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Outline

1. One-loop amplitudes and the unitarity method

2. Tadpole coefficients from exotic cuts
[with B. Feng]

3. Single cut integration
[with E. Mirabella]
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QCD background at LHC
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Next-to-Leading-Order Effects Are Large

Rapidity distribution of a Z boson at LHC. αs = 0.121 at MZ .
[Anastasiou, Dixon, Melnikov, Petriello]
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NLO reduces scale dependence
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Scale dependence of cross sections for W + 3 jets.
[ BlackHat collaboration (Berger et al.)]
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Prioritized Wish List, Next-to-Leading Order

[Les Houches Physics at TeV colliders 2007, NLO multileg working group: Summary

report; updated 2009]

Done [a] p p → t t̄ b b̄ background for tt̄H
Done [b] p p → t t̄ + 2 jets relevant for tt̄H

p p → V V b b̄ relevant for benchmark processes
p p → V V + 2 jets VBF → H → VV

Done [c] p p → V + 3 jets new physics
p p → b b̄ b b̄ Higgs and new physics
p p → t t̄ t t̄ new physics
p p → W b b̄ j new physics

[a]: Bredenstein, Denner, Dittmaier, Pozzorini; Bevilacqua, Czakon,

Papadopoulos, Pittau, Worek

[b]: Bevilacqua, Czakon, Papadopoulos, Worek

[c]: Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower,

Mâıtre; Ellis, Melnikov, Zanderighi
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One-loop amplitudes: analytic results

2006: 6 gluons. Complexity of 2 → 4 scattering in QCD
[Ellis, Giele, Zanderighi; Bedford, Berger, Bern, Bidder, Bjerrum-Bohr, Brandhuber,

RB, Buchbinder, Cachazo, Dixon, Dunbar, Feng, Forde, Ita, Kosower, Mastrolia,

Perkins, Spence, Travaglini, Xiao, Yang, Zhu]

Completed recently:
pp → Higgs + 2 jets. [Badger, Berger, Campbell, Del Duca, Dixon, Ellis, Giele,

Glover, Mastrolia, Risager, Sofianatos, Williams, Zanderighi]

pp → tt̄ [Badger, Sattler, Yudin]

0 → dūQQ̄ ¯̀̀ , W -mediated. [Badger, Campbell, Ellis]

Analytic techniques

I may have advantages in stability and speed,

I extend readily to larger numbers of external particles,

I and have numerical counterparts.
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One-Loop Amplitudes

In 4-dimensional massless theories, reduction of Feynman integrals
brings the one-loop amplitude to the form

A =
∑

i

di (box) +
∑

i

ci (triangle) +
∑

i

bi (bubble) + rational

where the master integrals have scalar structure and are known
explicitly. [in dim. reg.: Bern, Dixon, Kosower]

box triangle bubble

K1

K2 K3

K4

++c + c + c
1 2 3

c + c + c
2 3A 1

1−loop

Ruth Britto Constructing One-Loop Amplitudes



One-Loop Amplitudes

In D = 4− 2ε dimensions, and allowing for internal masses, the
result of reduction is

A =
∑

i

ei (pentagon) +
∑

i

di (box) +
∑

i

ci (triangle)

+
∑

i

bi (bubble) +
∑

i

ai (tadpole)
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Unitarity Cuts: Loops from Trees

∆A1−loop =

∫
dµ Atree

Left × Atree
Right

where
dµ = d4`1 d4`2 δ(4)(`1 + `2 − K ) δ(`2

1) δ(`2
2)

...
...

K

1

2l

l

By unitarity, this is the discontinuity of the amplitude across a
branch cut. [Cutkosky]
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Amplitudes from unitarity cuts

∆A1−loop =
∑

ci∆Ii

Tree level input.

+c + c + c
1 2 3

Matching 4-dimensional cuts can suffice to determine reduction
coefficients! Logarithms with unique arguments.
“Cut-constructibility”
[Bern, Dixon, Dunbar, Kosower]

But: we get several coefficients together in the same equation.

How do we evaluate a unitarity cut?
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Box Coefficients from Quadruple Cuts

[RB, Cachazo, Feng]

c

Generalized Unitarity: Try replacing all four propagators by delta
functions.

This operation isolates any given box.

In four dimensions, these four delta functions localize the integral
completely. This computation is very easy!
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Box Coefficients from Quadruple Cuts

The box coefficients computed from quadruple cuts are given by

1

2

∑
S

Atree
1 Atree

2 Atree
3 Atree

4

S is the set of all solutions of the on-shell conditions for the
internal lines.

S = {`| `2 = 0, (`− K1)
2 = 0, (`− K1 − K2)

2 = 0, (` + K4)
2 = 0}

Can these equations always be solved?

In complexified momentum space, there are exactly 2 solutions.
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From momentum vectors to spinors

Change from Lorentz 4-vector to spinor indices with Pauli matrices:

paȧ = σµ
aȧ pµ a, ȧ = 1, 2

For a null vector (massless particle):

0 = p2 = det(paȧ) =⇒ paȧ = λaλ̃ȧ.

Lorentz-invariant spinor products:

〈λ λ′〉 ≡ εab λa λ′b

[λ̃ λ̃′] ≡ εȧḃ λ̃ȧ λ̃′ḃ
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Spinor formulas are elegant

Gluons, tree level:

A(p−1 , p+
2 , p−3 , p+

4 , . . . , p+
n ) =

〈λ1 λ3〉4

〈λ1 λ2〉〈λ2 λ3〉 . . . 〈λn−1 λn〉〈λn λ1〉

[Parke, Taylor; Berends, Giele]
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Cut integrals

A closer look at the cut integral:

∆A1−loop =

∫
dµ Atree(−`, i , . . . , j , `−K ) Atree(K−`, j+1, . . . , i−1, `)

dµ = d4` δ+(`2) δ+((`− K )2)

Change to homogeneous (CP1) spinor variables with

`aȧ = t λaλ̃ȧ.

Integration measure:∫
d4` δ+(`2) (•) =

∫ ∞

0
dt t

∫
λ̃=λ̄

〈λ dλ〉 [λ̃ d λ̃] (•)

[Cachazo, Svrček, Witten]
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Spinor integration

[Anastasiou, RB, Buchbinder, Cachazo, Feng, Kunszt, Mastrolia]

I Change variables, ` = tλλ̃, and use the spinor measure,∫
d4` δ(`2)δ((`− K )2) =

∫
dt t

∫
〈λ dλ〉[λ̃ d λ̃]δ((tλλ̃− K )2)

I Use 2nd delta function to perform t-integral.

I Evaluate with residue theorem.

I Identify cuts of basis integrals and read off coefficients.

I We have given formulas for the resulting coefficients.
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Cuts of Master Integrals

∆I2 =

∫
〈λ dλ〉[λ̃ d λ̃]

K 2

〈λ|K |λ̃]2

∆I3 =

∫
〈λ dλ〉[λ̃ d λ̃]

1

〈λ|K |λ̃]〈λ|Q1|λ̃]

∆I4 =

∫
〈λ dλ〉[λ̃ d λ̃]

1

K 2

1

〈λ|Q1|λ̃]〈λ|Q2|λ̃]

Qj ≡ −Kj +
K 2

j

K 2
K
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Cutting the Amplitude

Starting point is the product of tree amplitudes:

C = c

∫
d4`

∏k+n
i=1 (2` · Pi )∏k
j=1(`− Kj)2

δ(`2) δ((`− K )2)

We define the following vectors:

Qj = −Kj +
Kj

2

K 2
K ,

Ri = Pi .

Then the cut integral can be rewritten:

C = c

∫
〈λ dλ〉[λ̃ d λ̃]

(K 2)n+1

〈λ|K |λ̃]n+2

∏k+n
i=1 〈λ|Ri |λ̃]∏k
j=1〈λ|Qj |λ̃]
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Reduction by partial fractions

Split the factors in the denominator with partial fractions.

Qk−1
j=1 〈λ|Rj |λ̃]Qk
i=1 〈λ|Qi |λ̃]

=
kX

i=1

1

〈λ|Qi |λ̃]

Qk−1
j=1 〈λ|RjQi |λ〉Qk

m=1,m 6=i 〈λ|QmQi |λ〉

Qn−1
j=1 〈λ|Rj |λ̃]

〈λ|K |λ̃]n〈λ|Q|λ̃]
=

Qn−1
j=1 〈λ|RjQ|λ〉
〈λ|KQ|λ〉n−1

1

〈λ|K |λ̃]〈λ|Q|λ̃]

+
n−2X
p=0

(−1)n−p

Qn−p−2
j=1 〈λ|RjQ|λ〉〈λ|Rn−p−1K |λ〉

Qn−1
t=n−p〈λ|Rt |λ]

〈λ|K |λ̃]p+2〈λ|QK |λ〉n−p−1
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Box coefficients

C [Kr ,Ks ,K ] =
1

2

(
T (N)(`)Dr (`)Ds(`)

)∣∣∣
λ→Psr,1,λ̃→Psr,2

+ {Psr ,1 ↔ Psr ,2}

Psr ,1 = Qs +

(
−Qs · Qr +

√
∆sr

Q2
r

)
Qr ,

Psr ,2 = Qs +

(
−Qs · Qr −

√
∆sr

Q2
r

)
Qr ,

∆sr = (Qs · Qr )
2 − Q2

s Q2
r .

Ruth Britto Constructing One-Loop Amplitudes



Triangle coefficients

C [Ks ,K ] =
1

2(N + 1)!
√

∆s
N+1〈Ps,1 Ps,2〉N+1

× dN+1

dτN+1

(
T (N)(`)Ds(`)〈λ|K |λ̃]N+1

∣∣∣
λ̃→Qsλ,λ→Ps,1−τPs,2

)∣∣∣∣
τ→0

+{Ps,1 ↔ Ps,2}

Ps,1 = Qs +

(
−Qs · K +

√
∆s

K 2

)
K ,

Ps,2 = Qs +

(
−Qs · K −

√
∆s

K 2

)
K ,

∆s = (Qs · K )2 − Q2
s K 2.
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Bubble coefficient

C [K ] = K 2
NX

q=0

(−1)q

q!

dq

dsq

 
B(0)

N,N−q(s) +
kX

r=1

NX
a=q

“
B(r ;a−q;1)

N,N−a (s) − B(r ;a−q;2)
N,N−a (s)

”!˛̨̨̨˛
s=0

,

B(0)
N,m(s) ≡

dN

dτN

0@ (2η · K)m+1〈λ|K |λ̃]N

N![η|η′K |η]N(m + 1)(K2)m+1〈λ η〉N+1
T (N)(`)

˛̨̨̨
˛ λ̃→(K+sη)·λ
λ→(K−τη′)·η

1A˛̨̨̨˛̨
τ→0

,

B(r ;b;1)
n,m (s) ≡

(−1)b+1

b!(m + 1)
√

∆r
b+1〈Pr,1 Pr,2〉b

×

db

dτb

 
〈λ|η|Pr,1]m+1〈λ|Qrη|λ〉b〈λ|K |λ̃]N+1

〈λ|K |Pr,1]m+1〈λ|ηK |λ〉n+1
T (N)(`)Dr (`)

!˛̨̨̨
˛λ̃→(K+sη)λ, λ→Pr,1−τPr,2

τ=0

B(r ;b;2)
n,m (s) ≡

(−1)b+1

b!(m + 1)
√

∆r
b+1〈Pr,1 Pr,2〉b

×

db

dτb

 
〈λ|η|Pr,2]m+1〈λ|Qrη|λ〉b〈λ|K |λ̃]N+1

〈λ|K |Pr,2]m+1〈λ|ηK |λ〉n+1
T (N)(`)Dr (`)

!˛̨̨̨
˛λ̃→(K+sη)λ, λ→Pr,2−τPr,1

τ=0
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D-dimensional cuts

We have been doing the unitarity cut in four dimensions, very
convenient for the spinor formalism.

We missed the “rational” terms.

Various ways to get rational terms of 4-d amplitudes:

I on-shell recursions at one loop [Bern, Dixon, Kosower; Berger, Dixon,

Forde, Kosower]

I Feynman diagrams with targeted reduction [Xiao, Yang, Zhu;

Binoth, Guillet, Heinrich]

I Special set of Feynman rules [Ossola, Papadopoulos, Pittau]

Or, compute D-dimensional cuts. [Ellis, Giele, Kunszt, Melnikov, Zanderighi;

Ossola, Papadopoulos, Pittau; Anastasiou, RB, Feng, Kunszt, Mastrolia; Badger]

Ruth Britto Constructing One-Loop Amplitudes



Unitarity in D = 4− 2ε dimensions

Orthogonal decomposition, keeping external momenta in 4
dimensions. [Bern, Chalmers, Mahlon, Morgan]∫

d4−2ε`4−2ε =
(4π)ε

Γ(−ε)

∫ 1

0

du u−1−ε

∫
d4`4.

where `4−2ε = `4 + `−2ε and `2
−2ε = K2

4 u.

Relate the `4 to a null 4-momentum ` via the cut momentum K .

`4 = ` + ξK , `2 = 0∫
d4`4 =

∫
dξ d4` (2` · K ) δ+(`2).

This is the delta function we need to start spinor integration; two
more delta functions from the original cut. Perform the 4-d cut
integral as before.
(Cf. methods by Ossola, Papadopoulos, Pittau; Forde; Ellis, Giele, Kunszt; Kilgore;

Giele, Kunszt, Melnikov; Badger)
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Cuts of D-dimensional Master Integrals

∆I2 =

∫ 1

0
du u−1−ε

∫
〈λ dλ〉[λ̃ d λ̃] K 2

√
1− u

1

〈λ|K |λ̃]2

∆I3 =

∫ 1

0
du u−1−ε

∫
〈λ dλ〉[λ̃ d λ̃]

√
1− u

1

〈λ|K |λ̃]〈`|Q|`]

∆I4 =

∫ 1

0
du u−1−ε

∫
〈λ dλ〉[λ̃ d λ̃]

√
1− u

K 2

1

〈`|Q1|`]〈`|Q2|`]
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D-dimensional unitarity algorithm

∆A =

∫ 1

0
du u−1−ε

∫
d4` δ(`2) δ(

√
1− u K 2 − 2K · `)

1. 4d cut: get u-dependent coefficients of master integrals.
u-dependence is polynomial. [RB, Feng, Yang; RB, Feng, Mastrolia]

2. Treat polynomial u-dependence of integrand. Two choices:

2.1 For each term in the polynomial, use shift identities to get
coefficients of 4d master integrals.

2.2 Use dimensionally shifted master integrals.

The u-integral is not done explicitly.
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Massive particles

Cut amplitude:∫ 1

0

du u−1−ε

∫
〈λ dλ〉[λ̃ d λ̃]

(√
∆[K 2,M2

1 ,M2
2 ]

K 2

)
(K 2)n+1

〈λ|K |λ̃]n+2

∏n+k
j=1 〈λ|Rj |λ̃]∏k
i=1〈λ|Qi |λ̃]

I For scalar particles, the formalism/formulas for integral
coefficients will look the same.

I Integral coefficients are polynomials in u.

I New element: tadpole and massless bubble integrals.

I Self-energy and mass renormalization contributions may
require gauge fixing. [Ellis, Giele, Kunszt, Melnikov].

Ruth Britto Constructing One-Loop Amplitudes



Tadpole approaches

1. Universal divergent behavior

2. Add an “auxiliary propagator”

3. Generalized unitarity: single cuts
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Tadpoles from IR + UV divergences

I Tadpoles and null bubble integrals are cut-free but diverge as
1/ε.

I The coefficients can sometimes be fixed by the known
universal UV/IR divergences.

I Examples:
4-gluon amplitude with a massive fermion loop [Bern, Morgan].
tt̄gg , using Mitov-Moch small-mass factorization result
[Badger].
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Tadpoles from double cut with auxiliary propagator

[RB, Feng]

Unitarity cuts are a powerful tool.

If we just had two propagators instead of one, we could apply our
formalism.

Let’s try inserting an extra propagator to the integrand.

We make use of the integrand classification offered for the
numerical algorithm of Ossola, Papadopoulos, Pittau (OPP).

The integrand is decomposable as a sum of master integrands and
“spurious terms” that integrate to zero.
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The OPP Decomposition: work at the integrand level

[Ossola, Papadopoulos, Pittau]

Decompose at the integrand level.

A1−loop =

∫
d4−2ε`

N(`)

D0D1 · · ·Dm−1

Di = (`− Ki )
2 −M2

i − µ2

Expand the integrand in terms of the scalar master integrands,

I (i) =
1

Di
, I (i ,j) =

1

DiDj
, I (i ,j ,r) =

1

DiDjDr
, . . .

along with “spurious” terms that integrate to zero.
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The OPP Decomposition: work at the integrand level

N

D̄0D̄1 · · · D̄m−1
=

∑
i

[a(i) + ã(`; i)]I (i) +
∑
i<j

[b(i , j) + b̃(`; i , j)]I (i ,j)

+
∑

i<j<r

[c(i , j , r) + c̃(`; i , j , r)]I (i ,j ,r)

+
∑

i<j<r<s

[d(i , j , r , s) + d̃(`; i , j , r , s)]I (i ,j ,r ,s).

The OPP algorithm (in 4d) is to solve D̄i (`) = 0 numerically,
multiply through, and substitute the solutions...

We will use this expansion differently.
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Tadpole coefficients via Auxiliary Propagator

Recall:

Di = (`− Ki )
2 −M2

i − µ2

Introduce an auxiliary denominator factor DK :

DK = (`− K )2 −M2
K − µ2

For now, K and M2
K are just variables.

Plan: Unitarity cut of the propagators D0 and DK .

Then, decouple effects of DK . Somewhat like single cut.

Ruth Britto Constructing One-Loop Amplitudes



Double cut with auxiliary propagator

Structure of the integrand and its cuts implies

bK (K , 0) = a(0) + [contributions from ã, b̃, c̃ , d̃ ]
cK (K , 0, i) = b(0, i) + [contributions from b̃, c̃ , d̃ ]

We’d like to decouple the “spurious contributions” as much as
possible.
Use double cuts to get cK (K , 0, i), b(0, i), bK (K , 0). Then solve
the equations for a(0).

a = tadpole coefficient
b = bubble coefficient
c = triangle coefficient

Ruth Britto Constructing One-Loop Amplitudes



Conditions for decoupling (most) spurious terms

K · Ki = 0, ∀i (1)

M2
K = M2

0 + K 2. (2)

Condition (2) can be taken as a definition of M2
K .

Condition (1) is treated formally.

Then there is only one spurious term that survives, and we can
solve the equations for a(0).
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Procedure

1. Construct the true integrand I = Atree
1−cut/D0 and the auxiliary

integrand IK = Atree
1−cut/(DKD0).

2. From IK , find bubble and triangle coefficients bK (K , 0) and
cK (K , 0, i).

3. From I , find bubble coefficients b(0, i).

4. The tadpole coefficient is given by imposing the conditions (1)
and (2) in

a(0) = bK (K , 0) +
∑

i

K 2
i −M2

i + M2
0

4K 2
i

[cK (K , 0, i)− b(0, i)]|µ2 .

Requires all K 2
i 6= 0.
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Generalized Cuts

The discontinuity across a branch cut was given by putting two
propagators on shell with delta functions.

This notion can be generalized.

It only helps to add more delta functions:
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Generalized Cuts

Triple cuts had found some applications. [Bern, Dixon, Kosower] But
using complex momenta in generalized cuts opened the door wide.

Applications of generalized cuts – with complex momenta:

I One-loop box coefficients [RB, Cachazo, Feng]

I Cut all propagators of multi-loop amplitudes
[Buchbinder, Cachazo; Bern, Carrasco, Johansson, Kosower]

I One-loop: sequential approach to box, triangle, bubble,
tadpole coefficients by quadruple, triple, double, single cuts
[Ossola, Papadopoulos, Pittau; Mastrolia; Forde; Kilgore; Ellis, Giele, Kunszt;

Giele, Kunszt, Melnikov]
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Generalized Unitarity: the Single Cut

[RB, Mirabella]

We find that we can extract coefficients after doing some of the
integration and then matching integrands.

The single cut has a single delta function and no momentum
channel ∫

d4`4 δ(`2
4)

The delta function integral is done by spinor techniques,
a bit like D-dimensional unitarity.

Again we introduce an extra momentum vector K .
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Generalized Unitarity: the Single Cut

See also the D-dimensional single cut of Glover, Williams used for
rational parts of gluon amplitudes.

Single-cut techniques based on the Feynman Tree Theorem need
different propagator prescriptions. [Catani, Gleisberg, Krauss, Rodrigo,

Winter; Caron-Huot]

Applications for planar multiloop supersymmetric integrands.
[Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka]
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Single Cut Technique

Replace one propagator by a delta function:

∆Di
[I ] ≡

∫
d4k δ(+)(Di )

(
N(k)

D0 · · ·Di−1Di+1 · · ·Dk

)
.

Decompose loop momentum to get a null variable:

k = ` + ξK , `2 = 0

Now K is free.

Expand K in two null momenta, K = p + q, to replace null ` by
three independent variables t, z , z̄ . [Mastrolia]

` = tλλ̃; λ = |p〉+ z |q〉 , λ̃ = |p] + z̄ |q] .
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Single Cut Technique

The single cut measure is∫ ∞

0

dt

4

∫
(idz ∧ dz̄)

K 2t2(1 + zz̄)√
t2(1 + zz̄)2 + u

,

where

u ≡ 4m2

K 2
.

For convenience, we set u = 0, equivalent to K 2 →∞.
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Single Cut Technique

Perform the
∫

dz dz̄ integral by the Generalized Cauchy Formula:

If G (z , z̄) is a primitive of F (z , z̄), then∫
D

dz dz̄ F (z , z̄) =

∮
∂D

dz G (z , z̄)− 2πi
∑

poles zj

Res{G (z , z̄), zj}.

The line integral dominates in the large K 2 limit. There z = Λe iα

and Λ is large.

In double cuts, the t integral was done by the second delta
function. Here, it diverges and we leave it undone.
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Single Cuts of Master Integrands

Primitives for master integrals:

tadpole ' Λ2t,

bubble ' log(Λ2),

triangle ' 1

Λ
log(Λ2),

box ' 1

Λ2
log(Λ2).

Discard terms subleading in Λ, then logs.
Single cut operator ∆̄ selects Λ2t terms.

But spurious terms have nonzero single cuts too!
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Some general single cuts

In,p ≡
(2 k · A1) · · · (2 k · Ap)

D0D1 · · ·Dn−1
, fi ≡ K 2

i −m2
i + m2

0

∆̄D0 [I1,1] = 0

∆̄D0 [I2,1] = −A1 · q
K1 · q

∆D0

[
1

D0

]
∆̄D0 [I2,2] = −f1

(A1 · q)(A2 · q)

(K1 · q)2
∆D0

[
1

D0

]
∆̄D0 [I3,1] = 0

∆̄D0 [I3,2] =
(A1 · q)(A2 · q)

(K1 · q)(K2 · q)
∆D0

[
1

D0

]
∆̄D0 [I3,3] =

2∑
i=1

fi
(A1 · q)(A2 · q)(A3 · q)

(K1 · q)(K2 · q)(Ki · q)
∆D0

[
1

D0

]
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Tadpole coefficients from single cuts

Since spurious terms contribute, need an integrand expansion
instead of master integrals.

OPP expansion is a good choice.

Take single cuts of all terms.

By doing another expansion of the numerator, in a related basis,
we get a system of equations involving the tadpole coefficient.

Most of the equations are unneeded for the tadpole coefficient.
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Summary

I Unitarity method at one loop constructs amplitudes from
branch cuts, using the fact of the expansion in known master
integrals.

I Spinor integration gives analytic formulas for coefficients of
master integrals.

I Massive particles bring new challenges for analytic solutions,
such as tadpole coefficients.

I Auxiliary propagators allow the usual double-cuts for tadpole
coefficients; need external masses.

I Or, we do the single cut integral directly and include spurious
terms. Procedure not fully systematic.

I Tadpole/single-cut techniques still need further study!
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