Outline

Motivations for Physics Beyond the Standard Mode

Motivations for Grand Unification

SU(5), SO(10) and E₆ Grand Unification

First and Second Generation Stermion Masses

Higgs and Third Generation Stermion Soft Masses

Conclusions

Constraining Grand Unification Scenarios using the First and Second Generation Sfermion Masses

António Pestana Morais

University of Glasgow

Supervisor: Dr. David J. Miller
Colaboration with: Prof P. Nath Pandita

April 18, 2012

PPT Seminar, University of Edinburgh

 $\begin{array}{c} \text{Outline} \\ \text{Motivations for Physics Beyond the Standard Model} \\ \text{Motivations for Grand Unification} \\ SU(5), SO(10) \text{ and } E_6 \text{ Grand Unification} \\ \text{First and Second Generation Sfermion Masses} \\ \text{Higgs and Third Generation Sfermion Soft Masses} \\ \text{Conclusions} \end{array}$

Hypothesis of Grand Unification

All forces and all matter become **one** at high energies regardless of how different they behave at low energy

Outline

Motivations for Physics Beyond the Standard Model Motivations for Grand Unification SU(5), SO(10) and E_G Grand Unification First and Second Generation Stermion Masses Higgs and Third Generation Stermion Soft Masses Conclusions

- Motivations for Physics Beyond the Standard Model
- Motivations for Grand Unification
- 3 SU(5), SO(10) and E_6 Grand Unification
- First and Second Generation Sfermion Masses
- Higgs and Third Generation Sfermion Soft Masses
- 6 Conclusions

Motivations for Physics Beyond the Standard Model

- For many years the SM proved to be the most accurate description of Particle Physics, however theoretical and experimental disagreements:
 - ullet Neutrino oscillations require mass \longrightarrow **not predicted** by the SM
 - Flavour symmetry not explained
 - No dark matter candidates
 - Hierarchy problem

The Idea of Grand Unification

The RG Evolution of the Gauge Couplings in the SM The MSSM RG Evolution Some desirable properties for SUSY GUTs

Motivations for GUTs: The Idea of Grand Unification

- The Standard Model of Strong and Electroweak interactions is described by the gauge group $G_{SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
- The main idea is to embed G_{SM} into a larger simple group

$$\bullet$$
 $SU(N)$, $SO(2N)$, $SO(2N+1)$, Sp_{2N} , G_2 , F_4 , E_6 , E_7 , E_8

• We will consider standard SU(5), SO(10) and E_6 candidates

The RG Evolution of the Gauge Couplings in the SM: GSM Charges

Matter fields spin $\frac{1}{2}$ (3 copies) $Q_L = (\mathbf{3}, \mathbf{2})_{\frac{1}{6}}$ $u_R^{\dagger} = (\overline{\mathbf{3}}, \mathbf{1})_{-\frac{2}{3}}$ $d_R^{\dagger} = (\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}}$ $L = (\mathbf{1}, \mathbf{2})_{-\frac{1}{2}}$ $e_R^{\dagger} = (\mathbf{1}, \mathbf{1})_1$

Higgs field spin 0 (1 copy)

$$H_u=(\mathbf{1},\mathbf{2})_{\frac{1}{2}}$$

Gauge fields spin 1

$$g = (8,1)_0$$

 $W^{1,2,3} = (1,3)_0$
 $B = (1,1)_0$

- Use these fields to study the RG evolution of the electroweak and strong gauge couplings
- At one-loop order: $\frac{d}{dt}(\alpha_i^{-1}) = -\frac{b_i}{2\pi}$ with $(b_1, b_2, b_3) = (44/10, -19/6, -7)$
- $b_N = \frac{11}{3}N \frac{1}{3}n_f \frac{1}{6}n_s$ for a generic SU(N)
- $b_1 = -\frac{2}{3} \sum_f X_f^2 \frac{1}{3} \sum_S X_S^2$ for a generic $U(1)_X$
- $\alpha_i = \frac{g_i^2}{4\pi}$ (linear running)
- $t = \log \frac{Q}{Q_0}$

- Precise EW measurements dictate that gauge couplings do not meet within the SM
- Need something else to overcome this problem...
- This is an other motivation to go beyond the SM
- What if we include SUSY?

The MSSM RG Evolution: G_{SM} Charges

• The minimal extension of the particle content of the SM includes:

Squarks and Sleptons spin 0 (3 copies)

$$egin{aligned} \widetilde{Q}_L &= (\mathbf{3}, \mathbf{2})_{rac{1}{6}} \ \widetilde{u}_R^* &= (\overline{\mathbf{3}}, \mathbf{1})_{-rac{2}{3}} \ \widetilde{d}_R^* &= (\overline{\mathbf{3}}, \mathbf{1})_{rac{1}{3}} \ \widetilde{L} &= (\mathbf{1}, \mathbf{2})_{-rac{1}{2}} \ \widetilde{e}_R^* &= (\mathbf{1}, \mathbf{1})_1 \end{aligned}$$

An extra Higgs doublet spin 0 (1 copy)

$$H_d = (\mathbf{1}, \mathbf{2})_{-\frac{1}{2}}$$

Higgsinos fields spin $\frac{1}{2}$ (1 copy)

$$\widetilde{H}_u = (\mathbf{1}, \mathbf{2})_{\frac{1}{2}}$$
 $\widetilde{H}_d = (\mathbf{1}, \mathbf{2})_{-\frac{1}{2}}$

Gauginos fields spin $\frac{1}{2}$

$$\widetilde{g} = (8,1)_0$$

 $\widetilde{W}^{1,2,3} = (1,3)_0$
 $\widetilde{B} = (1,1)_0$

 Use this extended particle content to study the RG flow of the electroweak and strong gauge couplings

Running of the gauge couplings in the MSSM

$$\alpha_i^{-1}(t) = \alpha_i^{-1}(t_G) + \frac{b_i}{2\pi}(t_G - t)$$

$$b_i = \begin{cases} (44/10, -19/6, -7) \\ (33/5, 1, -3) \end{cases}$$

SM MSSM

- The gauge couplings tend to unify at a scale $Q_{GUT} \sim 1.2 \times 10^{16} {\rm GeV}$
- ullet SUSY mass thresholds in the interval $Q_{SUSY}\sim 250 {
 m GeV}$ and $1 {
 m TeV}$
- Good reason towards Supersymmetric Grand Unified Theories

Some desirable properties for SUSY GUTs

- Flavor symmetry → Fermion mass hierarchy
- Natural explanation for neutrino masses (See-Saw mechanism)
- Charge quantization
- Proton stability
- Dark matter candidates (LSP)
- SUSY GUTs: natural extension of the SM

SU(5) Group Theory SU(5) embedding of G_{SM} SO(10) embedding of G_{SM} E_6 embedding of G_{SM}

SU(5) Grand Unification —SU(5) Group Theory

SU(5) is the simplest unification picture embedding G_{SM}

$$SU(5) \supset SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$

- The SU(5) operators U are 5×5 complex matrices such that $U^\dagger U=1$ and det(U)=1
- They may be represented by $U = exp(iT_a\omega_a)$ with T_a the generators
 - Gauge transformations on the fields

•
$$\psi_i \rightarrow \psi_i' = \mathbf{U}\psi_i$$

$$\bullet \quad \mathbf{A}_{\mu} \to \mathbf{A}_{\mu}' = \mathbf{U}\mathbf{A}_{\mu}\mathbf{U}^{-1} - \frac{i}{g_5}\partial_{\mu}\mathbf{U}\mathbf{U}^{-1}$$

•
$$Tr(T_a) = 0$$
, $T_a^{\dagger} = T_a$, $a = 1,...24$

- The generators obey the commutation relation $[T_a, T_b] = i f_{abc} T_c$
- Choose the usual normalization $Tr(T_aT_b)=\frac{1}{2}\delta_{ab}$

SU(5) Group Theory SU(5) embedding of G_{SM} SO(10) embedding of G_{SM} E_6 embedding of G_{SM}

The 24 SU(5) generators

$$SU(3)_C: T_{a_3} = \begin{pmatrix} \frac{1}{2}\lambda_{a_3} & 0\\ 0 & 0 \end{pmatrix}, a_3 = 1, ..., 8$$

$$SU(2)_L: T_{a_2} = \begin{pmatrix} 0 & 0\\ 0 & \frac{1}{2}\sigma_{a_2-20} \end{pmatrix}, a_2 = 21, 22, 23$$

$$U(1)_Y: T_{24} = \sqrt{\frac{3}{5}} \begin{pmatrix} -\frac{1}{3} & 0 & 0 & 0\\ 0 & -\frac{1}{3} & 0 & 0 & 0\\ 0 & 0 & -\frac{1}{3} & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2} & 0\\ 0 & 0 & 0 & \frac{1}{2} & 0 \end{pmatrix}$$

And 12 off-diagonal generators T_{a_4} with $a_4 = 9, ..., 20$

- - Highly suppressed by the GUT scale
 - The **unified** SU(5) covariant derivative may be written as $D_u^5 = \partial_\mu + ig_U T_a G_u^a$

$$\bullet \ g_U T_a G^a_{\mu} \supset g_s T_{a_3} \mathbf{G}^{a_3}_{\mu} + g T_{a_2} \mathbf{W}^{a_2}_{\mu} + g' \sqrt{\frac{5}{3}} T_{24} \mathbf{B}_{\mu}$$

 $\begin{array}{l} SU(5) \text{ Group Theory} \\ SU(5) \text{ embedding of } G_{SM} \\ SO(10) \text{ embedding of } G_{SM} \\ E_6 \text{ embedding of } G_{SM} \end{array}$

SU(5) embedding of G_{SM}

- The matter content of G_{SM} is unified in a $\overline{\bf 5} \oplus {\bf 10}$
- ullet The two Higgs SU(2) doublets are unified in a ${f 5}'$ and a ${f \overline{5}}'$
 - Doublet-triplet splitting problem assumed to be solved by some mechanism (e.g. orbifold compactification) [Kawamura, 0012125]

The 5 superpartners

$$\overline{f 5}
ightarrow ({f 1},{f 2})_{-rac{1}{2}} \oplus \left(\overline{f 3},{f 1}
ight)_{rac{1}{3}} = \widetilde{L} \oplus \widetilde{d}_R^*$$

The 10 superpartners

$$egin{aligned} \mathbf{10} &
ightarrow (\mathbf{1},\mathbf{1})_1 \oplus \left(\mathbf{\overline{3}},\mathbf{1}
ight)_{-rac{2}{3}} \oplus (\mathbf{3},\mathbf{2})_{rac{1}{6}} = \ \widetilde{e}_R^* \oplus \widetilde{u}_R^* \oplus \widetilde{Q}_L \end{aligned}$$

The 5' Higgs

$$\mathbf{5}' \to (\mathbf{1},\mathbf{2})_{\frac{1}{2}} \oplus (\overline{\mathbf{3}},\mathbf{1})_{-\frac{1}{3}} = H_u \oplus (T_u)$$

The 5 Higgs

$$\overline{\bf 5}' o ({f 1},{f 2})_{-{1\over 2}} \oplus (\overline{\bf 3},{f 1})_{{1\over 3}} = H_d \oplus (T_d)$$

SO(10) embedding of G_{SM} : The 16 and 10 reps

Maximal subalgebra of SO(10)

$$SO(10) \rightarrow SU(5) \otimes U(1)_x$$

16 and 10 branching rules

$$\mathbf{10} \rightarrow \mathbf{5}_2 \oplus \mathbf{\overline{5}}_{-2} \\ \mathbf{16} \rightarrow \mathbf{10}_{-1} \oplus \mathbf{\overline{5}}_3 \oplus \mathbf{1}_{-5}$$

From the branching rules of SU(5) down to G_{SM} we see that:

- 10 contains the SU(5) Higgs doublets and the colored Higgs triplets
- 16 contains the full SU(5) superpartners and an extra singlet 1_5
- Extra abelian gauge group U(1)_x

Right handed sneutrino

$$\mathbf{1}_5 \to (\mathbf{1}, \mathbf{1})_{(0, 5)} = \tilde{N}_R$$

• A SO(10) GUT naturally contains a right-handed neutrino/sneutrino University

SU(5) Group Theory SU(5) embedding of G_{SM} SO(10) embedding of G_{SM} E_6 embedding of G_{SM}

E_6 embedding of G_{SM} : The E_6SSM 27 representation

We consider as E_6 SUSY GUTs the exceptional supersymmetric model E_6SSM [King, Moretti and Nevzorov, 0510419, 0701064] [Athron, King, Miller, Moretti and Nevzorov, 0904.2169]

- Extended $G_{SM} \otimes U(1)_N$ at the low scale
- The extra $U(1)_N$ breaks close to the EW scale by the vev of an Higgs type singlet

Maximal subalgebra of
$$E_6$$

 $E_6 \rightarrow SO(10) \otimes U(1)_W$

Branching rule for 27
$$27 \rightarrow \left(1; \frac{4}{2\sqrt{6}}\right) \oplus \left(10; \frac{-2}{2\sqrt{6}}\right) \oplus \left(16; \frac{1}{2\sqrt{6}}\right)$$

$$SO(10) \rightarrow SU(5) \otimes U(1)_{\chi}$$

$$1 \rightarrow \left(1; \frac{1}{2\sqrt{10}}\right)$$

$$10 \rightarrow \left(5; \frac{2}{2\sqrt{10}}\right) \oplus \left(\overline{5}; \frac{-2}{2\sqrt{10}}\right)$$

$$16 \rightarrow \left(10; \frac{-1}{2\sqrt{10}}\right) \oplus \left(\overline{5}; \frac{3}{2\sqrt{10}}\right) \oplus \left(1; \frac{-5}{2\sqrt{10}}\right)$$

Branching of a 27-plet with normalized $\sqrt{40}Q_N$

$$\textbf{27} \rightarrow \textbf{10}_1 \oplus \overline{\textbf{5}}_2 \oplus \overline{\textbf{5}}_{-3} \oplus \textbf{5}_{-2} \oplus \textbf{1}_5 \oplus \textbf{1}_0$$

- \bullet To preserve unification needs two extra SU(2) doublets H' and $\overline{H'}$ from incomplete 27' and $\overline{27'}$
 - New doublet-25-plet splitting

SU(5) Group Theory SU(5) embedding of G_{SM} SO(10) embedding of G_{SM} embedding of G_{SM}

$$E_6 \longrightarrow SU(5) \otimes U(1)_N \longrightarrow G_{SM} \otimes U(1)_N$$

We can then identify the E_6SSM matter as

Ordinary squarks and sleptons

$$\begin{aligned} \mathbf{10}_{1} &\to (\mathbf{3}, \mathbf{2})_{\left(\frac{1}{6}, \ 1\right)} \oplus \left(\overline{\mathbf{3}}, \mathbf{1}\right)_{\left(-\frac{2}{3}, \ 1\right)} \oplus (\mathbf{1}, \mathbf{1})_{\left(1, \ 1\right)} = \\ Q_{L} &\oplus \tilde{u}_{R}^{*} \oplus \tilde{e}_{R}^{*} \\ \overline{\mathbf{5}}_{2} &\to (\mathbf{1}, \mathbf{2})_{\left(-\frac{1}{2}, \ 2\right)} \oplus \left(\overline{\mathbf{3}}, \mathbf{1}\right)_{\left(\frac{1}{3}, \ 2\right)} = L \oplus \tilde{d}_{R}^{*} \\ \mathbf{1}_{0} &\to (\mathbf{1}, \mathbf{1})_{\left(0, \ 0\right)} = \tilde{N}_{R} \end{aligned}$$

Higgs and exotics

$$\begin{aligned} \overline{\mathbf{5}}_{-3} &\to (\mathbf{1}, \mathbf{2})_{\left(-\frac{1}{2}, -3\right)} \oplus \left(\overline{\mathbf{3}}, \mathbf{1}\right)_{\left(\frac{1}{3}, -3\right)} = H_1 \oplus \overline{D} \\ \mathbf{5}_{-2} &\to (\mathbf{1}, \mathbf{2})_{\left(\frac{1}{2}, -2\right)} \oplus (\mathbf{3}, \mathbf{1})_{\left(-\frac{1}{3}, -2\right)} = H_2 \oplus D \\ \mathbf{1}_5 &\to (\mathbf{1}, \mathbf{1})_{\left(0, 5\right)} = S \end{aligned}$$

- Extra $U(1)_N$ predicts a Z' boson by its breaking at the soft SUSY scale
- \tilde{N}_R does not participate in gauge interactions \Longrightarrow gain mass at some intermediate high scale (10^{11–14} GeV)
- Predicts exotic quarks D and \overline{D}
- Unify ordinary matter, exotic matter and Higgs in a spinor representation

 Soft Supersymmetry Breaking
One-Loop RGEs

Solution of the RGEs

Universal Boundary Conditions

SU(5) Boundary Conditions SO(10) Boundary Conditions

 $E_{6} \ensuremath{\mathit{SSM}}$ First and Second Generation Sfermion Masses Sum Rules

Soft Supersymmetry Breaking

- If SUSY exists it has to be an exact symmetry spontaneously broken (SSB) in a Hidden sector [Martin, 9709356]
- Many breaking scenarios proposed
- Parametrize the unknown realistic scenario of SSB
 - Introduce terms that explicitly break supersymmetry
 - Couplings should be of positive mass dimensions → renormalizable theory, and given at the low scale
 - SOFT TERMS

Generic soft SUSY Lagrangian

$$\mathcal{L}_{soft} = -\left(\frac{1}{2}M_{ab}\lambda^a\lambda^b + \frac{1}{6}a^{ijk}\phi_i\phi_j\phi_k + \frac{1}{2}b^{ij}\phi_i\phi_j + t^i\phi_i\right) + h.c. - \left(m^2\right)^i_{j}\phi^{j*}\phi_i$$

Outline
Motivations for Physics Beyond the Standard Model
Motivations for Grand Unification
SU(5), SO(10) and E₀, Grand Unification
First and Second Generation Stermion Masses
Higgs and Third Generation Stermion Soft Masses

Soft Supersymmetry Breaking One-Loop RGEs Solution of the RGEs Universal Boundary Conditions SU(5) Boundary Conditions SO(10) Boundary Conditions $E_{K}SSM$ First and Second Generation Sfermion Masses

First and Second Generation Masses: 1-Loop RGEs

Sum Rules

[Ananthanarayan and Pandita, 0412125]

Squark and Slepton Soft Masses RGE

$$\begin{split} &16\pi^2\frac{dm_{OI}^2}{dt} = -\frac{32}{3}g_3^2M_3^2 - 6g_2^2M_2^2 - \frac{2}{15}g_1^2M_1^2 + \frac{1}{5}g_1^2S \\ &16\pi^2\frac{dm_{BR}^2}{dt} = -\frac{32}{3}g_3^2M_3^2 - \frac{32}{15}g_1^2M_1^2 - \frac{4}{5}g_1^2S \\ &16\pi^2\frac{dm_{BR}^2}{dt} = -\frac{32}{3}g_3^2M_3^2 - \frac{8}{15}g_1^2M_1^2 + \frac{2}{5}g_1^2S \\ &16\pi^2\frac{dm_{BR}^2}{dt} = -6g_2^2M_2^2 - \frac{6}{5}g_1^2M_1^2 - \frac{3}{5}g_1^2S \\ &16\pi^2\frac{dm_{BR}^2}{dt} = -6g_2^2M_2^2 - \frac{6}{5}g_1^2M_1^2 - \frac{3}{5}g_1^2S \\ &16\pi^2\frac{dm_{BR}^2}{dt} = -\frac{24}{5}g_1^2M_1^2 + \frac{6}{5}g_1^2S \end{split}$$

- No Yukawa and trilinear couplings contributions → possible to solve analytically
- $t \equiv \log(Q/Q_0)$, $M_{1,2,3}$ running gaugino masses and $g_{1,2,3}$ are de usual G_{SM} gauge couplings
- S is a D-term contribution

$$\bullet \ \ S \equiv Tr(Ym^2) = m_{H_u}^2 - m_{H_d}^2 + \sum_{generations} \left(m_{\tilde{Q}_L}^2 - 2 m_{\tilde{u}_R}^2 + m_{\tilde{d}_R}^2 - m_{\tilde{L}_L}^2 + m_{\tilde{e}_R}^2 \right)$$

•
$$\frac{dS}{dt} = \frac{66}{5} \frac{\alpha_1}{4\pi} S \Rightarrow S(t) = S(t_G) \frac{\alpha_1(t)}{\alpha_1(t_G)}$$

Soft Supersymmetry Breaking
One-Loop RGEs
Solution of the RGEs
Universal Boundary Conditions
SU (5) Boundary Conditions
SO(10) Boundary Conditions
E_SSM First and Second Generation Sfermion Masses

Solution of the RGEs

Squark and Slepton Running Masses

$$\begin{split} & m_{\tilde{u}_L}^2(t) = m_{\tilde{Q}_L}^2(t_G) + C_3 + C_2 + \frac{1}{36}C_1 + \Delta_{u_L} - \frac{1}{5}K \\ & m_{\tilde{d}_L}^2(t) = m_{\tilde{Q}_L}^2(t_G) + C_3 + C_2 + \frac{1}{36}C_1 + \Delta_{d_L} - \frac{1}{5}K \\ & m_{\tilde{u}_R}^2(t) = m_{\tilde{u}_R}^2(t_G) + C_3 + \frac{4}{9}C_1 + \Delta_{u_R} + \frac{4}{5}K \\ & m_{\tilde{d}_R}^2(t) = m_{\tilde{d}_R}^2(t_G) + C_3 + \frac{1}{9}C_1 + \Delta_{d_R} - \frac{2}{5}K \\ & m_{\tilde{e}_L}^2(t) = m_{\tilde{L}_L}^2(t_G) + C_2 + \frac{1}{4}C_1 + \Delta_{e_L} + \frac{3}{5}K \\ & m_{\tilde{\nu}_L}^2(t) = m_{\tilde{L}_L}^2(t_G) + C_2 + \frac{1}{4}C_1 + \Delta_{v_L} + \frac{3}{5}K \\ & m_{\tilde{e}_R}^2(t) = m_{\tilde{e}_R}^2(t_G) + C_1 + \Delta_{e_R} - \frac{6}{5}K \end{split}$$

$$\bullet \ \ C_i(t) = M_i^2(t_G) \left[A_i \frac{\alpha_i^2(t_G) - \alpha_i^2(t)}{\alpha_i^2(t_G)} \right] = M_i^2(t_G) \overline{c}_i(t), \ i = 1, 2, 3 \quad \text{[Ananthanarayana and Pandita, 0706.2560]}$$

Sum Rules

$$\bullet K(t) = \frac{1}{2b_1} S(t_G) \left(1 - \frac{\alpha_1(t)}{\alpha_1(t_G)} \right)$$

•
$$SU(2)_L \otimes U(1)_Y \rightarrow U(1)_O$$
 D-term

Soft Supersymmetry Breaking
One-Loop RGEs
Solution of the RGEs
Universal Boundary Conditions
\$V(5) Boundary Conditions
\$O(10) Boundary Conditions
\$S(010) Boundary Conditions
FaSSM First and Second Generation Sfermion Masses
Symmetries

Universal Boundary Conditions

- $\bullet \ \ \text{Common scalar mass} \ m_{\tilde{Q}_L}^2(t_G) = m_{\tilde{u}_R}^2(t_G) = m_{\tilde{d}_R}^2(t_G) = m_{\tilde{L}_L}^2(t_G) = m_{\tilde{e}_R}^2(t_G) = m_0^2$
- $m_{H_u}^2 = m_{H_d}^2$
- Common gaugino mass $M_1^2(t_G) = M_2^2(t_G) = M_3^2(t_G) = M_{1/2}^2$
- Since $S(t_G) = 0$, then S(t) is identically 0 at all scales, hence K = 0
- We are left with three unknowns: m_0 , $M_{1/2}$ and $\cos 2\beta$
 - Can be determined by measuring three sfermion masses, eg. \tilde{u}_L , \tilde{d}_L and \tilde{e}_R

$$\begin{pmatrix} M_{\tilde{u}_L}^2 \\ M_{\tilde{d}_L}^2 \\ M_{\tilde{e}_R}^2 \end{pmatrix} = \begin{pmatrix} 1 & c_{\tilde{u}_L} & \delta_{\tilde{u}_L} \\ 1 & c_{\tilde{d}_L} & \delta_{\tilde{d}_L} \\ 1 & c_{\tilde{e}_R} & \delta_{\tilde{e}_R} \end{pmatrix} \begin{pmatrix} m_0^2 \\ M_{1/2}^2 \\ \cos 2\beta \end{pmatrix}$$

- $\Delta_{\phi} \equiv \delta_{\phi} \cos 2\beta$
- $\bullet \ c_{\tilde{u}_L} \equiv \overline{c}_3(M_{\tilde{u}_L}) + \overline{c}_2(M_{\tilde{u}_L}) + \frac{1}{36}\overline{c}_1(M_{\tilde{u}_L})$
- $c_{\tilde{d}_L} \equiv \overline{c}_3(M_{\tilde{d}_L}) + \overline{c}_2(M_{\tilde{d}_L}) + \frac{1}{36}\overline{c}_1(M_{\tilde{d}_L})$
- $\bullet c_{\tilde{u}_I} \equiv \overline{c}_1(M_{\tilde{e}_R})$

Once m_0 , $M_{1/2}$ and $\cos 2\beta$ determined through $M_{\tilde{u}_L}$, $M_{\tilde{d}_L}$ and $M_{\tilde{e}_R}$, it is possible to obtain all the other low scale masses

One-Loop RGEs Solution of the RGEs Universal Boundary Conditions SU(5) Boundary Conditions SO(10) Boundary Conditions E₆SSM First and Second Generation Sfermion Masses Sum Rules

SU(5) Boundary Conditions

Common m_{10} for matter in a 10

$$m_{\tilde{Q}_L}^2(t_G) = m_{\tilde{u}_R}^2(t_G) = m_{\tilde{e}_R}^2(t_G) = m_{10}^2$$

Common gaugino mass $M_{1/2}$

$$M_1^2(t_G) = M_2^2(t_G) = M_3^2(t_G) = M_{1/2}^2$$

Common $m_{\overline{5}}$ for matter in a $\overline{5}$

$$m_{\tilde{L}_L}^2(t_G) = m_{\tilde{d}_R}^2(t_G) = m_{\overline{5}}^2$$

Higgs soft masses unrelated

$$m_{H_u}^2(t_G)=m_{\overline{\mathbf{5}'}}^2$$
 and $m_{H_d}^2(t_G)=m_{\overline{\mathbf{5}'}}^2$

- $S(t_G) = m_{\overline{\mathbf{5}}'}^2 m_{\overline{\mathbf{5}}'}^2 \Rightarrow K \neq 0$ S term
- Five unknowns: $m_{\overline{5}}$, m_{10} , $M_{1/2}$, $\cos 2\beta$ and K
- Can be determined by measuring five sfermion masses, eg. \tilde{u}_L , \tilde{d}_L , \tilde{e}_R , \tilde{u}_R and \tilde{d}_R

$$c_{\tilde{u}_{R}} \equiv \overline{c}_{3}(M_{\tilde{u}_{R}}) + \frac{4}{5}\overline{c}_{1}(M_{\tilde{u}_{R}})$$

•
$$c_{\tilde{d}_R} \equiv \overline{c}_3(M_{\tilde{d}_R}) + \frac{1}{9}\overline{c}_1(M_{\tilde{d}_R})$$

Soft Supersymmetry Breaking
One-Loop RGEs
Solution of the RGEs
Universal Boundary Conditions
SV(5) Boundary Conditions
SV(10) Boundary Conditions
SO(10) Boundary Conditions
FaSSM First and Second Generation Sfermion Masses
Sym Bules
Sym Bules

SO(10) Boundary Conditions

- Breaking $SO(10) \rightarrow SU(5) \otimes U(1)_x \rightarrow G_{SM}$ the rank is reduced from 5 to 4
 - D-term contributions from the additional $U(1)_x$ of the form $\Delta m_a^2 = -\sum_k Q_{ka} g_k^2 D_k$ [Kolda and Martin, 9503445]
- ullet Consider that the Higgs are embedded in a 10 of SO(10)

Common sfermion mass m_{16}

$$\begin{split} m_{\tilde{Q}L}^2(t_G) &= m_{\tilde{u}_R}^2(t_G) = m_{\tilde{e}_R}^2(t_G) = m_{\mathbf{16}}^2 + g_{10}^2 D \\ m_{\tilde{L}_L}^2(t_G) &= m_{\tilde{d}_R}^2(t_G) = m_{\mathbf{16}}^2 - 3g_{10}^2 D \\ m_{\tilde{N}_e}^2(t_G) &= m_{\mathbf{16}}^2 + 5g_{10}^2 D \end{split}$$

Common Higgs mass m_{10}

$$\begin{split} m_{\tilde{H}_u}^2(t_G) &= m_{\mathbf{10}}^2 - 2g_{10}^2 D \\ m_{\tilde{H}_d}^2(t_G) &= m_{\mathbf{10}}^2 + 2g_{10}^2 D \end{split}$$

- $S(t_G) = -4g_{10}^2 D$
- Five unknowns: m_{16} , g_{10}^2D , $M_{1/2}$, $\cos 2\beta$ and K
- Can be determined by measuring five sfermion masses, eg. \tilde{u}_L , \tilde{d}_L , \tilde{e}_R , \tilde{u}_R and \tilde{d}_R

 $\label{eq:continuous} Outline \\ \text{Motivations for Physics Beyond the Standard Model} \\ \text{Motivations for Grand Unification} \\ SU(5), SO(10) \text{ and } E_6 \text{ Grand Unification} \\ \text{First and Second Generation Sfermion Masses} \\ \text{Higgs and Third Generation Sfermion Soft Masses} \\ \text{Conclusions} \\$

Soft Supersymmetry Breaking
One-Loop RGEs
Solution of the RGEs
Universal Boundary Conditions
SV(15) Boundary Conditions
SV(10) Boundary Conditions
SO(10) Boundary Conditions
E_BSSM First and Second Generation Sfermion Masses
Sum Rules

$$\begin{pmatrix} M_{\tilde{u}_L}^2 \\ M_{\tilde{d}_L}^2 \\ M_{\tilde{e}_R}^2 \\ M_{\tilde{u}_R}^2 \\ M_{\tilde{d}_R}^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & c_{\tilde{u}_L} & \delta_{\tilde{u}_L} & -\frac{1}{2} \\ 1 & 1 & c_{\tilde{d}_L} & \delta_{\tilde{d}_L} & -\frac{1}{2} \\ 1 & 1 & c_{\tilde{e}_R} & \delta_{\tilde{e}_R} & -\frac{6}{2} \\ 1 & 1 & c_{\tilde{u}_R} & \delta_{\tilde{u}_R} & \frac{4}{5} \\ 1 & -3 & c_{\tilde{d}_R} & \delta_{\tilde{d}_R} & -\frac{2}{5} \end{pmatrix} \begin{pmatrix} m_{\mathbf{16}}^2 \\ g_{\mathbf{10}}^2 D \\ M_{\mathbf{1/2}}^2 \\ \cos 2\beta \\ K \end{pmatrix}$$

- $K(t) = \frac{-4g_{10}^2D}{2b_1} \left(1 \frac{\alpha_1(t)}{\alpha_1(t_G)}\right)$
- Masses are further constrained throught this relation

More explicitly and given that $X_5 = c_{\tilde{d_I}} - c_{\tilde{e}_R} + c_{\tilde{u}_L} - c_{\tilde{u}_R}$

$$\begin{split} K &= \frac{1}{6X_5(\sin^2\theta_W-1)} \Big[3c_{\tilde{u}_R} (M_{\tilde{d}_L}^2 - 2M_{\tilde{e}_R}^2 + M_{\tilde{u}_L}^2) + 3(c_{\tilde{d}_L} + c_{\tilde{u}_L}) \, (M_{\tilde{e}_R}^2 - M_{\tilde{u}_R}^2) \\ &- 3c_{\tilde{e}_R} (M_{\tilde{d}_L}^2 + M_{\tilde{u}_L}^2 - 2M_{\tilde{u}_R}^2) + 2 \left(c_{\tilde{u}_R} (M_{\tilde{d}_L}^2 + 3M_{\tilde{e}_R}^2 - 4M_{\tilde{u}_L}^2) - c_{\tilde{d}_L} (4M_{\tilde{e}_R}^2 - 5M_{\tilde{u}_L}^2 + M_{\tilde{u}_R}^2) \right. \\ &+ c_{\tilde{u}_L} (-5M_{\tilde{d}_L}^2 + M_{\tilde{e}_R}^2 + 4M_{\tilde{u}_R}^2) + c_{\tilde{e}_R} (4M_{\tilde{d}_L}^2 - M_{\tilde{u}_L}^2 - 3M_{\tilde{u}_R}^2) \right) \sin^2\theta_W \Big] \\ g_{10}^2 D &= \frac{1}{20X_5} \left[-c_{\tilde{u}_R} (2M_{\tilde{d}_L}^2 - 5M_{\tilde{d}_R}^2 + M_{\tilde{e}_R}^2 + 2M_{\tilde{u}_L}^2) - c_{\tilde{e}_R} (-3M_{\tilde{d}_L}^2 + 5M_{\tilde{d}_R}^2 - 3M_{\tilde{u}_L}^2 + M_{\tilde{u}_R}^2) \right. \\ &+ (c_{\tilde{d}_L} + c_{\tilde{u}_L}) (5M_{\tilde{d}_P}^2 - 3M_{\tilde{e}_R}^2 - 2M_{\tilde{u}_R}^2) + 5c_{\tilde{d}_R} (M_{\tilde{d}_L}^2 - M_{\tilde{e}_R}^2 + M_{\tilde{u}_L}^2 - M_{\tilde{u}_R}^2) \Big] \end{split}$$

- This was obtained for a particular choice of the Higgs in a 10-plet
- If Higgs in a 120, 126 or combinations? Different constraints?

Soft Supersymmetry Breaking
One-Loop RGEs
Solution of the RGEs
Universal Boundary Conditions
\$U(5) Boundary Conditions
\$O(10) Boundary Conditions
\$SO(10) Boundary Conditions
FaSSM First and Second Generation Sfermion Masses
Symmetries

*E*₆*SSM* First and Second Generation Sfermion Masses

- Extended $G_{SM} \otimes U(1)_N$ at the low scale
- ullet RGEs with an extra S' D-term contribution, additional fields contributing to the loops and a D-term from $U(1)_N$ breaking

Solution of the E_6SSM 1-Loop RGEs

$$\begin{split} & m_{\tilde{u}_L}^2(t) = m_{\tilde{Q}_L}^2(t_G) + C_3^{E_6} + C_2^{E_6} + \frac{1}{36}C_1^{E_6} + \frac{1}{4}C_1' + \Delta_{u_L} - \frac{1}{5}K - \frac{1}{20}K' - g_1'^2 D \\ & m_{\tilde{d}_L}^2(t) = m_{\tilde{Q}_L}^2(t_G) + C_3^{E_6} + C_2^{E_6} + \frac{1}{36}C_1^{E_6} + \frac{1}{4}C_1' + \Delta_{d_L} - \frac{1}{5}K - \frac{1}{20}K' - g_1'^2 D \\ & m_{\tilde{u}_R}^2(t) = m_{\tilde{u}_R}^2(t_G) + C_3^{E_6} + \frac{4}{9}C_1^{E_6} + \frac{1}{4}C_1' + \Delta_{u_R} + \frac{4}{5}K - \frac{1}{20}K' - g_1'^2 D \\ & m_{\tilde{d}_R}^2(t) = m_{\tilde{d}_R}^2(t_G) + C_3^{E_6} + \frac{1}{9}C_1^{E_6} + C_1' + \Delta_{d_R} - \frac{2}{5}K - \frac{1}{10}K' - 2g_1'^2 D \\ & m_{\tilde{e}_L}^2(t) = m_{\tilde{L}_L}^2(t_G) + C_2^{E_6} + \frac{1}{4}C_1^{E_6}C_1' + \Delta_{e_L} + \frac{3}{5}K - \frac{1}{10}K' - 2g_1'^2 D \\ & m_{\tilde{e}_R}^2(t) = m_{\tilde{e}_R}^2(t_G) + C_2^{E_6} + \frac{1}{4}C_1^{E_6}C_1' + \Delta_{v_L} + \frac{3}{5}K - \frac{1}{10}K' - 2g_1'^2 D \\ & m_{\tilde{e}_R}^2(t) = m_{\tilde{e}_R}^2(t_G) + C_1^{E_6} + C_1' + \Delta_{e_R} - \frac{6}{5}K - \frac{1}{20}K' - g_1'^2 D \end{split}$$

One-Loop RGEs
Solution of the RGEs
Universal Boundary Conditions
SU (5) Boundary Conditions
SO(10) Boundary Conditions
For SSM First and Second Generation Stermion Masses
Sum Rules

$$\bullet \ \ C_i^{E_6}(t) = M_i^2(t_G) \left[A_i^{E_6} \frac{\alpha_i^2(t_G) - \alpha_i^2(t)}{\alpha_i^2(t_G)} \right] = M_i^2(t_G) \overline{c}_i^{E_6}(t)$$

•
$$D_N = \frac{1}{20}K' + g_1'^2D$$

$$\bullet \ \ \text{Common scalar mass} \ m_{\tilde{Q}_L}^2(t_G) = m_{\tilde{u}_R}^2(t_G) = m_{\tilde{d}_R}^2(t_G) = m_{\tilde{L}_L}^2(t_G) = m_{\tilde{e}_R}^2(t_G) = m_{27}^2$$

• Five unknowns: m_{27} , D_N , $M_{1/2}$, $\cos 2\beta$ and K

• Can be determined by measuring five sfermion masses, eg. \tilde{u}_L , \tilde{d}_L , \tilde{e}_R , \tilde{u}_R and \tilde{d}_R

$$\begin{pmatrix} M_{\tilde{u}_L}^2 \\ M_{\tilde{d}_L}^2 \\ M_{\tilde{e}_R}^2 \\ M_{\tilde{u}_R}^2 \\ M_{\tilde{d}_D}^2 \end{pmatrix} = \begin{pmatrix} 1 & c_{\tilde{u}_L} & \delta_{\tilde{u}_L} & -\frac{1}{5} & -1 \\ 1 & c_{\tilde{d}_L} & \delta_{\tilde{d}_L} & -\frac{1}{5} & -1 \\ 1 & c_{\tilde{e}_R} & \delta_{\tilde{e}_R} & -\frac{6}{5} & -1 \\ 1 & c_{\tilde{u}_R} & \delta_{\tilde{u}_R} & \frac{4}{5} & -1 \\ 1 & c_{\tilde{d}_R} & \delta_{\tilde{d}_R} & -\frac{2}{5} & -2 \end{pmatrix} \begin{pmatrix} m_{\mathbf{27}}^2 \\ M_{1/2}^2 \\ \cos 2\beta \\ K \\ D_N \end{pmatrix}$$

• Note that
$$D = (Q_d^N v_d^2 + Q_u^N v_u^2 + Q_s^N s^2)$$

• If able to measure s^2 one can determine K'

$$S(t_G) = -m_{H'}^2 + m_{\overline{H'}}^2$$

$$S'(t_G) = 4m_{H'}^2 - 4m_{\overline{H'}}^2$$

Soft Supersymmetry Breaking One-Loop RoEs Solution of the RGEs Solution of the RGEs Universal Boundary Conditions SU(5) Boundary Conditions SO(10) Boundary Conditions E_6SSM First and Second Generation Sfermion Masses Sum Rules

Sum Rules

From the solution of the 1-loop RGEs, we obtain the following sum rules:

Sum rules for SU(5) and SO(10)

$$\begin{split} M_{\tilde{u}_L}^2 + M_{\tilde{d}_L}^2 - M_{\tilde{u}_R}^2 - M_{\tilde{e}_R}^2 &= C_3 + 2C_2 - \frac{25}{18}C_1 = 5.0M_{1/2}^2 \; (GeV)^2 \\ \frac{1}{2} \left(M_{\tilde{u}_L}^2 + M_{\tilde{d}_L}^2 \right) + M_{\tilde{d}_R}^2 - M_{\tilde{e}_R}^2 - \frac{1}{2} \left(M_{\tilde{e}_L}^2 + M_{\tilde{v}_L}^2 \right) = 2C_3 - \frac{10}{9}C_1 = 8.1M_{1/2}^2 \; (GeV)^2 \end{split}$$

Sum rules for the E_6SSM

$$\begin{split} M_{\tilde{u}_L}^2 + M_{\tilde{d}_L}^2 - M_{\tilde{u}_R}^2 - M_{\tilde{e}_R}^2 &= C_3^{E_6} + 2C_2^{E_6} - \frac{25}{18}C_1^{E_6} - \frac{3}{4}C_1' = 2.8M_{1/2}^2 \; (GeV)^2 \\ \frac{1}{2} \left(M_{\tilde{u}_L}^2 + M_{\tilde{d}_I}^2 \right) + M_{\tilde{d}_R}^2 - M_{\tilde{e}_R}^2 - \frac{1}{2} \left(M_{\tilde{e}_L}^2 + M_{\tilde{v}_L}^2 \right) &= 2C_3^{E_6} - \frac{10}{9}C_1^{E_6} - \frac{3}{4}C_1' = 4.4M_{1/2}^2 \; (GeV)^2 \end{split}$$

• Values for $Q = 1 \ TeV$

$\begin{array}{l} \hbox{1-Loop RGE} \\ SU(5) \ \hbox{Constraints} \\ SO(10) \ \hbox{Constraints} \\ \hbox{Physical Mass Predictions} \\ \hbox{Non-Universal Soft Terms} \end{array}$

Higgs and Third Generation Sfermion Soft Masses: 1-Loop RGE

Third Generation and Higgs Soft Masses RGE

$$\begin{aligned} &16\pi^2 \frac{dm_{\tilde{Q}_3}^2}{dt} = X_t + X_b - \frac{32}{3}g_3^2M_3^2 - 6g_2^2M_2^2 - \frac{2}{15}g_1^2M_1^2 + \frac{1}{5}g_1^2S \\ &16\pi^2 \frac{dm_{\tilde{L}_g}^2}{dt} = 2X_t - \frac{32}{3}g_3^2M_3^2 - \frac{32}{15}g_1^2M_1^2 - \frac{4}{5}g_1^2S \\ &16\pi^2 \frac{dm_{\tilde{L}_g}^2}{dt} = 2X_b - \frac{32}{3}g_3^2M_3^2 - \frac{8}{15}g_1^2M_1^2 + \frac{2}{5}g_1^2S \\ &16\pi^2 \frac{dm_{\tilde{L}_g}^2}{dt} = 2X_b - \frac{32}{3}g_3^2M_3^2 - \frac{8}{15}g_1^2M_1^2 + \frac{2}{5}g_1^2S \\ &16\pi^2 \frac{dm_{\tilde{L}_g}^2}{dt} = 2X_t - 6g_2^2M_2^2 - \frac{6}{5}g_1^2M_1^2 - \frac{3}{3}g_1^2S \\ &16\pi^2 \frac{dm_{\tilde{L}_g}^2}{dt} = 2X_t - \frac{24}{5}g_1^2M_1^2 + \frac{6}{5}g_1^2S \\ &16\pi^2 \frac{dm_{\tilde{L}_g}^2}{dt} = 3X_b + X_t - 6g_2^2M_2^2 - \frac{6}{5}g_1^2M_1^2 - \frac{3}{5}g_1^2S \\ &16\pi^2 \frac{dm_{\tilde{L}_g}^2}{dt} = 3X_t + X_t - 6g_2^2M_2^2 - \frac{6}{5}g_1^2M_1^2 + \frac{3}{5}g_1^2S \end{aligned}$$

$$\mathbf{Q}_{H_{u}}^{2} + m_{\tilde{Q}_{3}}^{2} + m_{\tilde{t}_{R}}^{2} + A_{\tilde{t}}^{2}$$

$$\mathbf{Q}_{X_{\tau}}^{2} = 2y_{\tau}^{2} \left(m_{H_{d}}^{2} + m_{\tilde{L}_{3}}^{2} + m_{\tilde{\tau}_{R}}^{2} + A_{\tau}^{2}\right)$$

$$\mathbf{Q}_{X_{\tau}}^{2} = 2y_{\tau}^{2} \left(m_{H_{d}}^{2} + m_{\tilde{L}_{3}}^{2} + m_{\tilde{\tau}_{R}}^{2} + A_{\tau}^{2}\right)$$

•
$$X_{\nu} = 2y_{\nu}^{2} \left(m_{H_{u}}^{2} + m_{\tilde{L}_{3}}^{2} + m_{\tilde{N}_{3}}^{2} + A_{\nu}^{2} \right)$$
 Union of G

 $\begin{array}{l} \textbf{1-Loop RGE} \\ SU(5) \text{ Constraints} \\ SO(10) \text{ Constraints} \\ \text{Physical Mass Predictions} \\ \text{Non-Universal Soft Terms} \end{array}$

- m_{φ}^2 depend on the trilinear A_i and Yukawa y_i couplings
- Not possible to solve analytically
- Use the first and second generation inputs to reduce the parameter space
 - Scan over different regions of the parameter space by choosing an "illustrative" set of measurable masses (GeV)

Slepton Mass	Set 1	Set 2	Set 3
$M_{ ilde{u}_L}$	1550.210	1951.322	3550.2
$M_{ ilde{d}_L}$	1552.080	1952.868	3551.0
$M_{\widetilde{e}_R}$	700.0	1430.0	2700.0
$M_{\widetilde{u}_R}$	1500.0	1898.0	3500.0
$M_{ ilde{d}_R}$	1550.0	1600.0	3600.0

- Scan over the parameter space
- Ensure vacuum stability
 - Charge and Colour Breaking Minima and Unbounded from below conditions [Casas, Lleyda and Munoz, 9507294]

SU(5) Constraints

• From the first two generations:

Input Parameter	Set 1	Set 2	Set 3
$m_{\overline{5}}$ (GeV)	781.7	893.7	2856.6
m ₁₀ (GeV)	654.8	1385.0	2690.5
$M_{1/2}$ (GeV)	655.8	647.3	1129.3
$\tan \beta$	6.1	8.0	4.6
$K (GeV)^2$	3.413×10^3	-52.679 ×10 ³	113.83×10^3
$M_{\tilde{e}_L}$ (GeV)	915.3	967.2	2819.6
$M_{\tilde{V}_L}$ (GeV)	912.0	964.0	2818.5

All ingredients for Yukawa couplings

• Recall
$$K(t) = \frac{1}{2b_1}S(t_G)\left(1 - \frac{\alpha_1(t)}{\alpha_1(t_G)}\right)$$

•
$$S(t_G) = m_{5'}^2 - m_{5'}^2$$

- Consider universal trilinear couplings at t_G , A_0
- Two unknowns left, A_0 and one Higgs mass, say $m_{\overline{5'}}$

$\left(A_0, m_{\overline{5}'}\right)$ -Plane Scan

- Scan over the $\left(A_0, m_{\overline{5}'}\right)$ -plane
 - $-1000 \text{GeV} \le A_0 \le 1000 \text{GeV}$
 - $10 \text{GeV} \le m_{\overline{5}'} \le 5000 \text{GeV}$
- Apply CCB, UFB and EW constraints

A significant region of the parameter space is excluded

SO(10) Constraints

- \bullet Recall the consistency relation $K(t)=\frac{-4g_{10}^2D}{2b_1}\left(1-\frac{\alpha_1(t)}{\alpha_1(t_G)}\right)$
 - Results in a constraint on the \widetilde{d}_R mass

Input Parameter	Set 1	Set 2	Set 3
$M_{\widetilde{d}_R} SU(5)$	1550.0	1600.0	3600.0
$M_{\widetilde{d}_R} SO(10)$	1518.0	1565.5	3830.2

Input Parameter	Set 1	Set 2	Set 3
m ₁₆ (GeV)	669.9	1268.9	2811.6
$g_{10}^2 D (\text{GeV})^2$	-19.971×10^3	308.263×10^3	-666.100×10^3
$m_{\widetilde{N}_3}(t_G)$ (GeV)	590.6	1775.2	2138.8
$M_{\tilde{e}_L}$ (GeV)	860.0	909.0	3108.1
$M_{\tilde{\nu}_L}$ (GeV)	856.3	905.5	3107.2

- $m_{\widetilde{N}_3}^2(t_G) = m_{16}^2 + 5g_{10}^2 D$
- $M_{1/2}$, $\tan \beta$ and K remain the same as for SU(5)

(A_0, m_{10}) -Plane Scan

- We are left with two unknowns, A_0 and the common Higgs mass m_{10}
- same procedure as for SU(5)

- RH sneutrinos in the running from $Q \sim 10^{12}$ GeV to Q_{GUT} :
- m_{10} scale slightly different than $m_{\overline{5'}}$ for SU(5)
 - Mainly due to the influence of $M_{\tilde{d}_p}$
 - Contribution of $M_{\tilde{N}_2}$ is very tiny

Physical Mass Predictions Non-Universal Soft Terms

Physical Mass Predictions

As a consequence of the Goldstone Theorem, when spontaneous symmetry breaking occurs:

- \bullet $n_{phy\ Higgs} = n_{real\ DOF} n_{Goldstones}$
- $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_Q$
 - 3 Goldstones

- SM 1 Higgs doublet → 4 real DOF
 - 4-3=1 physical Higgs mass eigenstate
- 2 Higgs doublet models → 8 real DOF
 - 8-3=5 physical Higgs mass eigenstates:

$$\bullet h^0, H^0, H^{\pm}, A^0$$

$$\begin{split} m_{A^0}^2 &= \frac{2b}{\sin 2\beta}, \quad m_{H^\pm}^2 = m_W^2 + m_{A^0}^2 \\ m_{h^0, H^0}^2 &= \frac{1}{2} \left\{ m_Z^2 + m_{A^0}^2 \mp \left[\left(m_Z^2 + m_{A^0}^2 \right)^2 - 4 m_{A^0}^2 m_Z^2 \cos^2 2\beta \right]^{\frac{1}{2}} \right\} \\ \Delta m_{h^0}^2 &= \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{(A_t - \mu \cot \beta)^2}{m_{\tilde{t}}^2} \left(1 - \frac{(A_t - \mu \cot \beta)^2}{12 m_{\tilde{t}}^2} \right) \right] \\ m_{\tilde{t}_1, \, \tilde{t}_2}^2 &= \frac{1}{2} \left[\left(m_{\tilde{Q}_3}^2 + m_{\tilde{t}_R}^2 + 2 m_t^2 + \Delta_{u_L} + \Delta_{u_R} \right) \mp \sqrt{\left(m_{\tilde{Q}_3}^2 - m_{\tilde{t}_R}^2 + \Delta_{u_L} - \Delta_{u_R} \right)^2 + 4 m_t^2 \left(A_t - \mu \cot \beta \right)^2} \right] \end{split}$$

Outline
Motivations for Physics Beyond the Standard Model
Motivations for Grand Unification
SU(5), SO(10) and E₆ Grand Unification
First and Second Generation Sfermion Masses
Higgs and Third Generation Sfermion Soft Masses
Conclusions

1-Loop RGE SU(5) Constraints SO(10) Constraints Physical Mass Predictions Non-Universal Soft Terms

m_{h^0} vs A_0

Figure: SU(5)

Figure: SO(10)

m_{h^0} VS m_{H^\pm}

$m_{ ilde{t}_1}$ VS $m_{ ilde{t}_2}$

Figure: (a) and (b) $\longrightarrow SU(5)$. (c) and (d) $\longrightarrow SO(10)$

$m_{ ilde{b}_1}$ VS $m_{ ilde{b}_2}$

Figure: (a) and (b) $\longrightarrow SU(5)$. (c) and (d) $\longrightarrow SO(10)$

$m_{ ilde{ au}_1}$ VS $m_{ ilde{ au}_2}$

Tuning m_{h^0}

Why universal soft terms? the example of SU(5)

- Simple and clean solutions
- Not clear which mechanism breaks SUSY
 - · Soft parameters highly (SUSY breaking) model dependent
 - No reason for universal $M_{1/2}$, A_0 , m_0 ...

Decoupling generations

No reason for universal masses/trilinears within different generations

$$m_{\overline{5}}(3) = k m_{\overline{5}}(1,2)$$

 $m_{10}(3) = k m_{10}(1,2)$
 $0 < k < 1$

Trilinear couplings $(a_i \equiv y_i A_i)$

$$\begin{array}{ccc} a_{u}H_{u}\tilde{u}_{R}\tilde{Q}_{L} & \xrightarrow{SU(5)} & a_{\overline{5}}' \ \overline{5}' \cdot \mathbf{10} \cdot \mathbf{10} \\ \\ a_{d}H_{d}\tilde{d}_{R}\tilde{Q}_{L} & \xrightarrow{SU(5)} & a_{5'} \ \overline{5}' \cdot \overline{\mathbf{5}} \cdot \mathbf{10} \\ \\ a_{e}H_{d}\tilde{e}_{R}\tilde{L} & \xrightarrow{SU(5)} & a_{5'} \ \overline{5}' \cdot \mathbf{10} \cdot \overline{\mathbf{5}} \end{array}$$

At GUT scale:
$$a_{u0} = a_{\overline{5}'}$$
 and $a_{d0} = a_{e0} = a_{5'}$

Gauginos (adjoint rep):
$$\mathscr{L}_{G-K} = -\frac{1}{M_p} F_{ab} \lambda^a \otimes \lambda^b \xrightarrow{\langle F_{ab} \rangle} M_{ab} \lambda^a \lambda^b$$

$$\mathbf{24} \otimes \mathbf{24} = \mathbf{1} \oplus \mathbf{24} \oplus \mathbf{75} \oplus \mathbf{210}$$

Universal
$$M_{1/2}$$
 at GUT scale only if $F_{ab} \in \mathbf{1}$

If $F_{ab} \in 24,75,210$ or combinations \longrightarrow non-universal gaugino mass

$m_{h^0} \text{ VS } A_{\overline{5}'}$

• Choose $A_{\overline{5}'} = 2 A_{5'}, \quad m_{\overline{5}}(3) = 0.1 \ m_{\overline{5}}(1,2), \quad m_{10}(3) = 0.1 \ m_{10}(1,2)$

Figure: SU(5)

$m_{ ilde{t}_1}$ VS $m_{ ilde{t}_2}$

$$\bullet$$
 $A_{5'} = 2 A_{5'}$, $m_{5}(3) = 0.1 m_{5}(1,2)$, $m_{10}(3) = 0.1 m_{10}(1,2)$

Figure: SU(5)

ullet Light stops \longrightarrow eases naturalness

$m_{ ilde{ au}_1}$ VS $m_{ ilde{ au}_2}$

 $\bullet \ A_{\overline{5}'} = 2 \ A_{5'}, \quad m_{\overline{5}}(3) = 0.1 \ m_{\overline{5}}(1,2), \quad m_{10}(3) = 0.1 \ m_{10}(1,2)$

Figure: SU(5)

- Light staus → favours coannihilation → controls neutralino relic density (study in preparation)
 - Small neutralino vs stau mass splitting required (1% to 30%)

$m_{ ilde{b}_1}$ VS $m_{ ilde{b}_2}$

$$\bullet$$
 $A_{5'} = 2 A_{5'}, \quad m_{5}(3) = 0.1 \ m_{5}(1,2), \quad m_{10}(3) = 0.1 \ m_{10}(1,2)$

Figure: SU(5)

Outline
Motivations for Physics Beyond the Standard Mode
Motivations for Grand Unification
SU(5), SO(10) and E₆ Grand Unification
First and Second Generation Sfermion Masses
Higgs and Third Generation Sfermion Soft Masses
Conclusions

- Discussed motivations for BSM physics
- Motivations for Grand Unification
- Overview of standard GUT representations
- Studied the first and second generation sfermion mass spectrum with GUT constraints
- Third generation analysis constrained by the first and second?
- Non-universal soft parameters

Yukawa couplings for $\tan \beta = 3$ and $\tan \beta = 10$

Gaugino masses for $M_{1/2} = 450$ GeV and $M_{1/2} = 700$ GeV

