Dilepton transverse momentum distribution variables at the Tevatron and the LHC

Simone Marzani IPPP and Durham University

University of Edinburgh

in collaboration with Banfi, Dasgupta and Tomlinson 7th March 2012

arXiv:1102.3594 arXiv:1110.4009 arXiv:12*xx.xxxx*

Outline

- Motivation for studying the EW boson transverse momentum
- Resumming large logarithms
- Novel variables
 - resummation to NNLL
 - matching to fixed order
- Comparison to data
- Conclusions and Outlook

The Drell-Yan Process

- The production of a lepton pair in hadron- hadron collisions is one of the most studied processes in particle phenomenology
 - Original paper: S. D. Drell and T. M. Yan, "Massive Lepton Pair Production In Hadron-Hadron Collisions At High-Energies," Phys. Rev. Lett. 25 (1970) 316 [Erratum-ibid. 25 (1970) 902].
- Strictly speaking it is the *only* process for which factorisation has been proven in hadron – hadron collisions

 QCD corrections are known to O(α_s²) : Hamberg, van Neervan and Matsuura, Nucl.Phys.B359:343-405

Transverse Momentum

- We want to study the transverse momentum distribution of the lepton pair (or of the gauge boson)
- It is sensitive to multi-gluon emission from the initial state partons, so it provides a test of QCD dynamics

Transverse Momentum

- We want to study the transverse momentum distribution of the lepton pair (or of the gauge boson)
- It is sensitive to multi-gluon emission from the initial state partons, so it provides a test of QCD dynamics

- This is a multi-scale problem
- The correct treatment of these effects goes beyond fixed order perturbation theory: we need resummation

Different Scales

• Let us call

- Q_T: transverse momentum of the Z boson
- M: invariant mass of the lepton pair (close to the Z mass)
- In principle we have to consider three different regimes

Fixed-order PT works: F.O. programs like MCFM, FEWZ, DYNNLO

PT works but large logs in M/Q_T : need for resummation

Non-perturbative domain

Need For Accuracy

- Very precise measurements together with accurate theoretical calculations can set limits on the non-perturbative contribution (intrinsic transverse momentum of the initial state quarks)
- An accurate theoretical description of the transverse momentum of weak boson is important for the extraction of the W mass (and hence relevant to top and Higgs physics)
- Our aim to improve and validate the theoretical tools using Tevatron data to be able to do accurate phenomenology at the LHC

Leading Log Resummation

- Fixed order calculations work well at large Q_T but fail when Q_T is small
- Large logarithms appear and we need to resum them

$$\frac{1}{\sigma}\frac{d\sigma}{dQ_T^2} \simeq \frac{1}{Q_T^2} \left[A_1 \alpha_s \ln \frac{M^2}{Q_T^2} + A_2 \alpha_s^2 \ln^3 \frac{M^2}{Q_T^2} + \dots \right]$$

• At leading logarithmic accuracy (LL) this expression can be resummed to

$$\frac{1}{\sigma} \frac{d\sigma}{dQ_T^2} \simeq \frac{d}{dQ_T^2} e^{-\frac{\alpha_s}{2\pi}C_F \ln^2 \frac{M^2}{Q_T^2}}$$

• This exhibits a Sudakov peak

Resummation Beyond LL

- Resummation is based on factorisation properties
- In the eikonal (soft) limit it easy to see that matrix elements factorise
- Less trivial is to properly treat momentum conservation, essential to go beyond LL
- We can achieve full factorisation in impact parameter space

$$\delta^{(2)}\left(\sum_{i=1}^{n}\underline{k}_{Ti} + \underline{Q}_{T}\right) = \frac{1}{(2\pi)^{2}}\int d^{2}\underline{b}e^{i\underline{b}\cdot\underline{Q}_{T}}\prod_{i=1}^{n}e^{i\underline{b}\cdot\underline{k}_{Ti}}$$

- One of the problems with this approach is then the inversion back to momentum space (more later)
- New source of suppression: kinematic cancellation rather than Sudakov

Q_T Resummation

- In the usual transverse momentum resummation one is interested in the magnitude Q_T
- Hence one integrates over the angle between *b* and Q_T
- This results into a Bessel function J_o

 $\frac{d\sigma}{dQ_T^2} \simeq \int_0^\infty db \, b \, J_0(bQ_T) e^{-R(b)} \Sigma(x_1, x_2, \cos\theta^*, bM)$

Q_T Resummation

- In the usual transverse momentum resummation one is interested in the magnitude Q_T
- Hence one integrates over the angle between *b* and Q_T
- This results into a Bessel function J_o

 $\frac{d\sigma}{dQ_T^2} \simeq \int_0^\infty db \, b \, J_0(bQ_T) e^{-R(b)} \Sigma(x_1, x_2, \cos\theta^*, bM)$

The radiator R contains all the large logarithmic contributions

Q_T Resummation

- In the usual transverse momentum resummation one is interested in the magnitude Q_T
- Hence one integrates over the angle between *b* and Q_T
- This results into a Bessel function J_o

 $\frac{d\sigma}{dQ_T^2} \simeq \int_0^\infty db \, b \, J_0(bQ_T) e^{-R(b)} \Sigma(x_1, x_2, \cos\theta^*, bM)$

The radiator R contains all the large logarithmic contributions Σ contains the nonlogarithmic terms convolved with the PDFs

State Of The Art For QT

- The resummation of the Q_T spectrum has been widely studied
- Different groups, different formalisms (e.g. Collins Soper Sterman, Catani et al., SCET)
- It is known to NNLL accuracy (with A⁽³⁾ recently computed by Becher & Neubert)

• At the moment, most of the approaches are fully inclusive in the leptons' momenta

Non-perturbative Effects

- In principle important as Q_T approaches Λ_{QCD}
- At this scale the factorisation the resummation is based on breaks down
- But, how big are they in practice ?
- Common models assume that incoming partons have an intrinsic primordial k_T with Gaussian distribution
- This translates into a Gaussian smearing in *b* space
- In principle we can compare perturbative results with data and constrain NP effects
- However no clear conclusions reached to date

- ResBos: resummation of the relevant logs at (N?)NLL (CSS formalism) matched to NLO
- NP effects are *x* dependent (small-*x* broadening fitted to semi-inclusive DIS data)
- NP effects of the same size as the perturbative uncertainty
- Data are not precise enough to separate different NP models

New Variables

- New variables introduced by the DØ collaboration for studying the transverse momentum of the Z boson
- Experimental viewpoint: one wants to measure angles rather than momenta

$$\underline{a}_{T} = \frac{\underline{Q}_{T} \times (\underline{p}_{T}^{(1)} - \underline{p}_{T}^{(2)})}{|p_{T}^{(1)} - p_{T}^{(2)}|}$$

transverse component of Q_T wrt leptons' thrust axis

Vesterinen and Wyatt (*et al.*) arXiv:0807.4956 [hep-ex] arXiv:1009.1580 [hep-ex]

New Variables

- New variables introduced by the DØ collaboration for studying the transverse momentum of the Z boson
- Experimental viewpoint: one wants to measure angles rather than momenta

$$\phi^* = \tan\left(\phi_{\rm acop}/2\right)\sin\theta^*$$

$$\underline{a}_{T} = \frac{\underline{Q}_{T} \times (\underline{p}_{T}^{(1)} - \underline{p}_{T}^{(2)})}{|p_{T}^{(1)} - p_{T}^{(2)}|}$$

transverse component of Q_T wrt leptons' thrust axis

Vesterinen and Wyatt (*et al.*) arXiv:0807.4956 [hep-ex] arXiv:1009.1580 [hep-ex]

New Variables

1 *

- New variables introduced by the DØ collaboration for studying the transverse momentum of the Z boson
- Experimental viewpoint: one wants to measure angles rather than momenta

$$\phi^* = \tan\left(\phi_{\rm acop}/2\right)\sin\theta^*$$

11

 θ^* : scattering angle in the frame where the leptons are aligned; it only depends on their pseudorapidities

> Vesterinen and Wyatt (et al.) arXiv:0807.4956 [hep-ex] arXiv:1009.1580 [hep-ex]

 $\Lambda *$

 $\underline{a}_T = \frac{\underline{Q}_T \times (\underline{p}_T^{(1)} - \underline{p}_T^{(2)})}{|\underline{p}_T^{(1)} - \underline{p}_T^{(2)}|}$

transverse component of Q_T wrt leptons' thrust axis

Better Experimental Resolution

- Study of the experimental resolution for different variables (times some rescaling factor)
- Dashed lines represent ratios of a given variable to the dilepton invariant mass Banfi et al.

DØ Results

- DØ compared their results to ResBos predictions
- Matching to NLO for Q_T only ?
- Small-*x* broadening is disfavoured by data
- Small-*x* broadening has consequences for LHC phenomenology (wider rapidity span)

Small-x Effects @ LHC

- Small-*x* broadening is supposed to be quite significant at the LHC
- The theoretical understanding is not satisfactory: need for a dedicated study

Theory Viewpoint

- From theory point of view: can we use the very well established Q_T resummation to study these new variables ?
- The a_T variable and its connection to Q_T already studied

Banfi, Duran and Dasgupta, arXiv:0909.5327

- The resummation for a_T is closely related to the one for Q_T
- Moreover, in the soft limit

$$\phi^* \simeq \frac{a_T}{M} = \left| \sum_i \frac{k_{Ti}}{M} \sin \phi_i \right| + \mathcal{O}\left(\frac{k_{Ti}^2}{M^2}\right)$$

• So we can adapt the Q_T formalism to study φ^* as well

- In the case of these new variables we are interested in one of the components of Q_T rather than its magnitude
- In the *b*-space formalism this produces a cosine function rather than the Bessel function J₀ we have encountered before

 $\frac{d\sigma}{d\phi^*} = \frac{\pi\alpha^2}{sN_c} \int_0^\infty d(bM) \cos(bM\phi^*) e^{-R(b)} \times \Sigma(x_1, x_2, \cos\theta^*, bM)$

- In the case of these new variables we are interested in one of the components of Q_T rather than its magnitude
- In the *b*-space formalism this produces a cosine function rather than the Bessel function J₀ we have encountered before

 $\frac{d\sigma}{d\phi^*} = \frac{\pi \alpha^2}{sN_c} \int_0^\infty d(bM) \cos(bM\phi^*) e^{-R(b)} \times \Sigma(x_1, x_2, \cos\theta^*, bM)$

The radiator R contains all the large logarithmic contributions

- In the case of these new variables we are interested in one of the components of Q_T rather than its magnitude
- In the *b*-space formalism this produces a cosine function rather than the Bessel function J₀ we have encountered before

$$\frac{d\sigma}{d\phi^*} = \frac{\pi\alpha^2}{sN_c} \int_0^\infty d(bM) \cos(bM\phi^*) e^{-R(b)}$$

Σ contains the non-logarithmic terms convolved with the PDFs

$$\times \Sigma(x_1, x_2, \cos \theta^*, bM)$$

The radiator R contains all the large logarithmic contributions

- In the case of these new variables we are interested in one of the components of Q_T rather than its magnitude
- In the *b*-space formalism this produces a cosine function rather than the Bessel function J₀ we have encountered before

$$\frac{d\sigma}{d\phi^*} = \frac{\pi\alpha^2}{sN_c} \int_0^\infty$$

Σ contains the non-logarithmic terms convolved with the PDFs $d(bM)\cos(bM\phi^*)e^{-R(b)}$

 $\times \Sigma(x_1, x_2, \cos \theta^*, bM)$

The radiator R contains all the large logarithmic contributions

- Important phenomenological consequences
- In the case of these new variables the kinematical cancellation is the dominant suppression mechanism and it prevents the formation of a Sudakov peak

The Radiator

• Let's have a closer look at the radiator

$$R(b) = Lg^{(1)}(\alpha_s L) + g^{(2)}(\alpha_s L) + \frac{\alpha_s}{\pi}g^{(3)}(\alpha_s L) + \cdots$$
$$L = \ln(\bar{b}^2 M^2)$$

• The NNLL contribution known for some times

Catani et al.

- The NNLL coefficient A⁽³⁾ was taken from threshold resummation
- A recent calculation in SCET showed that A⁽³⁾ is different for Q_T resummation Becher & Neubert
- We include this new contribution (although the effect is not big)

Issues With The b-integral

- In order to obtain the final result we have to invert the Fourier integral
- It is well known that this integral is ill-defined both at small- and large- *b*
- **Small-***b*: spurious singularity outside the resummation region
 - we switch off the resummation below b_{\min} such that $R(b_{\min})=O$
- Large-*b*: non perturbative region, Landau pole

$$g^{(1)} = -\frac{A^{(1)}}{\pi\beta_0} \left[1 + \frac{\ln(1 - \alpha_s\beta_0 L)}{\alpha_s\beta_0 L} \right]$$

- we cut off the integration above a given b_{max}
- Increasing b_{max} beyond $(3 \Lambda_{\text{QCD}})^{-1}$ doesn't affect our results

Checking The Logs

- Before presenting our final result for the resummed and matched distributions we have to check the logs
- We expand our resummation to second order and compare it to the fixed order result
- We use the fixed-order program MCFM Campbell & Ellis
- Because the resummation is NNLL we expect full control of all logarithms at $O(\alpha_s^2)$
- This will noticeably ease our matching procedure
- To test our understanding of the relation between φ* and Q_T, we plot the difference of these distributions

$Q_T VS \phi^*$

$$\begin{split} \Delta D(\epsilon) &= \frac{1}{\tilde{\sigma}_0} \frac{\mathrm{d}}{\mathrm{d} \ln \epsilon} \left[\tilde{\sigma} \left(N_1, N_2, \phi^* \right) \Big|_{\phi^* = \epsilon} - \tilde{\sigma} \left(N_1, N_2, Q_T / 2 \right) \Big|_{Q_T / 2 = \epsilon} \right] = \\ & \left(\frac{\alpha_s}{2\pi} \right)^2 \frac{\mathrm{d}}{\mathrm{d} \ln \epsilon} \left[\pi^2 C_F^2 \ln^2 \frac{1}{\epsilon^2} + \left(-24 C_F^2 \zeta(3) - 3\pi^2 C_F^2 - \frac{4}{3} \pi^3 C_F \beta_0 \right) \right] \\ & + \pi^2 C_F \frac{\left[\mathbf{\Gamma}_0(N_1) \mathbf{\tilde{f}}_1(N_1) \right]_q \mathbf{f}_{2\bar{q}}(N_2) + 1 \leftrightarrow 2}{\mathbf{f}_{1q}(N_1) \mathbf{f}_{2\bar{q}}(N_2) + 1 \leftrightarrow 2} \right] \ln \frac{1}{\epsilon} \end{split}$$

- The difference between the expansion of the resummation and the NLO curve vanishes at large |L|
- We have full control of next-to next-to leading logarithms at this order !

The Matched Result

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\phi^*}\right)_{\mathrm{matched}} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\phi^*}\right)_{\mathrm{resummed}} + \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\phi^*}\right)_{\mathrm{fixed order}} - \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\phi^*}\right)_{\mathrm{expanded}}$$

- Smooth matched result
- The matched curve and fixed order agree at large ϕ^*
- But they very much differ in a large region
- As anticipated the φ* distribution does not exhibits a peak (in contrast with the Q_T case)

Theoretical Uncertainty

- We have now a resummed and matched theoretical prediction
- Before comparing to data we have to assess the uncertainties of our calculation
- Previously we had set all the perturbative scales to the dilepton mass
- As usual we have renormalisation (μ_R) and factorisation (μ_F) scales but also resummation scale (μ_Q)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\phi^*} \left(\phi^*, M, \cos\theta^*, y\right) = \frac{\pi\alpha^2}{sN_c} \int_0^\infty \mathrm{d}b \, M \, \cos\left(bM\phi^*\right) e^{-R(\bar{b}, M, \mu_Q, \mu_R)} \times \sum \left(x_1, x_2, \cos\theta^*, b, M, \mu_Q, \mu_R, \mu_F\right)$

- The NLO part of the calculation also depends on μ_R and μ_F
- Varying these scales around the pair mass gives us information about terms beyond our accuracy (i.e. at least N³LL and NNLO)

NLL+LO vs NNLL+NLO

- All scales are varied independently
- Biggest contribution as small ϕ^* from μ_Q
- Band almost halved (20% to 10%)
- PDFs uncertainties mostly cancel in the ratio
- They are at the percent level

Comparison To ResBos

- Comparison of perturbative uncertainties
- ResBos tends to underestimate them
- Differences in the central values are due to NP contributions

- Good agreement, within uncertainties, for all rapidity bins
- NP form factors are not required to describe the data at low ϕ^{\ast}
- We could in principle take our central value and correct with NP effects

NP Gaussian Smearing

• Spread similar to the perturbative band

- This is misleading: we are ascribing pert. uncertainties to a universal NP parameter
- Consequences for related studies if we use were to use the fitted NP parameter

Moving To The LHC

- ATLAS and CMS experiments published measurements of the Q_T spectrum of the Z boson
- Our resummation is fully differential in the leptons' momenta so we can take into account all the cuts
- We will be able to make comparison with the data in the fiducial region with no need of extrapolation
- We also encourage the measurement of the φ* distribution for precise study of EW / QCD physics at the LHC

φ* At The LHC

A few words on the method

- Q_T resummation formalism established since 1980's
- Steadily progress has been achieved by several groups in the accuracy of the resummation. So why bother?
- The key point is the relation between Q_T and the other angular variables
- Technical viewpoint: very general set-up for the resummation:
 - Born configurations are taken from a FO program and re-weighted
 - This enables us to be fully differential in the final state's kinematics
 - Different (colour-singlet) final states: just change the Born

Conclusions

- The DØ collaboration introduced new variables to probe the QT spectrum of the Z boson
- The data are very accurate and disfavour non-perturbative models currently on the market (e.g. small-*x* broadening)
- We have performed a dedicated study of the ϕ^* variable
- We have computed a state-of-the-art perturbative prediction NNLL+NLO, with a faithful estimate of the theoretical uncertainties
- We have a good description of DØ, in all rapidity bins with no need of NP form factors, once the perturbative uncertainties are properly taken into account
- We are almost ready to compare our theoretical predictions to first LHC data for the Q_T spectrum

Outlook

- ATLAS and CMS have already measured the Q_T spectrum
- We encourage LHC measurements for these new variables as well
- Plans for a big theoretical / experimental project to study EW/QCD physics at the LHC:
 - data from ATLAS and LHCb (sensitive to different kinematics)
 - efforts to improves theoretical understanding (resummation, factorisation)
 - extension to di-bosons final states and Z H as well

Thank you very much for your attention