1}{2} \sum_{j \in S} b_j \, I_3^n(l;S \setminus \{j\}) \right\}$$

B proportional to Gram determinant!

Mixed algebraic/numerical approach

$$I_4^{n+2}(l;S) = \frac{1}{B} \left\{ b_l \, I_4^{n+2}(S) + \frac{1}{2} \sum_{j \in S} \mathcal{S}_{j\,l}^{-1} I_3^n(S \setminus \{j\}) - \frac{1}{2} \sum_{j \in S} b_j \, I_3^n(l;S \setminus \{j\}) \right\}$$

B proportional to Gram determinant!

Mixed algebraic/numerical approach

- Find (one-dimensional) representation of form factors
- Switch to numerical evaluation if B is small

 $det(G) \propto x^2$

Tobias Kleinschmidt (IPPP)

The Golem95 Library

Edinburgh - 12.03.10 16

Public Version

lappweb.in2p3.fr/lapth/Golem/golem95.html

- Code, Instructions, Demos
- algebraic separation of IR poles
- caches avoid multiple evaluations
- All Form Factors coded ($N \le 6$, massless)

Public Version

lappweb.in2p3.fr/lapth/Golem/golem95.html

- Code, Instructions, Demos
- algebraic separation of IR poles
- caches avoid multiple evaluations
- All Form Factors coded (N≤6, massless)

some applications...

- → $gg \rightarrow WW \rightarrow IvIv$ Binoth, Ciccolini, Krämer, Kauer
- \rightarrow gg → HH, HHH Binoth, Karg, Kauer, Rückl
- → Hjj in WBF/GF Andersen, Binoth, Heinrich, Smillie
- → $pp \rightarrow b\overline{b}b\overline{b}$ Binoth, Greiner, Guffanti, Guillet, Reiter, Reuter

Massless form factors for QCD computations

• Full SM and beyond requires inclusion of massive loops!

- Massless form factors for QCD computations
- Full SM and beyond requires inclusion of massive loops!
- Reduction of scalar/tensor integrals not affected, but...
- Form factors much more complex
 - Find suitable (numerically stable) representations
 - Code (G. Heinrich, JP. Guillet) and Checks (M. Rodgers)

- Massless form factors for QCD computations
- Full SM and beyond requires inclusion of massive loops!
- Reduction of scalar/tensor integrals not affected, but...
- Form factors much more complex
 - Find suitable (numerically stable) representations
 - Code (G. Heinrich, JP. Guillet) and Checks (M. Rodgers)

Current Implementation

- Boxes: Now distinction between massless and massive case
 - Massless case as before
 - Massive case: analytic reduction
 - divergent: implemented in GOLEM
 - finite: Scalar Box Do call to LoopTools (T.Hahn)
- Triangles: Similar to Boxes, call to LoopTools for finite Triangles

The Golem95 Library

- Scalar Box D₀:
 - Analytic result known since 30 years
 - Contains approx. 50 DiLogs
 - Problem: find numerically stable representation depending on kinematics
 - Implemented by van Oldenborgh in FF/LoopTools

- Scalar Box D₀:
 - Analytic result known since 30 years
 - Contains approx. 50 DiLogs
 - Problem: find numerically stable representation depending on kinematics
 - Implemented by van Oldenborgh in FF/LoopTools
- Possible Solutions for GOLEM
 - Call to LoopTools/FF, provide standalone package containing FF
 - Find own stable analytical representations
 - Find one-dimensional representation for numerical integration

> For now: stick to point 1 and postpone discussion for later!

Golem95

- Coding almost completed
- Finalize Checks:
 - Cross checks with LoopTools
 - Self-consistency checks
 - Few points 'exceptional' understand and cure them

Golem95

- Coding almost completed
- Finalize Checks:
 - Cross checks with LoopTools
 - Self-consistency checks
 - Few points 'exceptional' understand and cure them

Massive version available soon! (~May) lappweb.in2p3.fr/lapth/Golem/golem95.html

Complex Masses needed for internal unstable particles

Complex Masses needed for internal unstable particles

- Proper description of processes involving EW-Bosons or top quarks
- Beyond SM physics: e.g. SUSY production processes, Cascade decays

Complex Masses needed for internal unstable particles

- Proper description of processes involving EW-Bosons or top quarks
- Beyond SM physics: e.g. SUSY production processes, Cascade decays

Analytic Continuation: $m^2 \rightarrow m^2 - im\Gamma$

Analytic Continuation: $m^2 \rightarrow m^2 - im\Gamma$

Recipe

- Recalculate steps in analytic evaluation of loop integrals and check for consistency with finite width.
- For higher rank form factors: find representations for save numerical integration of tensor integrals

Analytic Continuation: $m^2 \rightarrow m^2 - im\Gamma$

Recipe

- Recalculate steps in analytic evaluation of loop integrals and check for consistency with finite width.
- For higher rank form factors: find representations for save numerical integration of tensor integrals

Status

- Changed infrastructure (S-matrix and related properties)
- P Tadpoles (N=1): Continuation trivial
- Bubbles (N=2): Almost finished, to be checked

Going Imaginary

To Do

Triangles (N=3)

- Scalar case: analytic expressions exist. Recheck, find (stable and efficient) representation.
- Check current representations for numerical integration and make transition to imaginary case.

Going Imaginary

To Do

Triangles (N=3)

- Scalar case: analytic expressions exist. Recheck, find (stable and efficient) representation.
- Check current representations for numerical integration and make transition to imaginary case.

Boxes (N=4)

- Higher rank: find/alter representation to include imaginary masses
- Scalar case: Same problems as discussed before
 - Analytic expression exists (Le Duc Ninh[0902.0325]).
 Implemented in LoopTools.
 - Can we find one-dimensional representation for numerical integration?

LoopTools (Thomas Hahn)

- Based on FF (van Oldenborgh, Vermaseren)
- Up to N=5 scalar and tensor integrals
- Uses reduction from Denner, Dittmaier
- Form Factor representation from Denner/FF
- Complex masses implemented
- Caching system
- Switches to quadruple-precision at some internal points
- Community can only gain from having more than one Library
- Cross checks can help to find ideal method
- Which one is faster? More important: Which one is more stable?

The Golem95 Library

Summary

The Golem95 Library

O Reduction Formalism, valid for massless and massive particles

• For N≥6 algebraic reduction, lowering rank at same time

• For N≤5 form factor representation, avoiding inv. Gram determinants

O IR divergences extracted analytically in terms of triangles

• Switch between analytic and numerical evaluation for stable computation, even in exceptional kinematic regions

Massive Version available soon! Complex Masses implemented soonish!

lappweb.in2p3.fr/lapth/Golem/golem95.html

Tobias Kleinschmidt (IPPP)

The Golem95 Library