Excited meson spectroscopy and radiative transitions from LQCD

Christopher Thomas, Jefferson Lab

thomasc@jlab.org

Edinburgh, August 2010

With Jo Dudek, Robert Edwards, Mike Peardon, David Richards and the *Hadron Spectrum Collaboration*

Outline

- Introduction and motivation
- Excited spectra from LQCD method outline
- Results isovector and kaon spectra
- Photocouplings charmonium
- Summary and outlook

PR D79 094504 (2009) PRL 103 262001 (2009) PR D82 034508 (2010)

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c

Upcoming experimental efforts, also in the light meson sector

GlueX (JLab), BESIII, PANDA

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c

Upcoming experimental efforts, also in the light meson sector

GlueX (JLab), BESIII, PANDA

Exotics $(J^{PC} = 1^{-+}, 2^{+-}, ...)$? – can't just be a $q\bar{q}$ pair

e.g. hybrids, multi-mesons

Two spin-half fermions: ${}^{2S+1}L_J$ Parity: P = (-1)^(L+1)

Charge Conj Sym: $C = (-1)^{(L+S)}$

 $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \dots$

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c

Upcoming experimental efforts, also in the light meson sector

GlueX (JLab), BESIII, PANDA

Exotics $(J^{PC} = 1^{+}, 2^{+}, ...)$? – can't just be a $q\overline{q}$ pair e.g. hybrids, multi-mesons

Photoproduction at GlueX (JLab 12 GeV upgrade)

Renaissance in excited charmonium spectroscopy

BABAR, Belle, BES, CLEO-c

Upcoming experimental efforts, also in the light meson sector

GlueX (JLab), BESIII, PANDA

Exotics $(J^{PC} = 1^{+}, 2^{+}, ...)$? – can't just be a $q\bar{q}$ pair e.g. hybrids, multi-mesons

Photoproduction at GlueX (JLab 12 GeV upgrade)

Use Lattice QCD to extract excited spectrum...

... and photocouplings (tested in charmonium)

PR D77 034501 (2008), PR D79 094504 (2009)

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

$$O(t) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \Gamma_i \overleftarrow{D}_j \overleftarrow{D}_k \dots \psi(x)$$

More about operators later...

 \mathcal{X}

'Distillation' technology for constructing on lattice PR D80 054506 (2009)

(p = 0)

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

$$O(t) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \Gamma_i \overleftarrow{D}_j \overleftarrow{D}_k \dots \psi(x)$$

More about operators later...

 \mathcal{X}

'Distillation' technology for constructing on lattice PR D80 054506 (2009)

(p = 0)

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n t}}{2E_n} < 0|O_i(0)|n > < n|O_j(0)|0 >$$

Large basis of operators \rightarrow matrix of correlators

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Large basis of operators \rightarrow matrix of correlators

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Eigenvalues \rightarrow energies

$$\lambda^{(n)}(t)
ightarrow e^{-E_n(t-t_0)}$$
 (t >> t_o)

Large basis of operators \rightarrow matrix of correlators

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Eigenvalues \rightarrow energies

$$\lambda^{(n)}(t)
ightarrow e^{-E_n(t-t_0)}$$
 (t >> t_o)

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

$$\Omega^{(n)} \sim \sum_i v_i^{(n)} O_i$$

$$Z_i^{(n)} \equiv <0|O_i|n>$$

Large basis of operators \rightarrow matrix of correlators

$$C_{ij}(t) = <0|O_i(t)O_j(0)|0>$$

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Eigenvalues \rightarrow energies

$$\lambda^{(n)}(t)
ightarrow e^{-E_n(t-t_0)}$$
 (t >> t_0)

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

Z⁽ⁿ⁾ related to eigenvectors

$$\Omega^{(n)} \sim \sum_i v_i^{(n)} O_i$$

Var. method uses orthog of eigenvectors; don't just rely on separating energies

 $Z_i^{(n)} \equiv < 0|O_i|n>$

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

2D Example

Eigenstates of angular momentum are $e^{iJ\phi}$

On a lattice, the allowed rotations are $\phi \rightarrow \phi + \pi/2$

Can't distinguish e.g. J = 0 and J = 4

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:

Infinite number of *irreps*: J = 0, 1, 2, 3, 4, ...

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:

Infinite number of *irreps*: J = 0, 1, 2, 3, 4, ...

On lattice:

Finite number of *irreps*: A₁, A₂, T₁, T₂, E (and others for half-integer spin)

Irrep	A ₁	A_2	T_1	T ₂	E		
Dim	1	1	3	3	2		
Cont. Spin		0	1	2	3	4	
Irrep(s)		A ₁	T ₁	T ₂ + E	$T_1 + T_2 + A_2$	$A_1 + T_1 + T_2 + E$	

Construct operators which only overlap on to one spin in the continuum limit

Circular basis for (spatial) Γ and D \rightarrow transform as J=1

Couple using SU(2) Clebsch Gordans

 $\Gamma \times D \times D \times ...$ (up to 3 derivs)

definite J^{PC}

 $\langle \mathbf{0} | \mathcal{O}^{J,M} | J', M' \rangle = Z^{[J]} \delta_{J,J'} \delta_{M,M'}$

Construct operators which only overlap on to one spin in the continuum limit

Circular basis for (spatial) Γ and D \rightarrow transform as J=1

Couple using SU(2) Clebsch Gordans

 $\langle 0|\mathcal{O}^{J,M}|J',M'\rangle = Z^{[J]}\delta_{J,J'}\delta_{M,M'}$

definite J^{PC}

'Subduce' operators on to lattice irreps (J $\rightarrow \Lambda$):

$$\mathcal{O}^{[J]}_{\Lambda,\lambda} = \sum_{M} \mathcal{S}^{J,M}_{\Lambda,\lambda} \mathcal{O}^{J,M}$$

 $\Gamma x D x D x \dots$ (up to 3 derivs)

Construct operators which only overlap on to one spin in the continuum limit

Circular basis for (spatial) Γ and D \rightarrow transform as J=1

Couple using SU(2) Clebsch Gordans

 $\langle \mathbf{0} | \mathcal{O}^{J,M} | J', M' \rangle = Z^{[J]} \delta_{J,J'} \delta_{M,M'}$

 $\Gamma x D x D x \dots$ (up to 3 derivs)

definite J^{PC}

'Subduce' operators on to lattice irreps (J $\rightarrow \Lambda$):

$$\mathcal{O}_{\Lambda,\lambda}^{[J]} = \sum_{M} \mathcal{S}_{\Lambda,\lambda}^{J,M} \mathcal{O}^{J,M}$$

$$\langle 0|\mathcal{O}_{\Lambda,\lambda}^{[J]}|J',M\rangle = \mathcal{S}_{\Lambda,\lambda}^{J,M} Z^{[J]} \delta_{J,J'}$$

e.g.
$$\mathcal{O}^{[2]} \to T_2$$
 and $\mathcal{O}^{[2]} \to E$

Up to 26 ops in Λ^{PC} channel

Given continuum op \rightarrow same Z in each Λ (ignoring lattice mixing)

Construct operators which only overlap on to one spin in the continuum limit

Calculation details

- Dynamical calculation. Clover fermions
- Anisotropic ($a_s/a_t = 3.5$), $a_s \sim 0.12$ fm, $a_t^{-1} \sim 5.6$ GeV
- Two volumes: 16^3 (L_s \approx 2.0 fm) and 20^3 (L_s \approx 2.4 fm)

Lattice details in: PR D78 054501, PR D79 034502

- Only connected diagrams Isovectors (I=1) and kaons
- As an example: three degenerate 'light' quarks (N_f = 3, $M_{\pi} \approx 700$ MeV)
- Also (N_f = 2+1) M_π ≈ 520, 440, 400 MeV

~ 500 cfgs x 9 t-sources

SU(3) sym

Method details and results: PRL 103 262001 (2009), PR D82 034508 (2010)

Z values – spin 4

$$0|\mathcal{O}_{\Lambda,\lambda}^{[J]}|J',M\rangle = \mathcal{S}_{\Lambda,\lambda}^{J,M} Z^{[J]} \delta_{J,J'}$$

Given continuum op \rightarrow same Z for each subduced irrep

Lower pion masses

Lower pion masses

Exotics summary

Exotics summary

Kaons

Lower the light quark mass $(N_f = 2+1) - SU(3)$ sym breaking

M_{π} / MeV	700	520	440	400
${\rm M}_{\rm K}/~{\rm M}_{\pi}$	1	1.2	1.3	1.4

c.f. physical M_K/M_π = 3.5

Lower the light quark mass $(N_f = 2+1) - SU(3)$ sym breaking

M_{π} / MeV	700	520	440	400	c.f. physical
${\rm M}_{\rm K}/~{\rm M}_{\pi}$	1	1.2	1.3	1.4	$M_{\rm K}/M_{\pi}$ = 3.5

No longer is C-parity a good quantum number for kaons (or a gen. of C-parity)

Combine J^{P+} and J^{P-} operators

Physically, axial kaons [K₁(1270), K₁(1400)] are a mixture Suggested mixing angle $\approx 45^{\circ}$ (combination of exp and models)

But...

Kaons – Operator Overlaps

Kaons – Operator Overlaps

Kaons – Operator Overlaps

Kaons - spectrum

Kaons – Various pion masses

Kaons – Various pion masses

Multi-particle states?

Finite box – discrete allowed momenta → discrete spectrum of multiparticle states

Multi-particle states?

Charmonium

"Hydrogen atom" of meson spectroscopy

Potential models, effective field theories, QCD sum rules, ...

New and improved measurements at BABAR, Belle, BES, CLEO-c

Charmonium

"Hydrogen atom" of meson spectroscopy

Potential models, effective field theories, QCD sum rules, ...

New and improved measurements at BABAR, Belle, BES, CLEO-c

New resonances not easily described by quark model

Theoretical speculation: hybrids, multiquark/molecular mesons, ...

As yet, no exotic J^{PC} observed (1⁻⁺, 0⁺⁻, 2⁺⁻)

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Meson – Photon coupling

Charmonium radiative transitions

Below DD threshold radiative transitions have significant BRs

Meson – Photon coupling

Charmonium (quenched) – testing method

 $\overline{C_{ij}(t_f, t, t_i)} = < 0 |O_i(t_f) \ \bar{\psi}(t) \gamma^{\mu} \psi(t) \ O_j(t_i) |0>$

Charmonium (quenched) – testing method

 $C_{ij}(t_f, t, t_i) = <0|O_i(t_f) \ \bar{\psi}(t)\gamma^{\mu}\psi(t) \ O_j(t_i)|0>$

Conventional vector – pseudoscalar transition

Much larger than other $1^{--} \rightarrow 0^{-+} M_1$ transitions

 $\Gamma(J/\psi
ightarrow \eta_c \gamma) \sim 2 \, \, {
m keV}$

Much larger than other $1^{--} \rightarrow 0^{-+} M_1$ transitions

 $\Gamma(J/\psi
ightarrow \eta_c \gamma) \sim 2 \, \, {
m keV}$

Spectrum analysis suggests a vector hybrid (spin-singlet)

Spin-singlet hybrid: M₁ with no spin flip

c.f. flux tube model 30 – 60 keV

Exotic meson photocoupling

Exotic meson photocoupling

Same scale as many measured conventional charmonium transitions

BUT very large for an M₁ transition $\Gamma(J/\psi \rightarrow \eta_c \gamma) \sim 2 \text{ keV}$

Suggests a spin-triplet hybrid

Analogous to 1^{--} hybrid to pseudoscalar trans: M_1 with no spin flip

More charmonium results

Tensor – Vector transitions $\chi_{c2}, \chi'_{c2}, \chi''_{c2} \rightarrow J/\psi\gamma$ Identify 1³P₂, 1³F₂, 2³P₂ tensors from hierarchy of multipoles E₁, M₂, E₃

Vector – Psuedoscalar $J/\psi, \psi', \psi'' \rightarrow \eta_c \gamma$ Scalar – Vector $\chi_{c0} \rightarrow J/\psi \gamma \quad \psi', \psi'' \rightarrow \chi_{c0} \gamma$ Axial – Vector $\chi_{c1}, \chi'_{c1} \rightarrow J/\psi \gamma$

Dudek, Edwards & CT, PR **D79** 094504 (2009)

Summary and Outlook

Summary

- Our first results on light mesons technology and method work
- Spin identification is possible using operator overlaps
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrids)
- Isovectors and kaons
- Excited radiative transitions in charmonium (incl. exotic meson)
Summary and Outlook

Summary

- Our first results on light mesons technology and method work
- Spin identification is possible using operator overlaps
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrids)
- Isovectors and kaons
- Excited radiative transitions in charmonium (incl. exotic meson)

Outlook – ongoing work

- Multi-meson operators resonance physics
- Disconnected diagrams isoscalars and multi-mesons
- Baryons
- Photocouplings
- Lighter pion masses and larger volumes