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Introductions

Introductory Materiel

The work presented here is based on several papers:

1 Inflection point inflation within supersymmetry by K. Enqvist A.
Mazumdar & PS JCAP 1006:020,2010, arXiv:1004.3724

2 Inflection point inflation: WMAP constraints and a solution to the
fine-tuning problem S. Hotchkiss, A. Mazumdar & S. Nadathur
arXiv:1101.6046

3 Super-Hubble Supergravity Inflation by A. Mazumdar, S. Nadathur,
& PS. arXiv:1105.0430
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What do we need to explain?

The Matter content of the Universe is:
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Of which the baryonic matter is explained by BBN:
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And finally we have the CMB measurements:
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The Standard Cosmology

The standard explanation of these observations comes in three parts:

Inflation flattens the universe and embeds Quantum fluctuations
into the CMB

Reheating produces the matter and radiation content of the
universe, this includes dark matter. This means that the inflaton
decay must excite the SM degrees of freedom.

The matter content eventually ends up as baryons and DM
undergoing BBN, this puts many constraints on the Particle Content.

Philip Stephens Solving the η-Problem



Introductions
Introduction to Observational Cosmology

The Standard Cosmology
Supersymettry

Improving the fine tuning
Supergravity Embedding

An Example
Conclusions

Inflation

For a homogeneous universe, the metric is given by

FRW-Metric

ds2 = dt2 + a(t)2(
dr2

1− kr2
+ r2[dΩ2]2) (1)

Via (the trace of) the Einstein Field Equations this yields an acceleration
equation:

ä

a
= −4πG

3
(ρ+ 3p) (2)

which is negative for most known forms of matter, however a (damped)
scalar field has ρ = −p = V (φ) and causes the universe to accelerate.
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slow-roll inflation

Under the assumption of slow roll, the friedmann equation is reduced to

H2 ≈ V (φ)

3M2
Pl

(3)

and the EQM is

3Hφ̇ ≈ −dV (φ)

dφ
. (4)

We can define the “slow-roll paramaters” by

ε =
M2

Pl

2

(
V ′(φ)

V (φ)

)2

η = M2
Pl

(
V ′′(φ)

V (φ)

)
(5)
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Inflationary Perturbations

A perturbation in the field (in fourier space) grows according to the
perturbed wave equation:

¨(δφk ) + 3H ˙(δφk ) +

(
k

a

)2

δk +
1

2
m2δφk = 0 (6)

This equation shows already two important features- for slow rolling
inflation the effective mass is small compared to the wave number of the
perturbation inside the horizon. As the perturbation grows the wave
number declines and the EQM are dominated by the inflaton mass, which
is negligible. Hence the perturbations are frozen in.
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From the perturbed equation of motion we can calculate the perturbation
spectrum:

PR =
1

24π2M4
Pl

V

ε
(7)

and the spectral tilt,
ns − 1 = −6ε+ 2η (8)
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Reheating

In the simplest model the field oscillates about its minimum and decays
into the SM+Dark matter. This puts strong constraints on the Particle
Physics.

Constraints

The vacuum state of the inflaton is the SM either before or after the
EW phase transition.

The couplings to DM are of the same order as the SM couplings.

The DM decouples long before BBN.

There is some baryogenesis.
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The Supersymettry Project

Supersymettry offers a chance to put all the pieces together in a
consistent framework.
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Flat Directions

Directions where the gradient of the potential will (classically) vanish are
generic in supersymettry. Consider a toy model with a superpotential:

W = S(φ2 − φ2
0) S =

σ√
2

φ =
(φ1 + iφ2)√

2
(9)

which has a potential

V (σ, φ) = φ4
0 + φ2

1(σ2 − φ2
0) + φ2

2(σ2 + φ2
0) +

(φ2
1 + φ2

2)2

4
(10)

and for σ > φ0 the field sits at φ1 = φ2 = 0 and is flat in the σ direction.
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In practice flat directions are lifted, either by loop corrections or by soft
supersymettry breaking terms.
In the toy model above, a loop correction will have the schematic form

φ4
0 → φ4(1 + α ln(

σ

M
)) (11)

where alpha includes a guage coupling, and these have been used to
produce both F-term and D-term inflation. We are more concerned with
the soft supersymettry breaking terms. In general a flat direction will be
lifted my some non renormalisable operator W = λφn/nMn−3
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Typical Flat Direction Potential

V (φ) =
1

2
m2
φφ

2 − A
λφ6

6M3
p

+
λ2φ10

M6
P

(12)

With a little foresight I will choose the parameterisation

A2

40m2
φ

= 1− 4α2 (13)

and some very simple calculus later:

The fine-tuning problem

V ′(φ) = 4α2m2
φφ0 hence ε ≈ M2

φ2
0

α4 (14)
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The Slow-Roll Paramater is related to observation by:

Density Perturbations

P
1/2
R ≈ 10−5 ≈ H

M
√
ε

(15)

The physical insight then, is that by lifting the potential, and increasing
H, one can lower the fine tuning on ε.
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An Example

Suppose that we choose the flat direction mass to be O(100GeV), then:
φ0 V0 α2

7.5× 1013GeV 1.5× 1031(GeV )4 10−22

7.5× 1013GeV 1040(GeV )4 3× 10−9

This is the maximum lift for mass O(100GeV), as for a lift greater than
m2M2

Plank the flat direction dynamics are irrelevant.

Philip Stephens Solving the η-Problem



Introductions
Introduction to Observational Cosmology

The Standard Cosmology
Supersymettry

Improving the fine tuning
Supergravity Embedding

An Example
Conclusions

Embedding

In practice, one can calculate explicitly the Non Renormalizable operators
that lift the flat directions in the MSSM. In particular we require that the
lowest dimension operator should not contain any other fields.
LLe and uud are the only viable candidates.
However, inflation in supersymettry tends to be broken due to the η
problem. That is the fact that supergravity predicts O(H) corrections to
the potential via the Kahler potential.
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Potentials

The corrections can be calculated from the familiar equation:

Supergravity

V = e
K

M2

[
(DΦW )KΦΦ(DΦ̄W̄ )− 3

M2
|W |2

]
(16)

We can understand the η problem easily, by supposing we had some
potential which generates inflation in global supersymettry, then we can
write

V = e
K

M2

[
H2

flatM
2
Pl

(
1 + f (

φ

M
)

)]
(17)

which for a minimal kahler potential K = |φ|2 generates a mass term of
size H.
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A repeat performance

Just as the NR operators cancelled the mass contributions to the flat
direction to produce a flat potential, so an appropriate choice of kahler
potential can generate an inflection point.
Phemomenologically we are looking for a potential of the form:

Potential

V = 3H2M2 +
cH

2
H2φ2 − aHλH

nMn−3
φn + λ2 φ2n−2

M2(n−3)
(18)
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Numerics

We can investigate this phenomenological potential numerically:
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Building Blocks

The right question

In what sense is the Phenomenological potential generic?

The first term just represents some energy density.

The mass term is from the exponential of the Kahler potential, and
any kahler potential term containing the minmal kahler potential will
have mass terms.

The final term just comes from the non-renormalisable operator
which is assumed to lift the flat directions in a high energy limit.
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The A-Term

The A-term is built out of cross terms between the superpotential field
with the vacuum energy, and the flat direction, multiplied by the cross
terms of the Kahler potential. We can make the following general
statements:

If a term linear in H exists, it dominates over all higher order terms
which are suppressed by H

M ≪ 1.

If a term linear in H exists then it is accompanied by a phase angle,
and by judicious choice I can give it a negative sign.

Simple examples with these properties do exist.

Beyond these statements you just have to work them out (tedious I
know!).
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An example

K = Kmin + b
2MPl

(Īφφ+ φ̄φ̄I ) and W = M2
I I + λ

6
φ6

M3
Pl

V = 3H2M2
Pl + 3(1 +b2)H2φ2−b2

√
3λH cos(θ)

φn

Mn−3
Pl

+λ2 φ
2n−2

M2n−6
Pl

(19)

and our condition for a Suitable POI is:

a2
H

8(n − 1)cH
= 1 + O(finetuning) (20)

and for n = 6 yields b ≈ 1.118 where we can read off the tuning from our
graph. Note that fixing the form of cH and aH has taken away one degree
of freedom and given us a point on our graph. In general there are many
interaction terms that will add a correction to the mass term without
disturbing the A-Term.
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A few subtlies

The toy model above has a slight issue, in that inflation doesnt actually
come to an end properly - it transitions from slow roll to fast roll. This is
more an issue with the toy model than with the theory - Our previous toy
model had a flat direction only for σ > φ0, we simply assume there is
some such transition shortly after slow roll ends.
The field I is assumed to be small throughout, this might not be trivial to
achieve in practice, as it could end up oscilating or reheating the universe.
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Conclusion

To recap:

An inflection point can be lifted to relax the fine tuning.

Supergravity corrections can generate inflationary dynamics on a flat
direction via a source term where the source is virtually any vacuum
energy density.

This requires an appropriate choice of Kahler potential, with fine
tuning of about 10−6 − 10−8.

Highlight: This bypasses the eta problem entirely as we no longer
require the supergravity corrections to be small.
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