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0. Prologue -- finite groups

ly,,
Wy, 1o
Yoy "t
W Finite group F = group finite number of elements 69‘3,,‘3/('

W,
e  Example: three permutations S3: Order [S3|=3!=6 (),(12),(23),(13),(123),(132) W)

W Dimensionality thm: (|F| =2 |IRREPS(F)|"2) = finite many of them

o [SsI= NP2

W Characterized by charactertable (Brauer hypothesis ....) Sz | {e} {a,bc} {d [}
'] 1 1 1
e conjugacy classes ¢’ ~ gcg’' geF [ | 1 ! 15
character X=tr[c] 'y | 2 Y 0

*  Almost all information e.g. Kronecker products (2 x 2)s3 = (1+1+2)s3

W Many others than permutation groups -- any finite group can be embedded in a permutation group
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. Introduction




Groups in “disguises”

consider S4: the group of permutation of four objects

W geometric definition through irreps: 4! =|S4 = 12 + 1’2+ 32 + 3’2 (dim thm)
(to each of four objects assign orthogonal vectors -- implement permutation linearly)

W abstract algebraic definition S4= << words a,b, | a’=1, b%=1,(ab)*=1>>

today’s particle physicist more familiar with Lie groups e.g. O(3)

% O@3) = << M3 | MsT™3=1 >>
equivalently all linear operations in three variables that leave x?+ y? + z2 invariant.

is there an analogous way to think about finite groups?




Yes: visual “proof” for SO(3) — S4

S+ isomorphic cubic-symmetry

(dval octahedron)
/ \

intersections of sphere S0(3)

/ and add. invariant = constant \

vertices of octahedron vertices of cube




Turning to the physicist’s vocabulary

Definition of a group < Conditions breaking into this group

Continuous
Symmetry
SO(3)/SU2)/5U(3)
Particle Solid State
Physics Physics
ch .@%
O :E.l' Choose Choose Sy, £
K,g& R Renresentai N ey, 0.
RSN epresentation invariant ef,_ Ia,f
ST Q + VEV polynomial V4
R X ro
v K,
e;\'t&‘ 9
Discrete
Symmetry
as Little Group

w This talk: - link between SSB & explicit breaking
- classification invariants, Yor Sy,
- necessary conditions to define group 7




Il. Main ideas ...

... discussed within SO(3) — S4




Spontaneous symmetry breaking (through vacuum)

W Consider fundamental irrep SO(3) i.e. 3¢=1)

vacuum vectorT = SO(2) symmetry remains ;not enough

/
\:/\1

Consider higher dimensional irrep | = 2,3,4,5 ; abandon geometric picture

Proceeding abstract manner:
Choose vacuum v, then H, = {g € SO(3) | R(g)v = v} c R(SO(3)) defines a subgroup

w SO(3) @ H throughVEV v

Explicit symmetry breaking (through invariants)

W Consider @i € 3¢=1) Liot= Lso@)(|P|?) + LoreakH)(P1, P2, P3)
Again any LpreakH) Will break SO(3) = H some subgroup

From our geometric “proof” Ls4= i *+ (p2* + 3 *




One-to-one link between spontaneous & explicit symmetry breaking

ics Yim

W How can polynomials be linked to vector spaces? spm('\ca\ asf&g‘\"
= Groups have polynomial representation functions tor £irreps

. cowplete sefO

4, 4 4 14
1[54] =xr +yY +z =c Y4’_4 + EYL_L’O —+ Y474
W This means that choosing a VEV:
pranchind rule

v~ (1,0,0,0,4/%,0,0,0,1) then 9j_4lg, — 1g, +... <

which is easily verified explicitly

W Extension to SU(3) involves finding SU(3) representation function
= complex spherical harmonics (studied in 60’s) (discuss latter)




Il.a Classification of invariants

- all polynomial invariants } general
- algebraic dependencies etc




Molien’s theorem (1897)

M — ho P™ vie
=(m)(P) Z det(1 — Ph) Z casy 10 cowp
h CR(H) m>0

R(H) is an irrep of a finite group H.
Thm: Positive coefficients h,, count the number of polynomial invariants of degree m.

Algebraic dependence

W For n variables there are n algebraically independent invariants (Noether 1916)
Those we call primary and all the other secondary invariants.

W Dependence of secondary invariants as follows:

AL

—92 . _
Ini — fO(Im17Im27Im3) + Zfl(j)(z-mlvz-ﬂm)z-mg) 'Inj 9

J




W Fact: If degrees primary & secondary invariants known then the Molien fct assumes ..

14+ ap, P
(1 — Pm1)(1 — Pm2)(1— Pms)

{Im172m271m37fn¢7--} :> MH(3)(P) —

The form of the Molien fct is not unambiguous thus no <= implication

W = establishing primary & secondary invariants is non-trivial

In practice: 1) guess form of Molien fct as above™
2) generate invariants
3) verify syzygies (great sport)
my - Mo - M3

Thm: number of secondary invariants = 1 + Z Ap, = Vi :

(2

W Generating invariants: symmetrize over group (Reynold operator)

1
I(z,y,2) = f(hoz,hoy,hoz),
R, 2,

for any ansatz f(x,y,z), | is an invariant




ll.b Exemplified with S4

W Molien function takes form (level of ambiguity low)

1+ P°
(1—-P2)(1—P*H(1— P8’

MS4(P) —

W The following (candidate) primary and secondary invariants are found
oSl =2 +y* + 2%, Zs[Su] = (zy2)?, Tu[Sa] =2 +y* + 2%,

To[Sa] = zyz(a® —y)(y* — 2%) (2" —27)

W The one and only syzygy is:

_ 1 5 1
To = TATuTs — 112616 — 112214226 +5 LT6 + 51, T — 9L, T, IE — 27T




ll.c Problem of sufficient criteria for breaking G — H

W Is the hard problem (in the sense that there’s no general stratetgy)
SO(3) famous Michel criterion ’79 counterexamples found

W lllustration of the problem:
Fact |: A4, S4 both leave |4 = x* + y* + z*invariant
Fact 2: A4 is a subgroup of S4
= |4 breaks SO(3) into S4 (if at all) but not into A4

W = imposing Ix, SO(3) breaks into maximal subgroup for which Ix is an invariant.

W ought to know entire subgroup tree from G to H (and their invariants)
not known in general .....
finding subgroups of say SU(n) seems case by case study -- more thought later




no general strategy — look example

l11. Finite subgroups of SU(3)

- Of interest flavour model building
- Alternatives to SU(3)r (eighfold way)
- Discretization of SU(3). for lattice e.g. Michael et al




Finite subgroups of SU(3) denoted by F3

W Classified in a classic book
Further analyzed (lattice ...)

onwards

analyzed further 8-fold way
Rescrutinized tri-bi-hype

W First SO(3) subgroups (3d irreps) -- then algebraic abstraction SU(3)

O

—

Dihedral D,=Z.X2Z»
GROUP
THEORY
AND ITS
APPLICATION

TO PHYSICAL
PROBLEMS

< =)

|
Morton Hamermesh

- symmetries of a molecule
- irreps smaller equal to 3

—

Crystallographic

v

cube=S4 tetrahedron=A4

icosahedron=As

“better” approximation to SO(3)




W Algebraic abstraction to SU(3) (not simple factor groups Z3 x ....)

Group Generators C-,D-type 2(X)-type
C,D-groups C(n,a,b) E, F(n,a,b]
= dihedral-like Din,a,b;d,r,s) E, Fin,a,b), Gid,r, s)
= trihedral A(3n?) =C(n,0,1),n = 2 E, F(n,0,1)
A(6n?) = D(n,0,1;2, 1, 1), n>2 |E, F(no0,1),G(21,1)
T =0Cin,1a), |:l a+a*)=nZ | E, F(n,1,a)
T60)=As ==Y E, F(2,0,1) H
) ¥(168) = PSL(2,T) E.M=F(71,2) N
crystallographic | y364) E, J=F(3,0,1) K
type (726 E, J=F(3,0,1) K, L
Y(2160) E,J=F(3,0,1), P=F(9,2,2) | K
¥(360¢) E, F(2,0,1), Q = G(6,3,5) H

known generators

- general C,D-groups not everything is known (continuous progress ...)
known: topological structure irreps smaller 3/6 respectively
unknown: order group subgroup (partial results)

_\_\_
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.

r D(m.db ‘l

| ace | i
General Database.... Wi )
work out sufficient criteria - \'/"_'“\

( Toel | [ Clnak) |

SU(3) — Fs3 (later) N




IV. Database: groups of order smaller 512 (61 of them)




v  Find all syzygies and thus primary & secondary invariants, Molien function, tensor-generating functions..
Finding syzygies is an interesting problem complexity (use polynomial basis ...)
Especially crystallographic ones of interest for mathematicians

C(26,1,3)

A(6x62)

W and here’s (3x13?)
the tree: -
€(39,1,3)
Ti169122)
C(74,1,10)
Ta718]
3(360¢)
3(2160)
A6x) 3(60)
D(9,1,1;2,1,1) 3(729)
2(369)
1A(3x9") c(18,1,1)
A(6x3?)
€(9,1,1)
A(3%62)

A(3x32)

(3x122)

Toif16 black:

maximal SU(3) subgroups

Tozp97
grey:
C(38,1,7) . .
Tissps0 maximal within database
T133111
Tiop7)
C(62,1,5
{ ) |C(28,1,2)|
1 C(49,10,6)
=
261 6x82)| | |c(14,1,2)
A(6x72)
A(3<87) 5(168)
A(6x4%) (37
C(21,1,2)
To
(3x10%)
A(6x52)
A(3x42 A
(3x4%) " s




V. Example criteria for breaking
SU@B3) — Fs




W SU@B)— F ... problem to know F3 ¢ H cSO(3)

- H might be continuous SO(3) and SU(2) and subgroups thereof
a) SO(3) know all the subgroups ok
b) notice all subgroups have cyclic generator E (x,y,z) 2 (y,z,x) SU(2) out of the game

- H mixed ... out for the same reason C\ “s’(\W

- H finite one of our list = work with explicit generators o

(s
280 eN’Xa  edding
gpecific e

010 gt 0 0 a0 0
E=lo001]., Firnabl=| 05° 0 , Gldrs)=10 0 4],
100 0 0 gt 0 =& =0
L f 1 e- e 100 1 111
H_E -y =11, J=10w0 |, K= 7 1w w |,
w, —1 00 w VIt b1 w? w
| 11w 300 ; -G g-a°
L= lww |, M=108 0], N= F-gg-pgt -1,
'l.,q't - '.l.."l? . gt = p S -
wl w 0 0 A g8 ¢ gt go
e0 0 -1 0 0
P=|0e0 ], Q=10 0 —-w]. (B.1)
00 ew 0 —w? 0




V.a Crystallographic groups

W Module embedding rather straighforward (just apply all generators to them.._

L4

Group | Molien function Invariant of lowest degree that breaks SU(3) — X(X)

E(BU) {1—132}(&;;;{1—13111} (@2 2 _ 2)( 2,2 _ 2)(@2 2 _ 2)

>(36¢) H”_P ;ng}iﬁi; (z8 + 22393 — 6z%yz + cy.) — 18z2y?22

21
16 ) {1_P4}(1i§ﬁ){1_P14} 3z + 2° Y+ y‘ T

(
(
(720) | ™ | 2°+1° +2° — 10a°’
(
(

]

182 36
216¢) (1—}391}?1{13?21;{1—1318) 2°(y° — 2°) +4°(2° — 2°) +
360¢') {I_Pa}[lljjff;){l_j::m) ﬁ + y ot .z + {Imgygz? -+ b (

) +b_ (222 +cy.)

famous Klein-quartic

—
_l_
N
e
o
|
ol
T

o :%[5¢3\/5+?:(\/Ei5~/§)}




Vb A(6n?), A(3n?),Tnp)-series

W are the known series amongst C/D subgroups -- dihedral-like

W insight comes from invariants & syzygies -- doable for general n (exceptional)!

Group | Type Invariants

A(3n?) | primary | Z5 = zyz,
I,=z"+y"+ 2"
Izn — mﬁn £ yﬁn £ zEn
secondary | Zs, = z°" + ¢°" 4 23"
syzyey | Lg, = 9I2" + 97T, Tp, + 212

n=32an

— 3T3T3 — 3T Ty + LT°

A(6n?) | primary | Zs = (zy2)?,

even n Lpn=z"+y"+ 2"

Izn — mﬁn £ yﬁn £ zEn

secondary | Zs,i3 = zyz(z" — y*)(y" — 2") (2" — z")

sy2y8y | Zonys = To | LT3, — 27TF — 9Z2/*T, Ty, + STL/*T8 + TAT, — 118 — ST212,

n

suggests the that the dihdral-like groups are generalizations
tetrahedron/cube by changing the euclidian metric

A4; 84 . A(3n2), A(6n2)n€2N 3»93 . — A(6n2)n€2N+1 .
oyt +2t - "yt " Ty +yz + 2w — a2y Yyt 2

l




W after tedious (yet fun -- geometric intuition) work we were able to show:

I3=xyz
Ig=(xyz)’
L=X"+y"+7"
L =x"y'"+y"7"+7"x"
JE'Ll’“_l:'.’ra*1.},1«1_|_},|::+lza_|_‘2:|:¢+1'.";a
In (meven) Im,f’j’
Ir 2n
2n{nodd) (n2)
In{noddj I" (nodd)
A(6n%) L
I3
IE a+l
(& 1) A(3n?)
I3
I2u+1




V.c Hint at questions of embedding

/\

equivalent embedding inequivalent embedding
= similarity transformation = distinct irrep
g =AgA’! e.g.As 3,3’

using Schur’s Lemma
& subgroup tree show
not “lost” anything

show image same or complex conjugate
(latter case particle/anti-particle)




VIi. The complex spherical harmonics




SU(3)-representation functions

eigenfunctions of Laplacian on SU(3)/SU(2)

formal construction SU(3) rank 2 -- basis Cartan subalgebra {T3,Tg} = | -8 y

Ty = 3(20, —yd,), Tx=.. highestweight (p0) < x g
x1 @ »

(p,q) = { polynom degree (p,q) in ({x.y,z},{X",y", ZDV{xx"+ yy'+ zz'} L4s i/ o
simplest &

comparison of SO(3) vs SU(3)

group ' SO(3) | SU(3)

rank 11 2 (p,g)

repres. fct. Yim h}';qu

fct. on manifold SO(3)/S0(2) ~ S, SU(3)/SU(2) ~ S

embedding — R® with 2 + ¢* + 2° =7° | — C° with 212; + 222, + 2323 = p°

labelling irrep (1) € Ny (p, q) € NZ

dim(irrep) (20 + 1) (p+1)(g+1)(p+q+2)/2

labelling states irrep | m = —I..1 r=0.g,s=0.p,t=0.p+r—3s)




Fun example (I, 1)su@) — S3
W Branching rule (1,1)suz— (1 + I’ + 3 2)s3 = one Sz-invariant in (I, 1) basis

W This smells of eightfold way let’s guess the invariant
S3 is a discrete flavour symmetry exchanging the x,y,z or u,d,s flavours

Z[S3]11 = ay*+yz+ 2y +yz+aty+ a2t =0[Ss]11- By

U[SS]I,l — (17_17071707_17_17_1) ’

* *

Baiy = {:cz* —yz* raT Yy - 2% ry” L — Yy, —y 2, —x" 2
y Y Y \/6 Y Y \/§ Y Y Y

W Construct Gell-Mann basis basis above (well in this case it’s just the structure constants
and check that S3-generators lead to a representation of S3
(this representation is reducible (1,0)su@) —(1+2)s3




VIl. The tensor-generating function




The Molien function counts the number of invariants
Is there an object that counts the number of covariants (=tensors)?

The (tensor)-generating function

Mu(e. £ P) = ny Zdetl—PRf(h)):chPn

n>0

Thm: positive c, number of €-tensor in the irrep f where Xc[h]=tr[Rc(h)] is the character
N.B. reduces to Molien fct for €=1,f=3; since Xi[h] = |

Similar program of syzygies, primary and secondary covariants etc applies (details paper....)




Important application: branching rules

W Invariant generating fct = Molien fct = (p,q) = (n'(pql + )r3 number of invariants in branching rule

W = c-Tensor generating fct = (p,q) = (n°p,q€ + )r3 number of €-tensors in branching rule

get the branching rules!!!

W computed all tensor-generating fcts for database -- example how it works:

n1):= SetDirectory[”... (your directory).../SUtree vip0/”];

In/2):= $RecursionLimit=260;
<<SUtree.m

m[3:= BranchingSU3[{3,0}, "A,"];

owp— {{3, 0}, 10, {1, 1}, {3, 1}, {3, 1}, {3, 1}}




Epilogue o s

U(3) rather than SU(3)
- classification not done (Ludl’ |0 some progress)
- thought U(3) = U(1)xSU(3) more complicated than F|xF3 (there can be twists)

Generalization to SU(n) ... how much is known
- Hanney & He 99 ““A Monograph on the classification of the discrete subgroups of SU(4)”

- Bet on “quadrihedral” groups Z, xZyxZ,XZ4 with invariants x" + y" + z" + w"and alike

¢ Language between explicit and spontaneous breaking
- how does potential look like which breaks SU(3) — F3?

- suppose explicit breaking terms are non-renormalizable
can potential in SSB-picture be renormalizable?
(examples in the literature give no answer ..)

“What'’s the landscape?”
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