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Overview

� Motivation - open questions in spectroscopy
� What is needed for precision spectroscopy?
� Distillation: new approach to creating hadrons
� Spin on the lattice
� The problem with distillation...
� Spectroscopy calculations using distillation
� Conclusions and outlook



Gluonic excitations in light meson spectrum?

� QCD: constituent quarks and gluons are confined

quark model
constituents label

3⊗ 3̄ = 1⊕ 8 meson
3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 baryon

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10 glueball
3̄⊗ 8⊗ 3 = 1⊕ 8⊕ 8⊕ 8⊕ 10⊕ 10 hybrid

Where are the gluonic excitations?

� A long-standing open experimental question -
Compass, GlueX, PANDA, . . .

� Best option: “exotic” JPC = 0−−,odd−+,even+−



JLab and GlueX

� 12 GeV upgrade to
CEBAF ring

� New experimental
hall: Hall D

� New experiment:
GlueX

� Aim: photoproduce mesons, in particular the hybrid
meson (with intrinsic gluonic excitations

� Expected to start taking data 2014
� Edinburgh involvement - ForwardTagger@JLab in

CLAS 12



Panda@FAIR, GSI

� Extensive new
construction at GSI
Darmstadt

� Expected to start
operation 2014

PANDA: Anti-Proton
ANnihilation at DArmstadt

� Anti-proton beam from
FAIR on fixed-target.

� Physics goals include
searches for hybrids and
glueballs (as well as charm
and baryon spectroscopy).



The PDG view

� PDG lists 77 light
mesons

� 2 (!) 1−+ spin-exotics
� Most others fit into a

quark model
description

� Are there states with
constituent gluons?

� Models: Different
models disagree

� Lattice QCD can in
principle provide
answers directly from
QCD lagrangian



Motivation

With evolving techniques, lattice QCD should shed light
on questions such as:

� Last decade saw proliferation of new states above
open-charm threshold. What are they?

� The quark model predicts many more baryon
resonances than are seen. Why?

� Do hadronic molecules form? Tetraquarks?
� Are there intrinsic gluonic excitations in hadrons?
� Do glueballs exists as observable resonances?



Field theory on a Euclidean lattice

� Monte Carlo simulations are only
practical using importance
sampling

� Need a non-negative weight for each
field configuration on the lattice

Minkowski → Euclidean

� Problem: direct information on scattering is lost
and must be inferred indirectly.

� Benefit: can isolate lightest states in the spectrum.
� For excitations and resonances, must use a

variational method.



Quarks on the computer

� Most computer time spent handling quark dynamics
� Calculation of two-point correlator between

isovector quark bilinears:

C(t) =

∫

DUDψ̄Dψ ψ̄uΓaψd(t) ψ̄dΓbψu(0) e−SG[U]+ψ̄fMf [U]ψf

∫

DUDψ̄Dψ e−SG[U]+ψ̄fMf [U]ψf

=

∫

DU Tr ΓaM−1
d (t,0)ΓbM−1

u
(0, t) detM2[U] e−SG[U]

∫

DU detM2[U] e−SG[U]

� Quarks in lagrangian → determinant
� Quarks in measurement → propagators

Both present their own specific problems



Requirements for precision spectroscopy

� To study high-lying resonances requires:
� Operators that create highly excited states
� Operators that create multi-particle states
� Precise data on energy shifts in finite L
� Spin identification

� Need to exploit large variational basis of
operators

� These requirements are hard to achieve with
traditional lattice methods

� Need all elements of the quark propagator



Variational method in Euclidean QFT

� Ground-state energies found from t→∞ limit of:

Euclidean-time correlation function

c(t) = 〈0| Φ(t) Φ†(0) |0〉

=
∑

k,k′
〈0| Φ|k〉〈k|e−Ĥt|k′〉〈k′|Φ† |0〉

=
∑

k

|〈0| Φ|k〉|2 e−Ekt

� So limt→∞ c(t) = Ze−E0t

� Variational idea: find operator Φ to maximise
c(t)/c(t0) from sum of basis operators Φ =

∑

a caϕa

[C. Michael and I. Teasdale. NPB215 (1983) 433]
[M. Lüscher and U. Wolff. NPB339 (1990) 222]



Excitations

Variational method

If we can measure Cab(t) = 〈0|ϕa(t)ϕ†b(0)|0〉 for all a,b
and solve generalised eigenvalue problem:

C(t) v = λC(t0) v

then
lim

t−t0→∞
λk = e−Ekt

For this to be practical, we need:
� a ‘good’ basis set that resembles the states of

interest
� all elements of this correlation matrix measured



Efficient measurement

� Computing quark propagation in configuration
generation and observable measurement is
expensive.

� Objective: extract as much information from
correlation functions as possible.

Two problems:

1 Most correlators: signal-to-noise falls exponentially
2 Making measurements can be costly:

� Variational bases
� Exotic states using more sophisticated creation

operators
� Isoscalar mesons
� Multi-hadron states

� Good operators are smeared; helps with problem
1, can it help with problem 2?



Smearing

� Smeared field: ψ̃ from ψ, the “raw” quark field in
the path-integral:

ψ̃(t) = �[U(t)] ψ(t)

� Extract the essential degrees-of-freedom.
� Smearing should preserve symmetries of quarks.
� Now form creation operator (e.g. a meson):

OM(t) =
¯̃ψ(t)Γψ̃(t)

� Γ: operator in {s, σ, c} ≡ {position,spin,colour}
� Smearing: overlap 〈n|OM|0〉 is large for low-lying

eigenstate |n〉



Gaussian smearing

� Many recipes in use. One popular gauge covariant
choice is gaussian smearing:

lim
n→∞

�

1 +
σ∇2

n

�n

= exp(σ∇2)

� This acts in the space of coloured scalar fields on a
time-slice: Ns ×Nc
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� Data from as ≈ 0.12fm 163 lattice: 163 × 3 = 12288.



Distillation

“distill: to extract the quintessence of” [OED]

� Distillation: define smearing to be explicitly a very
low-rank operator. Rank is ND(� Ns ×Nc).

Distillation operator

�(t) = V(t)V†(t)

with Va
x,c

(t) a ND × (Ns ×Nc) matrix

� Example (used to date): �∇ the projection
operator into D∇, the space spanned by the
lowest eigenmodes of the 3-D laplacian

� Projection operator, so idempotent: �2
∇ = �∇

� limND→(Ns×Nc) �∇ = I

� Eigenvectors of ∇2 not the only choice. . .



Distillation: preserve symmetries

� Using eigenmodes of the gauge-covariant laplacian
preserves lattice symmetries

Ui(x)
g
−→ U

g
i (x) = g(x)Ui(x)g†(x+ ι̂)

�∇(x, y)
g
−→ �g∇(x, y) = g(x)�∇(x, y)g†(y)

� Translation, parity, charge-conjugation symmetric

� Oh symmetric
� Close to SO(3)

symmetric
� “local” operator
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Eigenmodes of the laplacian

� Lowest mode on a 323 ≡ (3.8 fm)3 lattice.



� Consider an isovector meson two-point function:

CM(t1−t0) = 〈〈ū(t1)�t1Γt1�t1d(t1) d̄(t0)�t0Γt0�t0u(t0)〉〉

� Integrating over quark fields yields

CM(t1 − t0) =

〈Tr{s,σ,c}
�

�t1Γt1�t1M−1(t1, t0)�t0Γt0�t0M−1(t0, t1)
�

〉

� Substituting the low-rank distillation operator �
reduces this to a much smaller trace:

CM(t1− t0) = 〈Tr{σ,D} [Φ(t1)τ(t1, t0)Φ(t0)τ(t0, t1)]〉

� Φ
α,a
β,b and τα,aβ,b are (Nσ ×ND)× (Nσ ×ND) matrices.

Φ(t) = V†(t)ΓtV(t) τ(t, t′) = V†(t)M−1(t, t′)V(t′)

The “perambulator”



Meson two-point function

t t
1 0

τ

τ

ΦΦ Γ Γ

Distilled meson two-point correlation function

CM(t1 − t0) = Tr{σ,D} [Φ(t1) τ(t1, t0) Φ(t0) τ(t0, t1)]



A tale of two symmetries

� Continuum: states classified by JP irreducible
representations of O(3).

O(3) Oh

� Lattice regulator breaks O(3)→ Oh

� Lattice: states classified by RP “quantum letter”
labelling irrep of Oh



Irreps of Oh

� O has 5 conjugacy classes (so Oh has 10)
� Number of conjugacy classes = number of irreps
� Schur: 24 = 12 + 12 + 22 + 32 + 32

� These irreps are labelled A1, A2, E, T1, T2

E 8C3 6C2 6C4 3C2

A1 1 1 1 1 1
A2 1 1 -1 -1 1
E 2 -1 0 0 2
T1 3 0 -1 1 -1
T2 3 0 1 -1 -1



Spin on the lattice

� Oh has 10 irreps: {Ag,u1 , A
g,u
2 , Eg,u, T

g,u
1 , T

g,u
2 ,},

where {g,u} label even/odd parity.
� Link to continuum: subduce representations of O(3)

into Oh

A1 A2 E T1 T2

J = 0 1
J = 1 1
J = 2 1 1
J = 3 1 1 1
J = 4 1 1 1 1

...
...

...
...

...
...

� Enough to search for degeneracy patterns in the
spectrum? 4 ≡ 0⊕ 1⊕ 2!



Example: JPC = 2++ meson creation operator

� Need more information to discriminate spins.
Consider continuum operator that creates a 2++

meson:

Φij = ψ̄

�

γiDj + γjDi −
2

3
δijγ ·D

�

ψ

� Lattice: Substitute gauge-covariant lattice
finite-difference Dlatt for D

� A reducible representation:

ΦT2 = {Φ12,Φ23,Φ31}

ΦE =

¨

1
p

2
(Φ11 −Φ22),

1
p

6
(Φ11 + Φ22 − 2Φ33)

«

� Look for signature of continuum symmetry:

〈0|Φ(T2)|2++(T2)〉 = 〈0|Φ(E)|2++(E)〉



Spin-3 identification: J. Dudek et.al., Hadron Spectrum Collab.
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Bad news - the price tag

� So far - good results on modest lattice sizes
Ns = 163 ≡ (1.9fm)3.

� Used ND = 64 for mesons, ND = 32 for baryons

The problem:
� To maintain constant resolution, need ND ∝ Ns

� Budget:
Fermion solutions construct τ O(Ns

2)

Operator constructions construct Φ O(Ns
2)

Meson contractions Tr[ΦτΦτ] O(Ns
3)

Baryon contractions B̄τττB O(Ns
4)

� 323 lattice: 64× (32
16)3 = 512 — too expensive.

� Some benefits in reduction in variance with Ns

� Can stochastic estimation technology help?



Stochastic estimation in the distillation space

� Construct a stochastic identity matrix in D:
introduce a vector η with ND elements and with

E[ηi] = 0 and E[ηiηj
∗] = δij

� Now the distillation operator is written

� = E[Vηη†V†] = E[WW†]

� Introduces noise into computations
� Dilution: “thin out” the stochastic noise with Nη

orthogonal projectors to make a variance-reduced
estimator of ID = E[WW†] =

∑Nη
k=1 E[VPkηη†PkV†],

with Wk = VPkη, a Nη × (Ns ×Nc) matrix



Stochastic estimation: baryon correlator

0 0.01 0.02 0.03 0.04 0.05 0.06

Ninv
-1/2

0

100

200

300

400

500

600

700

800

900

σ(
N

in
v)/

σ g

Time
Time + space even-odd
Time + colour
Time + spin
Time + space even-odd + colour
Time + space even-odd + spin
Time + spin + colour
Time + space even-odd + spin + colour
Time
Time + every other
Time + 2 blocks
Time + spin
Time + every fourth
Time + 4 blocks
Time + every eighth
Time + 8 blocks
Time + every sixteenth
Time + spin + every eighth
Distillation

� Convergence faster for noise in distillation space

[arXiv:1011.0481]



Stochastic estimation: I = 1,0 mesons
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Results: light hadrons



Isovector meson spectrum (mπ = 702MeV)
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Isoscalar correlation functions
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N and ∆ excitations

[Edwards et.al.: arXiv:1104.5152 ]
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Where are the two-hadron states?
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Charmonium



Charmonium: J−+
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Charmonium: J−−
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Charmonium: J++
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Charmonium: J+−
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Charmonium summary
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Scattering and resonances



Particle(s) in a box

� Spatial lattice of extent L with periodic boundary
conditions

� Allowed momenta are quantized: p = 2π
L (nx, ny, nz)

with ni ∈ {0,1,2, . . . L− 1}
� Energy spectrum is a set of discrete levels,

classified by p: Allowed energies of a particle of
mass m

E =

s

m2 +

�

2π

L

�2

N2 with N2 = n2
x

+ n2
y

+ n2
z

� Can make states with zero total momentum from
pairs of hadrons with momenta p,−p.

� “Density of states” increases with energy since
there are more ways to make a particular value of
N2 e.g. {3,0,0} and {2,2,1}→ N2 = 9



Avoided level crossings

� Consider a toy model with two states (a resonance
and a two-particle decay mode) in a box of
side-length L

� Write a mixing hamiltonian:

H =

�

m g

g 4π
L

�

� Now the energy eigenvalues of this hamiltonian are
given by

E± =
(m+ 4π

L )±
Æ

(m− 4π
L )2 + 4g2

2



Avoided level crossings
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Avoided level crossings

� Ground-state smoothly changes from resonance
to two-particle state

� Need a large box. This example, levels cross at
mL = 4π ≈ 12.6

� Example: m = 1 GeV state, decaying to two
massless pions - avoided level crossing is at
L = 2.5fm.

� If the decay product pions have mπ = 300 MeV, this
increases to L = 3.1fm



Lüscher’s method

� Relates the spectrum in a finite box to the
scattering phase shift (and so resonance properties)

Lüscher’s formula

δ(p) = −ϕ(κ) + πn

tanϕ(κ) =
π3/2κ

Z00(1;κ2)

κ =
pL

2π

� pn is defined for level n with energy En from the
dispersion relation:

En = 2
Æ

m2 + p2
n



Lüscher’s method

� Z00 is a generalised Zeta function:

Zjs(1, q2) =
∑

n∈Z3

rjYjs(θ,ϕ)

(n2 − q2)s

[M.Lüscher, Commun.Math.Phys.105:153-188,1986.]

� With the phase shift, and for a well-defined
resonance, can fit a Breit-Wigner to extract the
resonance width and mass.

δ(p) ≈ tan−1

 

4p2 + 4m2
π
−m2

σ

mσΓσ

!



I=2 ππ scattering
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I=2 ππ scattering
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Conclusions

� More sophisticated tools are needed for precision:
� exotic and excited state spectroscopy
� isoscalar spectroscopy
� calculations with multi-hadron states

� Distillation provides a useful framework to
develop better tools

� Good first results for
� excited mesons (I=1 and I=0)
� excited baryons
� charmonium
� mesons in flight

� Bad news: the price tag. Poor volume scaling
� Solutions include finding better distillation spaces

and using good stochastic estimation schemes.


