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• Question: Why a talk about the three-loop four-point 
correlator in planar N=4 Super Yang-Mills in a 
phenomenology group..?

Motivation

• Planar N=4 SYM is a very ‘clean’ environment to study 
scattering amplitudes and Feynman integrals.

• In the last couple of years, it has become more and more 
clear that there is a deep connection between scattering 
amplitudes and modern pure mathematics.

• Answer: Because we have to start somewhere...

➡ Ideal playground to investigate new ideas.

• ‘Holy grail’: Get results for Feynman integrals 
without having to go through the pain of computing 
complicated integrals!



• Multi-loop computations are generically considered 
to be extremely complicated.

Motivation

➡ Integrals are divergent (UV and IR).

➡ Complicated analytical structures:
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• The 4-point correlator in N=4 SYM is an ideal test ground 
for new ideas.
➡ N=4 SYM is UV finite.

➡ Correlator is IR finite (4-point off-shell function).

➡ Functions are highly constraint.
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• The 4-point correlator in N=4 SYM is an ideal test ground 
for new ideas.
➡ N=4 SYM is UV finite.

➡ Correlator is IR finite (4-point off-shell function).

➡ Functions are highly constraint.

Highly constraint! 
(e.g., max. transcendentality)



• Aim of this talk: A first example where we succeeded 
in computing complicated 3 and 4 loop integrals 
solely based on

Motivation

➡ Symmetries of the integral.

➡ Unitarity (Cutkosky rules) & algebraic geometry.

➡ Number theory and modern algebra.

➡ Asymptotic expansions (~ boundary condition).

• While the example we discuss is a correlator in N=4 
SYM, the mathematics is generic!



• The four-point correlator in planar N=4 SYM.

Outline

• Input from algebraic geometry:

➡ Leading singularities and residues.

• Input from number theory:

➡ Single-valued polylogarithms.

• The three-loop correlator.

• Going beyond three loops.



The four-point 
correlator in N=4 
Super Yang-Mills



The correlator

➡ the gluon (2 helicities).

➡ four gluinos (2 helicities each).

➡ 6 real scalars.

• The N=4 on-shell supermultiplet:
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➡ four gluinos (2 helicities each).
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hO(x1)Õ(x2)O(x3)Õ(x4)i

canonical dimension. The long operators correspond to generic superconformal representations,
they receive quantum corrections and acquire anomalous dimensions.

In this paper we will consider only operators of the half-BPS type. Their lowest components
(or superconformal primaries) are made of the six real scalars in the N = 4 vector multiplet,
φAB = −φBA = 1

2εABCDφ̄CD, where A,B = 1, . . . , 4 are indices of the fundamental irrep of the
R symmetry group SU(4). Generically, they are of the type O(k) = Tr(φk), carry SU(4) Dynkin
labels [0, k, 0] and have fixed conformal dimension d = k. The best known example is the simplest,
bilinear (k = 2) operator, belonging to the so-called stress-tensor superconformal multiplet. The
top spin state in this multiplet is the stress tensor, while the state of highest dimension is the
Lagrangian of the N = 4 SYM theory. The lowest dimension state of the multiplet is the bilinear
scalar operator

OABCD = Tr(φABφCD)−
1

12
εABCDTr(φ̄

EFφEF ) (2.1)

belonging to the irrep 20′ = [020] of SU(4). Here φAB = φa
ABt

a, where ta are the generators of
the fundamental representation of the gauge group SU(Nc), normalized as tr(tatb) = 1

2δ
ab. In

what follows we always assume the planar limit,

a =
g2Nc

8π2
, Nc → ∞ . (2.2)

Let us consider certain projections of 20′, namely

O = Tr(φ12φ12) , Õ = Tr(φ̄12φ̄12) , Ô = 2Tr(φ̄12φ12)−
1

6
Tr(φ̄EFφEF ) , (2.3)

where O is the (complex) highest-weight state, Õ is the conjugate lowest-weight state and Ô is
a real projection. We want to evaluate the correlator of n such operators. For n = 2m we can
take, e.g., m operators O and m conjugates Õ and consider the correlator

Gn = 〈O(x1)Õ(x2) . . .O(xn−1)Õ(xn)〉 . (2.4)

For n = 2m+ 1 we can add one operator Ô, replacing (2.4) by

Gn = 〈O(x1)Õ(x2) . . .O(xn−2)Õ(xn−1)Ô(xn)〉 . (2.5)

Such correlators are finite (the operators O are not renormalized) and conformally covariant,
as long as the points xi are kept apart, xi &= xj . If we let two points get close to each other,
xi → xj , we are dealing with the well-known short distance expansion of the product of operators
O(xi)O(xj) mentioned above. Here we plan to do something else. We wish to take the limit
where the neighboring points become light-like separated, without coinciding with each other3

x2
i,i+1 → 0 , xi &= xi+1 , i = 1, . . . , n (2.6)

(with the cyclic condition xn+1 ≡ x1). This limit is singular for two reasons. Firstly, the
correlator develops pole singularities, as can be seen already from the (connected, planar) tree-
level approximation

G(0)
n =

(2π)−2nN2
c

x2
12x

2
23 . . . x

2
n1

+ subleading terms . (2.7)
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The correlator
• This correlator is finite, as long as                                .

• There are 6 conformal cross ratios one can form out of 4 
points, but only two are independent:

x

2
ij ⌘ (xi � xj)2 6= 0

• N=4 SYM is conformal at the quantum level, and so the 
correlator can only depend on conformal cross ratios:

x

2
ijx

2
kl

x

2
ikx

2
jl

u =
x

2
12x

2
34

x

2
13x

2
24

v =
x

2
14x

2
23

x

2
13x

2
24

• The correlator admits the perturbative expansion 
(normalized to tree-level)

1 + a x

2
13x

2
24 g1 + a

2
x

2
13x

2
24 g2 + . . .



The correlator
• At one and two loop order:

with f (3) given by a linear combination of graphs shown in Fig. 3. In the light-like limit,
x2
i,i+1 → 0, the prefactor in the right-hand side of (3.11) vanishes but (some of the terms

in) the function f (3) develops poles in 1/x2
i,i+1, so that their product stays finite. These

terms surviving in the light-like limit, will appear in the right-hand side in Eq. (3.10).
Let us find out which integrals we expect to see in (3.10). The one- and two-loop

four-gluon amplitudes, M (1) and M (2), involve one- and two-loop ladder diagrams shown
in Fig. 4 (a) and (b), respectively. The three-loop four-gluon amplitude M (3) involves only
two integral topologies, the three-loop ladder and the so-called “tennis court” [38]. They
are depicted in Fig. 4 (c) and (d), respectively, both as conventional momentum p−space
diagrams and as dual x−space diagrams.

(a) (b) (c) (d)

Figure 4: Dual conformal x−integrals (solid lines) and momentum p−integrals (doted lines) in the
three-loop planar four-gluon amplitude: (a) one-loop ladder, (b) two-loop ladder, (c) three-loop
ladder and (d) tennis court.

The one- and two-loop graphs are redrawn again in Fig. 5 with the external and internal
points labelled and, in the case of the two-loop ladder, with an extra numerator factor
(dashed line) added. This factor balances the conformal weights at points 2 and 4, so that
the integral has uniform conformal weight (+1) at each external point. Similarly, the tennis
court T and three-loop ladder L have been redrawn in Fig. 6 with the necessary dashed
lines added. Fig. 6 contains another diagram of three-loop topology, the product g × h of
the one- and two-loop ladders that we expect to find in the non-linear term M (1)M (2) in
the right-hand side of (3.10).

We may interpret the graphs in Fig. 6, with conformal weight (+1) at each external
point, as those terms in the function F (3), Eq. (3.11), which survive in the light-like limit.
Now, we are interested in the manifestly S7 symmetric function f (3). In order to up-
grade the F−terms shown in Fig. 6 to f−terms, we need to divide them by the prefactor
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34 from (3.11). In graphical terms, this means to superpose a square with

diagonals (all lines solid) and with vertices at points 1, 2, 3, 4, onto each graph in Fig. 6. In
the process some numerator factors (dashed lines) cancel against propagators (solid lines).
The result of this manipulation are graphs of the type shown in Fig. 3. It is not difficult
to see that all three F−graphs from Fig. 6, when upgraded to f−graphs, fall into the
topology 3(b).

16

corresponding integrals, those which survive the light-like limit (for x2
12 = x2

23 = x2
34 =

x2
41 = 0), already appeared in Fig. 6. Away from this limit, for arbitrary x2

i,i+1 != 0, we find
only two new conformal three-loop integrals E and H (for “easy” and “hard”, referring to
their Mellin-Barnes evaluation in Appendix C), which are depicted in Fig. 8. Thus, the
complete list of integrals which we expect to find in the correlation function (away from
the light-like limit) is shown in Figs. 6 and 8. All others graphs for F (3) are obtained by
permuting the external points.
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E(1; 2, 4; 3) H(1, 2; 3, 4)

Figure 8: Diagrammatic representation for the new three-loop integrals (3.14) contributing to the
four-point correlation function away from the light-like limit. The dashed lines between adjacent
external points indicate that these integrals vanish in the limit.

Here are the expressions for the one- and two-loop ladder (box and double-box) integrals
g and h from Fig. 5,

g(1, 2, 3, 4) =
1

4π2

∫

d4x5

x2
15x

2
25x

2
35x

2
45

,

h(1, 2; 3, 4) =
x2
34

(4π2)2

∫

d4x5 d4x6

(x2
15x

2
35x

2
45)x

2
56(x

2
26x

2
36x

2
46)

, (3.13)

and for the three-loop integrals from Fig. 6 and Fig. 8,

T (1, 2; 3, 4) =
x2
34

(4π2)3

∫

d4x5d4x6d4x7 x2
17
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2
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16x
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2
37x

2
27x

2
47)x

2
56x

2
57x

2
67

,

E(1; 3, 4; 2) =
x2
23x

2
24

(4π2)3

∫

d4x5 d4x6 d4x7 x2
16

(x2
15x

2
25x

2
35)x

2
56(x

2
26x

2
36x

2
46)x

2
67(x

2
17x

2
27x

2
47)

,

L(1, 2; 3, 4) =
x4
34

(4π2)3

∫

d4x5 d4x6 d4x7

(x2
15x

2
35x

2
45)x

2
56(x

2
36x

2
46)x

2
67(x

2
27x

2
37x

2
47)

,

(g × h)(1, 2; 3, 4) =
x2
12x

4
34

(4π2)3

∫

d4x5d4x6d4x7

(x2
15x

2
25x

2
35x

2
45)(x

2
16x

2
36x

2
46)(x

2
27x

2
37x

2
47)x

2
67

,

H(1, 2; 3, 4) =
x2
41x

2
23x

2
34

(4π2)3

∫

d4x5 d4x6 d4x7 x2
57

(x2
15x

2
25x

2
35x

2
45)x

2
56(x

2
36x

2
46)x

2
67(x

2
17x

2
27x

2
37x

2
47)

.(3.14)

Summarising our analysis, we obtain the full four-point correlation function up to three
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with f (3) given by a linear combination of graphs shown in Fig. 3. In the light-like limit,
x2
i,i+1 → 0, the prefactor in the right-hand side of (3.11) vanishes but (some of the terms

in) the function f (3) develops poles in 1/x2
i,i+1, so that their product stays finite. These

terms surviving in the light-like limit, will appear in the right-hand side in Eq. (3.10).
Let us find out which integrals we expect to see in (3.10). The one- and two-loop

four-gluon amplitudes, M (1) and M (2), involve one- and two-loop ladder diagrams shown
in Fig. 4 (a) and (b), respectively. The three-loop four-gluon amplitude M (3) involves only
two integral topologies, the three-loop ladder and the so-called “tennis court” [38]. They
are depicted in Fig. 4 (c) and (d), respectively, both as conventional momentum p−space
diagrams and as dual x−space diagrams.

(a) (b) (c) (d)

Figure 4: Dual conformal x−integrals (solid lines) and momentum p−integrals (doted lines) in the
three-loop planar four-gluon amplitude: (a) one-loop ladder, (b) two-loop ladder, (c) three-loop
ladder and (d) tennis court.

The one- and two-loop graphs are redrawn again in Fig. 5 with the external and internal
points labelled and, in the case of the two-loop ladder, with an extra numerator factor
(dashed line) added. This factor balances the conformal weights at points 2 and 4, so that
the integral has uniform conformal weight (+1) at each external point. Similarly, the tennis
court T and three-loop ladder L have been redrawn in Fig. 6 with the necessary dashed
lines added. Fig. 6 contains another diagram of three-loop topology, the product g × h of
the one- and two-loop ladders that we expect to find in the non-linear term M (1)M (2) in
the right-hand side of (3.10).

We may interpret the graphs in Fig. 6, with conformal weight (+1) at each external
point, as those terms in the function F (3), Eq. (3.11), which survive in the light-like limit.
Now, we are interested in the manifestly S7 symmetric function f (3). In order to up-
grade the F−terms shown in Fig. 6 to f−terms, we need to divide them by the prefactor
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34 from (3.11). In graphical terms, this means to superpose a square with

diagonals (all lines solid) and with vertices at points 1, 2, 3, 4, onto each graph in Fig. 6. In
the process some numerator factors (dashed lines) cancel against propagators (solid lines).
The result of this manipulation are graphs of the type shown in Fig. 3. It is not difficult
to see that all three F−graphs from Fig. 6, when upgraded to f−graphs, fall into the
topology 3(b).
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the one- and two-loop ladders that we expect to find in the non-linear term M (1)M (2) in
the right-hand side of (3.10).

We may interpret the graphs in Fig. 6, with conformal weight (+1) at each external
point, as those terms in the function F (3), Eq. (3.11), which survive in the light-like limit.
Now, we are interested in the manifestly S7 symmetric function f (3). In order to up-
grade the F−terms shown in Fig. 6 to f−terms, we need to divide them by the prefactor
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34 from (3.11). In graphical terms, this means to superpose a square with

diagonals (all lines solid) and with vertices at points 1, 2, 3, 4, onto each graph in Fig. 6. In
the process some numerator factors (dashed lines) cancel against propagators (solid lines).
The result of this manipulation are graphs of the type shown in Fig. 3. It is not difficult
to see that all three F−graphs from Fig. 6, when upgraded to f−graphs, fall into the
topology 3(b).
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corresponding integrals, those which survive the light-like limit (for x2
12 = x2

23 = x2
34 =

x2
41 = 0), already appeared in Fig. 6. Away from this limit, for arbitrary x2

i,i+1 != 0, we find
only two new conformal three-loop integrals E and H (for “easy” and “hard”, referring to
their Mellin-Barnes evaluation in Appendix C), which are depicted in Fig. 8. Thus, the
complete list of integrals which we expect to find in the correlation function (away from
the light-like limit) is shown in Figs. 6 and 8. All others graphs for F (3) are obtained by
permuting the external points.
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Figure 8: Diagrammatic representation for the new three-loop integrals (3.14) contributing to the
four-point correlation function away from the light-like limit. The dashed lines between adjacent
external points indicate that these integrals vanish in the limit.
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Summarising our analysis, we obtain the full four-point correlation function up to three
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with f (3) given by a linear combination of graphs shown in Fig. 3. In the light-like limit,
x2
i,i+1 → 0, the prefactor in the right-hand side of (3.11) vanishes but (some of the terms

in) the function f (3) develops poles in 1/x2
i,i+1, so that their product stays finite. These

terms surviving in the light-like limit, will appear in the right-hand side in Eq. (3.10).
Let us find out which integrals we expect to see in (3.10). The one- and two-loop

four-gluon amplitudes, M (1) and M (2), involve one- and two-loop ladder diagrams shown
in Fig. 4 (a) and (b), respectively. The three-loop four-gluon amplitude M (3) involves only
two integral topologies, the three-loop ladder and the so-called “tennis court” [38]. They
are depicted in Fig. 4 (c) and (d), respectively, both as conventional momentum p−space
diagrams and as dual x−space diagrams.
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Figure 4: Dual conformal x−integrals (solid lines) and momentum p−integrals (doted lines) in the
three-loop planar four-gluon amplitude: (a) one-loop ladder, (b) two-loop ladder, (c) three-loop
ladder and (d) tennis court.

The one- and two-loop graphs are redrawn again in Fig. 5 with the external and internal
points labelled and, in the case of the two-loop ladder, with an extra numerator factor
(dashed line) added. This factor balances the conformal weights at points 2 and 4, so that
the integral has uniform conformal weight (+1) at each external point. Similarly, the tennis
court T and three-loop ladder L have been redrawn in Fig. 6 with the necessary dashed
lines added. Fig. 6 contains another diagram of three-loop topology, the product g × h of
the one- and two-loop ladders that we expect to find in the non-linear term M (1)M (2) in
the right-hand side of (3.10).

We may interpret the graphs in Fig. 6, with conformal weight (+1) at each external
point, as those terms in the function F (3), Eq. (3.11), which survive in the light-like limit.
Now, we are interested in the manifestly S7 symmetric function f (3). In order to up-
grade the F−terms shown in Fig. 6 to f−terms, we need to divide them by the prefactor
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diagonals (all lines solid) and with vertices at points 1, 2, 3, 4, onto each graph in Fig. 6. In
the process some numerator factors (dashed lines) cancel against propagators (solid lines).
The result of this manipulation are graphs of the type shown in Fig. 3. It is not difficult
to see that all three F−graphs from Fig. 6, when upgraded to f−graphs, fall into the
topology 3(b).
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1 Introduction

2 Conformal four-point integrals and single-valued poly-

logarithms

The ladder-type integrals that contribute to the correlator are known. More precisely, if
we write
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then the functions �(L)(u, v) are given by the well-known result [1, 2],
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where we defined
u = x x̄ and v = (1� x)(1� x̄) . (3)

At this stage, the variables (x, x̄) are simply a convenient parametrization which rational-
izes the two roots of the quadratic polynomial in the denominator of eq. (2). We note that
x and x̄ are complex conjugate to each other if we work in Euclidean space while they are
both real in Minkowski signature.

The particular combination of polylogarithms that appears in eq. (2) is not random,
but it has a particular mathematical meaning: in Euclidean space, where x and x̄ are
complex conjugate to each other, the functions �(L) are single-valued functions of the
complex variable x. In other words, the combination of polylogarithms that appears in the
ladder integrals is such that they have no branch cuts in the complex x plane. In order to
understand the reason for this, it is useful to look at the symbol of the ladder integrals.

One possible way to define the symbol of transcendental function is to consider its total
di↵erential. More precisely, if F is a function whose di↵erential satisfies

dF =
X

i

F
i

d logR
i

, (4)
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The correlator
• At three loop order:

with f (3) given by a linear combination of graphs shown in Fig. 3. In the light-like limit,
x2
i,i+1 → 0, the prefactor in the right-hand side of (3.11) vanishes but (some of the terms

in) the function f (3) develops poles in 1/x2
i,i+1, so that their product stays finite. These

terms surviving in the light-like limit, will appear in the right-hand side in Eq. (3.10).
Let us find out which integrals we expect to see in (3.10). The one- and two-loop

four-gluon amplitudes, M (1) and M (2), involve one- and two-loop ladder diagrams shown
in Fig. 4 (a) and (b), respectively. The three-loop four-gluon amplitude M (3) involves only
two integral topologies, the three-loop ladder and the so-called “tennis court” [38]. They
are depicted in Fig. 4 (c) and (d), respectively, both as conventional momentum p−space
diagrams and as dual x−space diagrams.

(a) (b) (c) (d)

Figure 4: Dual conformal x−integrals (solid lines) and momentum p−integrals (doted lines) in the
three-loop planar four-gluon amplitude: (a) one-loop ladder, (b) two-loop ladder, (c) three-loop
ladder and (d) tennis court.

The one- and two-loop graphs are redrawn again in Fig. 5 with the external and internal
points labelled and, in the case of the two-loop ladder, with an extra numerator factor
(dashed line) added. This factor balances the conformal weights at points 2 and 4, so that
the integral has uniform conformal weight (+1) at each external point. Similarly, the tennis
court T and three-loop ladder L have been redrawn in Fig. 6 with the necessary dashed
lines added. Fig. 6 contains another diagram of three-loop topology, the product g × h of
the one- and two-loop ladders that we expect to find in the non-linear term M (1)M (2) in
the right-hand side of (3.10).

We may interpret the graphs in Fig. 6, with conformal weight (+1) at each external
point, as those terms in the function F (3), Eq. (3.11), which survive in the light-like limit.
Now, we are interested in the manifestly S7 symmetric function f (3). In order to up-
grade the F−terms shown in Fig. 6 to f−terms, we need to divide them by the prefactor
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34 from (3.11). In graphical terms, this means to superpose a square with

diagonals (all lines solid) and with vertices at points 1, 2, 3, 4, onto each graph in Fig. 6. In
the process some numerator factors (dashed lines) cancel against propagators (solid lines).
The result of this manipulation are graphs of the type shown in Fig. 3. It is not difficult
to see that all three F−graphs from Fig. 6, when upgraded to f−graphs, fall into the
topology 3(b).
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corresponding integrals, those which survive the light-like limit (for x2
12 = x2

23 = x2
34 =

x2
41 = 0), already appeared in Fig. 6. Away from this limit, for arbitrary x2

i,i+1 != 0, we find
only two new conformal three-loop integrals E and H (for “easy” and “hard”, referring to
their Mellin-Barnes evaluation in Appendix C), which are depicted in Fig. 8. Thus, the
complete list of integrals which we expect to find in the correlation function (away from
the light-like limit) is shown in Figs. 6 and 8. All others graphs for F (3) are obtained by
permuting the external points.
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Figure 8: Diagrammatic representation for the new three-loop integrals (3.14) contributing to the
four-point correlation function away from the light-like limit. The dashed lines between adjacent
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corresponding integrals, those which survive the light-like limit (for x2
12 = x2

23 = x2
34 =

x2
41 = 0), already appeared in Fig. 6. Away from this limit, for arbitrary x2

i,i+1 != 0, we find
only two new conformal three-loop integrals E and H (for “easy” and “hard”, referring to
their Mellin-Barnes evaluation in Appendix C), which are depicted in Fig. 8. Thus, the
complete list of integrals which we expect to find in the correlation function (away from
the light-like limit) is shown in Figs. 6 and 8. All others graphs for F (3) are obtained by
permuting the external points.
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‘Easy’ integral ‘Hard’ integral

[Eden, Heslop, Korchemsky, Sokatchev]



The correlator

• The 3-loop ladder integral is known.

• The tennis court can be reduced to the 3-loop ladder.

• The ‘easy’ and ‘hard’ integrals are unknown.

[Davydychev, Usyukina]

[Drummond, Henn, Smirnov, Sokatchev]

➡ Integrals are too complicated...



The correlator

• The 3-loop ladder integral is known.

• The tennis court can be reduced to the 3-loop ladder.

• The ‘easy’ and ‘hard’ integrals are unknown.

[Davydychev, Usyukina]

[Drummond, Henn, Smirnov, Sokatchev]

➡ Integrals are too complicated...
➡ Solution: Simply don’t compute them!

I =
X

i

Ri(x, x̄) Pi(x, x̄)

• If we have an ansatz for the rational functions R and the 
polylogarithms P, then we might guess what the function is.

1 Introduction

2 Conformal four-point integrals and single-valued poly-

logarithms

The ladder-type integrals that contribute to the correlator are known. More precisely, if
we write

g12;34 =
1

x2
13x

2
24

�(1)(u, v) ,

h12;34 =
1

x2
13x

2
24

�(2)(u, v) ,

l12;34 =
1

x2
13x

2
24

�(3)(u, v) ,

(1)

then the functions �(L)(u, v) are given by the well-known result [1, 2],

�(L)(u, v) = � 1

L!(L� 1)!

Z 1

0

d⇠

v ⇠2 + (1� u� v) ⇠ + u
logL�1 ⇠
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log
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v
+ log ⇠
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log
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x� x̄

LX
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(�1)r(2L� r)!

r!(L� r)!L!
logr(xx̄) (Li2L�r

(x)� Li2L�r

(x̄)) ,

(2)

where we defined
u = x x̄ and v = (1� x)(1� x̄) . (3)

At this stage, the variables (x, x̄) are simply a convenient parametrization which rational-
izes the two roots of the quadratic polynomial in the denominator of eq. (2). We note that
x and x̄ are complex conjugate to each other if we work in Euclidean space while they are
both real in Minkowski signature.

The particular combination of polylogarithms that appears in eq. (2) is not random,
but it has a particular mathematical meaning: in Euclidean space, where x and x̄ are
complex conjugate to each other, the functions �(L) are single-valued functions of the
complex variable x. In other words, the combination of polylogarithms that appears in the
ladder integrals is such that they have no branch cuts in the complex x plane. In order to
understand the reason for this, it is useful to look at the symbol of the ladder integrals.

One possible way to define the symbol of transcendental function is to consider its total
di↵erential. More precisely, if F is a function whose di↵erential satisfies

dF =
X

i

F
i

d logR
i

, (4)
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Input from 
algebraic geometry

Leading singularities 
and residues



Leading singularities

• One of the main differences between the rational 
coefficients R and the polylogarithmic terms P:
➡ R is meromorphic.

I =
X

i

Ri(x, x̄) Pi(x, x̄)

• In other words: if we take ‘enough’ discontinuities, there is 
nothing left of the polylogarithmic part P!

➡ P has discontinuities.

➡ Project out the rational coefficients R.

• In terms of Feynman diagrams: the rational coefficients are 
the leading singularities of the integral!



Unitarity and discontinuities
• Discontinuities of Feynman integrals are given by unitarity:

• Cutkosky rules: discontinuities arise from propagators 
going on shell:

➡ This must be an algebraic function, because there is no 
discontinuity left!

• Leading singularities (LS): all propagators are on shell.

=
Z

d�Im

Disc
1
q2

= 2⇡i �+(q2)

• More correct way of thinking about it: LS are residues of 
Feynman integrals. [Cachazo; Skinner; Spradlin, Volovich]



Multi-dimensional residues
• Consider the integral

and the residue is defined by

Z
d

n
x

P1(x) . . . Pn(x)

where the           are polynomials.Pi(x)

• Let     be the simultaneous zero of all the polynomials.x0

• The residue at     can be computed by changing variables tox0

pi = Pi(x)

Z
dnp

p1 . . . pn J
=

1
J |p=0

where J is the jacobian of the change of variables, 

J = det
@Pi

@xj

Res
x0



Example: 4-mass box
• Consider the integral

• We change variables to              . The jacobian is 

We therefore want to compute all the leading singularities of the “hard” and “easy”
integrals and we do this in the later subsections. Firstly however, as an illustrative warm
up, we will compute the leading singularities of the four-mass box function.

4.1 The massive box

We want to find all the leading singularities of the four-mass box function:

B =

Z
d4x5

x2
15x

2
25x

2
35x

2
45

. (40)

Its leading singularity is obtained by shifting the contour to circle the residues when all
four terms in the denominator vanish. To find this let us consider a change of coordinates
from xµ

5 to p
i

= x2
i5. The Jacobian for this change of variables is

J = det

✓
@p

i

@xµ

5

◆
= det (�2xµ

i5) . (41)

To rewrite this in terms of Lorentz invariants, it is useful to consider the square of J . By
observing that det(M) =

p
det(MMT ) ) one can see this is:

J2 = det (4x
i5 · xj5) = 16 det

�
x2
ij

� x2
i5 � x2

j5

�
. (42)

Thus the box integral can be rewritten using this change of variables as

B =

Z
d4p

i

p1p2p3p4J
. (43)

Now to find the leading singularity of B is straightforward. We simply cut (ie compute the
residue around) all four poles p

i

, picking up a 2⇡i each time and then setting p
i

= 0 in J .
We thus get

leading singularity of B =
16⇡4

4
q

det(x2
ij

)
=

4⇡4

�1234
. (44)

where for later use we define

�1234 =
q
det(x2

ij

)
i,j=1..4 . (45)

It will be also useful to note that �1234 is written in terms of x, x̄ as

�1234 = x2
13x

2
24(x� x̄) . (46)

One question one could ask here, given the form (43), is why we do not attempt to
find a residue for J . This is because J is not a simple pole, but instead has a square root
singularity. It thus has a branch cut and has no residue associated with it. On the other
hand, in the examples we consider in the next subsections similar Jacobians sometimes will
collapse to become simple poles when evaluated on the cuts of other poles, and so they
can have residues, thus producing non-trivial leading singularities.
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Residues of the correlator integrals

• Leading singularities of the ladder integrals:
1

x� x̄

• Leading singularities of the ‘easy’ integral:

1
(x� x̄)2

• Leading singularities of the ‘hard’ integral:
1

(u� v)(x� x̄)

1
(1� u)(x� x̄)

u

(1� u)(x� x̄)
1

x� x̄

• Conjecture: These are the only rational prefactors of these 
integrals!



Input from 
number theory

Single-valued 
polylogarithms



Multiple polylogarithms
• Feynman integrals can often be expressed in terms of 

polylogarithms:

log z =

Z z

1

dt

t
Lin(z) =

Z z

0

dt

t
Lin�1(t)

• For multi-scale integrals also multiple polylogarithms 
appear:

G(a1, . . . , an; z) =
Z z

0

dt

t� a1
G(a2, . . . , an; t)

• Complication: polylogarithms satisfy complicated relations 
among themselves.

�Li2(z)� ln z ln(1� z) = Li2(1� z)� ⇡2

6



Multiple polylogarithms

• We know all the rational coefficients R.

• Ideally: Write down an ansatz of independent 
polylogarithms (with rational numbers as coefficients), and 
determine their coefficients by matching to some 
asymptotic expansion.

I =
X

i

Ri(x, x̄) Pi(x, x̄)



Multiple polylogarithms

• We know all the rational coefficients R.

• Ideally: Write down an ansatz of independent 
polylogarithms (with rational numbers as coefficients), and 
determine their coefficients by matching to some 
asymptotic expansion.

�Li2(z)� ln z ln(1� z) = Li2(1� z)� ⇡2

6

I =
X

i

Ri(x, x̄) Pi(x, x̄)

• However: 
➡ Which polylogarithms? with which arguments?

➡ What is a ‘basis’ for polylogarithms?
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• Polylogarithms and their generalizations have been studied 
by Euler, Nielsen, Poincaré,...

➡ ‘Mathematics of the 19th century’.



Number theory meets QFT

• No! Very active field of research in pure mathematics in the 
last 20 years.

• Polylogarithms and their generalizations have been studied 
by Euler, Nielsen, Poincaré,...

➡ ‘Mathematics of the 19th century’.

• Mathematics of polylogarithms governed by powerful 
algebraic structures (Hopf algebra).

• Hopf algebra controls, conjecturally, all the relations among 
polylogarithms.



Symbols
• Consider an iterated integral

Fk =

Z
Fk�1 d log R

• If its total differential satisfies

dFk =

X

i

Fk�1,i d log Ri

then we define the symbol of F by

S(Fk) =

X

i

S(Fk�1,i)⌦ d log Ri

• Example: dLin(z) = Lin�1(z) d log z

S(Lin(z)) = S(Lin�1(z))⌦ z = �(1� z)⌦ z ⌦ . . .⌦ z| {z }
n�1

[Goncharov, Spradlin, 
Vergu, Volovich]



Symbols
• In general:

• Properties:

plus the hypothesis that the integration ranges are [0,1], we can always bring multiple
polylogarithms into the ‘canonical form’

X

i

ci G(~ai;x) , (D.17)

for some variable x such that ai is independent of x and the coe�cients ci involve only
multiple polylogarithms that are independent of x. Note that this result is similar to the
result obtained in ref. [18]. In the following we give a constructive algorithm that allows
us to derive the canonical form (D.17).

In order to achieve a rewriting of our multiple polylogarithms in canonical form, we
need to derive the corresponding functional equations. The natural language to discuss
functional equations among multiple polylogarithms are symbols [28–32] and the Hopf
algebra of multiple polylogarithms [20]. We start by giving a concise review of symbols.

One possible way to define the symbol of a multiple polylogarithm is to consider its
total di↵erential [20],

dG(an�1, . . . , a1; an) =
n�1
X

i=1

G(an�1, . . . , ai�1, ai+1, . . . , a1; an) d ln
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ai � ai�1

◆
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and to define the symbol recursively by [31]
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As an example, the symbols of the classical polylogarithms and the ordinary logarithms
are given by
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n!

lnn z
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In addition the symbol satisfies the following identities,

. . .⌦ (a · b)⌦ . . . = . . .⌦ a⌦ . . . + . . .⌦ b⌦ . . . ,

. . .⌦ (±1)⌦ . . . = 0 ,

S
⇣
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where qq denotes the shu✏e product on tensors.
We can make the following observation about the symbol of a multiple polylogarithm:

if the ai are independent of x, then the symbol of G(a1, . . . , an;x) contains exactly one
term which contains x in all its entries, and this term can be chosen to be of the form

S(G(a1, . . . , an;x)) = (an � x)⌦ . . .⌦ (a1 � x) + . . . . (D.22)

In order to proof this statement, we focus on the term in the total di↵erential of G(a1, . . . , an;x)
proportional to dx,

dG(a1, . . . , an;x) = G(a2, . . . , an;x)
dx

x� a1
+ . . .

= G(a2, . . . , an;x) d log(a1 � x) + . . . ,
(D.23)
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S(⇣n) = 0

• Concequence: Complicated identities among polylogarithms 
become symbol algebraic identities among symbols.



Symbols of ladder integrals

1 Introduction

2 Conformal four-point integrals and single-valued poly-

logarithms

The ladder-type integrals that contribute to the correlator are known. More precisely, if
we write
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then the functions �(L)(u, v) are given by the well-known result [1, 2],
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where we defined
u = x x̄ and v = (1� x)(1� x̄) . (3)

At this stage, the variables (x, x̄) are simply a convenient parametrization which rational-
izes the two roots of the quadratic polynomial in the denominator of eq. (2). We note that
x and x̄ are complex conjugate to each other if we work in Euclidean space while they are
both real in Minkowski signature.

The particular combination of polylogarithms that appears in eq. (2) is not random,
but it has a particular mathematical meaning: in Euclidean space, where x and x̄ are
complex conjugate to each other, the functions �(L) are single-valued functions of the
complex variable x. In other words, the combination of polylogarithms that appears in the
ladder integrals is such that they have no branch cuts in the complex x plane. In order to
understand the reason for this, it is useful to look at the symbol of the ladder integrals.

One possible way to define the symbol of transcendental function is to consider its total
di↵erential. More precisely, if F is a function whose di↵erential satisfies

dF =
X

i

F
i

d logR
i

, (4)
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S(Lin(z)) = �(1� z)⌦ z ⌦ . . .⌦ z| {z }
n�1

S(log z) = z

• The symbols of ladder integrals have all their entries drawn 
from                            .{x, 1� x, x̄, 1� x̄}

• Idea: To find a basis, work with the tensors!
➡ Pure linear algebra.

➡ All identities are resolved.
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Integrability condition

• Is every tensor the symbol of a function?

• No! The tensor

where the R
i

are rational functions, then we can define the symbol of F recursively by [3]

S(F ) =
X

i

S(F
i

)⌦R
i

. (5)

As an example, the symbols of the classical polylogarithms and the ordinary logarithms
are given by

S(Li
n

(z)) = �(1� z)⌦ z ⌦ . . .⌦ z| {z }
(n�1) times

and S
✓

1

n!
lnn z

◆
= z ⌦ . . .⌦ z| {z }

n times

. (6)

In addition the symbol satisfies the following identities,

. . .⌦ (a · b)⌦ . . . = . . .⌦ a⌦ . . .+ . . .⌦ b⌦ . . . ,

. . .⌦ (±1)⌦ . . . = 0 ,

S (F G) = S(F )qqS(G) ,

(7)

where qq denotes the shu✏e product on tensors. Furthermore, all multiple ⇣ values are
mapped to zero by the symbol map. Conversely, an arbitrary tensor

X

i1,...,in

c
i1...in!i1 ⌦ . . .⌦ !

in (8)

whose entries are rational function is the symbol of a function only if the following inte-
grability condition is fulfilled,
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• This is a very strong constraint!

• In other words, we only need to work with a subspace of all 
tensor.

• But this space is still too large for Feynman integrals...



Discontinuities
• The symbol encodes the discontinuities of a function in its 

first entry.

• Example: If the symbol of a function F is

S(F ) = (a1 � x)⌦ . . .⌦ (an � x)

then F has a branch cut starting at           , and the 
discontinuity across the cut is 

x = a1

S(Disc
x=a1F ) = 2⇡i(a2 � x)⌦ . . .⌦ (a

n
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Discontinuities
• The symbol encodes the discontinuities of a function in its 

first entry.

• If we take a random combination of (integrable) tensors, 
then we get a random collection of cuts.

• But the cuts of Feynman integrals are all but random...
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First entry condition

• The branch cuts of a massless Feynman integral start at 
points where one of the Mandelstam invariants is zero.

• As a consequence, the first entry of the symbol of a massless 
Feynman integral must be a Mandelstam invariant!

[Gaiotto, Maldacena, Sever, Vieira]



First entry condition

• The branch cuts of a massless Feynman integral start at 
points where one of the Mandelstam invariants is zero.

• As a consequence, the first entry of the symbol of a massless 
Feynman integral must be a Mandelstam invariant!

• In our case, all terms in the symbol must be of the form

[Gaiotto, Maldacena, Sever, Vieira]

x

2
ij ⌦ . . .

and conformal invariance implies that the symbols have the 
form

u⌦ Su + v ⌦ Sv

• But in our case we can still do better!



Single-valuedness
• We introduce the parametrization 

1 Introduction

2 Conformal four-point integrals and single-valued poly-

logarithms

The ladder-type integrals that contribute to the correlator are known. More precisely, if
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At this stage, the variables (x, x̄) are simply a convenient parametrization which rational-
izes the two roots of the quadratic polynomial in the denominator of eq. (2). We note that
x and x̄ are complex conjugate to each other if we work in Euclidean space while they are
both real in Minkowski signature.

The particular combination of polylogarithms that appears in eq. (2) is not random,
but it has a particular mathematical meaning: in Euclidean space, where x and x̄ are
complex conjugate to each other, the functions �(L) are single-valued functions of the
complex variable x. In other words, the combination of polylogarithms that appears in the
ladder integrals is such that they have no branch cuts in the complex x plane. In order to
understand the reason for this, it is useful to look at the symbol of the ladder integrals.

One possible way to define the symbol of transcendental function is to consider its total
di↵erential. More precisely, if F is a function whose di↵erential satisfies
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• Let us now compute the discontinuity around x=0:
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• Conclusion: off-shell conformal four-point functions are 
single-valued in the complex x plane!

• Polylogarithms are highly constraint! 

➡ only combinations where all branch cuts cancel are 
allowed.



Single-valuedness

• These functions are indeed single-valued in the complex x 
plane!

• Infinite classes of generalized ladder integrals are known to 
evaluate to single-valued harmonic polylogarithms.

➡ Single-valued harmonic polylogarithms.
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u = x x̄ and v = (1� x)(1� x̄) . (3)

At this stage, the variables (x, x̄) are simply a convenient parametrization which rational-
izes the two roots of the quadratic polynomial in the denominator of eq. (2). We note that
x and x̄ are complex conjugate to each other if we work in Euclidean space while they are
both real in Minkowski signature.

The particular combination of polylogarithms that appears in eq. (2) is not random,
but it has a particular mathematical meaning: in Euclidean space, where x and x̄ are
complex conjugate to each other, the functions �(L) are single-valued functions of the
complex variable x. In other words, the combination of polylogarithms that appears in the
ladder integrals is such that they have no branch cuts in the complex x plane. In order to
understand the reason for this, it is useful to look at the symbol of the ladder integrals.

One possible way to define the symbol of transcendental function is to consider its total
di↵erential. More precisely, if F is a function whose di↵erential satisfies
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• More generally, all single-valued polylogarithms whose 
symbols have their entries drawn from                            have 
been completely classified. 

{x, 1� x, x̄, 1� x̄}

[Drummond]

[Brown]



The three-loop 
correlator

The ‘easy’ and ‘hard’ 
integrals



• The rational coefficients R correspond to leading 
singularities.

General strategy

• Asymptotic expansions for these integrals are known in the 
limit where u is small.

I =
X

i

Ri(x, x̄) Pi(x, x̄)

• The polylogarithms are constraint to be single-valued in the 
complex x plane.
➡ Minimal ansatz: Single-valued harmonic polylogarithms.

[Eden]



General strategy

Performing all the sums that appears in the results of ref. [10], we find

E14;23 =
log u

x

h
� 6⇣3H(0, 1; x)� 6⇣3H(1, 1; x) +H(0, 1, 0, 1, 1; x) (33)

�H(0, 1, 1, 0, 1; x) +H(1, 0, 0, 1, 1; x) + 2H(1, 0, 1, 1, 1; x)

�H(1, 1, 0, 0, 1; x)� 2H(1, 1, 1, 0, 1; x)
i

� 2

x

h
� 6⇣3H(0, 0, 1; x) + 2⇣3H(0, 1, 1; x)� 4⇣3H(1, 0, 1; x)

+ 4⇣3H(1, 1, 1; x) +H(0, 0, 1, 0, 1, 1; x)�H(0, 0, 1, 1, 0, 1; x)

+ H(0, 1, 0, 0, 1, 1; x)�H(0, 1, 1, 0, 0, 1; x) + 2H(1, 0, 0, 0, 1, 1; x)

+ 2H(1, 0, 0, 1, 1, 1; x) + 2H(1, 0, 1, 0, 1, 1; x)� 2H(1, 1, 0, 0, 0, 1; x)

� 2H(1, 1, 0, 1, 0, 1; x)� 2H(1, 1, 1, 0, 0, 1; x)
i
+O(u) ,

H12;34 =
log u

x2

h
� 24⇣3H(1, 1; x) + 4H(1, 1, 0, 1, 1; x)� 4H(1, 1, 1, 0, 1; x)

i
(34)

+
1

x2

h
48⇣3H(0, 1, 1; x)� 12⇣3H(1, 1, 1; x)� 8H(0, 1, 1, 0, 1, 1; x)

+ 8H(0, 1, 1, 1, 0, 1; x)� 8H(1, 1, 0, 0, 1, 1; x) + 2H(1, 1, 0, 1, 1, 1; x)

+ 8H(1, 1, 1, 0, 0, 1; x)� 2H(1, 1, 1, 0, 1, 1; x)
i
+O(u) .

The results for the other orientations are rather lengthy, so we do not show them here,
but we collect them in Appendix A. Let us however comment about the structure of the
functions f

k

(x) that appear in the expansions. The functions f
k

(x) can always be written
in the form

f
k

(x) =
X

l

R
k,l

(x)⇥ [HPLs in x] , (35)

where R
k,l

(x) may represent any of the following rational functions

1

x2
,

1

x
,

1

x(1� x)
. (36)

We note that the last rational function only enters the asymptotic expansion of H13;24.
The aim of this paper is to compute the easy and hard integrals by writing for each

integral an ansatz of the form X

i

R
i

(x, x̄)P
i

(x, x̄) , (37)

and to fix the coe�cients that appear in the ansatz by matching the limit x̄ ! 0 to
the asymptotic expansions presented in this section. In the previous section we argued
that a natural space of functions for the polylogarithmic part P

i

(x, x̄) are functions that
are single-valued in the complex x plane in Euclidean space. We however still need to
determine the rational prefactors R

i

(x, x̄) which are not constrained by single-valuedness.
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• The rational coefficients R correspond to leading 
singularities.

General strategy

• Asymptotic expansions for these integrals are known in the 
limit where u is small.

I =
X

i

Ri(x, x̄) Pi(x, x̄)

• The polylogarithms are constraint to be single-valued in the 
complex x plane.
➡ Minimal ansatz: Single-valued harmonic polylogarithms.

• Strategy: Write an ansatz using the leading singularities 
and single-valued polylogarithms and match the 
coefficients.

[Eden]



‘Easy’ integral

corresponding integrals, those which survive the light-like limit (for x2
12 = x2

23 = x2
34 =

x2
41 = 0), already appeared in Fig. 6. Away from this limit, for arbitrary x2

i,i+1 != 0, we find
only two new conformal three-loop integrals E and H (for “easy” and “hard”, referring to
their Mellin-Barnes evaluation in Appendix C), which are depicted in Fig. 8. Thus, the
complete list of integrals which we expect to find in the correlation function (away from
the light-like limit) is shown in Figs. 6 and 8. All others graphs for F (3) are obtained by
permuting the external points.
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E(1; 2, 4; 3) H(1, 2; 3, 4)

Figure 8: Diagrammatic representation for the new three-loop integrals (3.14) contributing to the
four-point correlation function away from the light-like limit. The dashed lines between adjacent
external points indicate that these integrals vanish in the limit.

Here are the expressions for the one- and two-loop ladder (box and double-box) integrals
g and h from Fig. 5,
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1
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and for the three-loop integrals from Fig. 6 and Fig. 8,
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Summarising our analysis, we obtain the full four-point correlation function up to three

19

=
1

(1� u)(x� x̄)
E(x, x̄) +

u

(1� u)(x� x̄)
E(1/x, 1/x̄)

• Making an ansatz for E in terms of single valued harmonic 
polylogarithms we find

at the following expression for E(x, x̄),

E(x, x̄) = 4L3,1,2 � 64L5,1 � 16L4,2 � 4L3,2,1 + 4L2
0 L3,1 � 4L2

0 L2,1,1 � 3L1 L0 L3,1

� 3L2
1 L4 + 4L1 L4 L0 + 2L0 L2 L2,1 + 4L0 L2 L3 + 2L1 L2 L3

� 4

3
L1 L

3
0 L2 + L2

1 L
2
0 L2 � 1

3
L3
2 � 8 ⇣3 L0 L2 + 2 ⇣3 L1 L2 .

(82)

For clarity, we suppressed the argument of the SVHPLs and we use the ‘compressed’
notation for HPLs, e.g., L3,2,1 ⌘ L0,0,1,0,1,1(z).

A Asymptotic expansions of the easy and hard inte-

grals

In this appendix we collect the asymptotic expansions of the di↵erent orientations of the
easy and hard integrals in terms of harmonic polylogarithms. The results for E14;23 and
H12;34 were already presented in Section 3. The results for the other orientations are given
below.
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‘Hard’ integral

• Making an ansatz for H in terms of single valued harmonic 
polylogarithms we find

corresponding integrals, those which survive the light-like limit (for x2
12 = x2

23 = x2
34 =

x2
41 = 0), already appeared in Fig. 6. Away from this limit, for arbitrary x2

i,i+1 != 0, we find
only two new conformal three-loop integrals E and H (for “easy” and “hard”, referring to
their Mellin-Barnes evaluation in Appendix C), which are depicted in Fig. 8. Thus, the
complete list of integrals which we expect to find in the correlation function (away from
the light-like limit) is shown in Figs. 6 and 8. All others graphs for F (3) are obtained by
permuting the external points.
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Figure 8: Diagrammatic representation for the new three-loop integrals (3.14) contributing to the
four-point correlation function away from the light-like limit. The dashed lines between adjacent
external points indicate that these integrals vanish in the limit.
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Summarising our analysis, we obtain the full four-point correlation function up to three
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As in the box case, to evaluate this it is useful to consider the square of J (on the cut):

J2 = 16 det

✓
x2
ij

�2x
i

· @�3456/@x5

�2x
i

· @�3456/@x5 (@�3456/@x5)2

◆
. (55)

The result of the x5 integral is then simply

(4⇡4)2x2
56

Jx2
45

���� =
(4⇡4)2x2

36

Jx2
34

(56)

where the second equality follows since x2
56 and x2

45 are to be evaluated on the cut (indicated
by the vertical line) for which x2

45x
2
36�x2

56x
2
34 = 0. Finally we need to turn to the remaining

x6 integral, We are now left with simply

(4⇡4)2
Z

d4x6

x2
16x

2
26x

2
46J

(57)

where we note that the x2
36 propagator term has canceled with the numerator in (56). So

we have no choice left for the quadruple cut as there are only four poles. In fact on the
other cut of the three propagators we find J = 4(x2

14x
2
23 � x2

13x
2
24)x

2
36 and so in fact this

brings back the propagator x2
36.

Computing the Jacobian associated with this final integration thus yields the final result
for the leading singularity

leading singularity #2 of H12;34 = ± (4⇡4)3

(x2
14x

2
23 � x2

13x
2
24)�1234

. (58)

We conclude that the hard integral can be written as these leading singularities times
pure functions, ie it has the form

H12;34 =

✓
(4⇡4)3

x4
13x

4
24

◆✓
H(a)(x, x̄)

(x� x̄)2
+

H(b)(x, x̄)

(v � 1)(x� x̄)

◆
(59)

where H(a),(b) are pure polylogarithmic functions. These pure functions must furthermore
satisfy the following properties

H(a)(x, x̄) = H(a)(x̄, x) H(b)(x, x̄) = �H(b)(x̄, x) (60)

H(a)(x, x̄) = H(a)(x/(x� 1), x̄/(x̄� 1)) H(b)(x, x̄) = H(b)(x/(x� 1), x̄/(x̄� 1))

in order that H12;34 be symmetric in x, x̄ and under the permutation x1 $ x2. Furthermore
we would expect that H(a)(x, x) = 0 in order to cancel the pole at x � x̄. In fact it will
turn out in this section that even without imposing this condition by hand we will arrive
at a unique result which nevertheless does satisfy this condition.

By swapping the points around we automatically then get that

H13;24 =

✓
(4⇡4)3

x4
13x

4
24

◆✓
H(a)(1/x, 1/x̄)

(x� x̄)2
+

H(b)(1/x, 1/x̄)

(u� v)(x� x̄)

◆
(61)

H14;23 =

✓
(4⇡4)3

x4
13x

4
24

◆✓
H(a)(1� x, 1� x̄)

(x� x̄)2
+

H(b)(1� x, 1� x̄)

(1� u)(x� x̄)

◆
. (62)
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• Making an ansatz for H in terms of single valued harmonic 
polylogarithms we find
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only two new conformal three-loop integrals E and H (for “easy” and “hard”, referring to
their Mellin-Barnes evaluation in Appendix C), which are depicted in Fig. 8. Thus, the
complete list of integrals which we expect to find in the correlation function (away from
the light-like limit) is shown in Figs. 6 and 8. All others graphs for F (3) are obtained by
permuting the external points.
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four-point correlation function away from the light-like limit. The dashed lines between adjacent
external points indicate that these integrals vanish in the limit.
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other cut of the three propagators we find J = 4(x2

14x
2
23 � x2

13x
2
24)x

2
36 and so in fact this

brings back the propagator x2
36.

Computing the Jacobian associated with this final integration thus yields the final result
for the leading singularity

leading singularity #2 of H12;34 = ± (4⇡4)3

(x2
14x

2
23 � x2

13x
2
24)�1234

. (58)

We conclude that the hard integral can be written as these leading singularities times
pure functions, ie it has the form

H12;34 =

✓
(4⇡4)3

x4
13x

4
24

◆✓
H(a)(x, x̄)

(x� x̄)2
+

H(b)(x, x̄)

(v � 1)(x� x̄)

◆
(59)

where H(a),(b) are pure polylogarithmic functions. These pure functions must furthermore
satisfy the following properties

H(a)(x, x̄) = H(a)(x̄, x) H(b)(x, x̄) = �H(b)(x̄, x) (60)

H(a)(x, x̄) = H(a)(x/(x� 1), x̄/(x̄� 1)) H(b)(x, x̄) = H(b)(x/(x� 1), x̄/(x̄� 1))

in order that H12;34 be symmetric in x, x̄ and under the permutation x1 $ x2. Furthermore
we would expect that H(a)(x, x) = 0 in order to cancel the pole at x � x̄. In fact it will
turn out in this section that even without imposing this condition by hand we will arrive
at a unique result which nevertheless does satisfy this condition.

By swapping the points around we automatically then get that

H13;24 =

✓
(4⇡4)3

x4
13x

4
24

◆✓
H(a)(1/x, 1/x̄)

(x� x̄)2
+

H(b)(1/x, 1/x̄)

(u� v)(x� x̄)

◆
(61)

H14;23 =

✓
(4⇡4)3

x4
13x

4
24

◆✓
H(a)(1� x, 1� x̄)

(x� x̄)2
+

H(b)(1� x, 1� x̄)

(1� u)(x� x̄)

◆
. (62)
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=

...nothing...

• The space of functions is not big enough!

• For two-loop three-point functions, it is known that other 
single-valued function appears, whose symbols have entries 
drawn from                                     .{x, 1� x, x̄, 1� x̄, x� x̄}

[Chavez, CD]



‘Hard’ integral
• Example:

weight + -

1 ln |z|2, ln |1− z|2 –

2 ζ2 P2(z)

3 ζ3,P3(z),P3(1− z) Q3(z)

4 Q+
4 (z),Q

+
4 (1− z) P4(z),P4(1− z),P4(1− 1/z),Q−

4 (z)

Table 1: Indecomposables basis elements up to weight four which can appear in the ε of three
mass triangle integrals.

of weight three besides single-valued HPLs is

Q3(z) =
1

2

[
G

(
0,

1

z̄
,
1

z
, 1

)
−G

(
0,

1

z
,
1

z̄
, 1

)]
+

1

4
ln |z|2

[
G

(
1

z
,
1

z̄
, 1

)
−G

(
1

z̄
,
1

z
, 1

)]

+
1

2

[
Li3(1− z)− Li3(1− z̄)

]
+ Li3(z) − Li3(z̄) +

1

4

[
Li2(z) + Li2(z̄)

]
ln

1− z

1− z̄

+
1

4

[
Li2(z)− Li2(z̄)

]
ln |1− z|2 +

1

16
ln

z

z̄
ln2

1− z

1− z̄
+

1

8
ln2 |z|2 ln

1− z

1− z̄

+
1

4
ln |z|2 ln |1− z|2 ln

1− z

1− z̄
+

1

16
ln2 |1− z|2 ln

z

z̄
−

π2

12
ln

1− z

1− z̄
.

(3.7)

Similar results for the new basis functions of weight four can be found in appendix A. The

main difference between the new basis functions and the single-valued HPLs is that the new

functions cannot be written in a factorized form (3.6), but they involve genuine multiple

polylogarithms in (z, z̄). The proof thatQ3(z) is indeed single-valued in the complex z plane

follows from the construction of appendix A. We note that, as every multiple polylogarithm

of weight at most three can be expressed through classical polylogarithms only, we could

derive an expression for Q3(z) that does not involve any multiple polylogarithm. The

result would be a combination of classical polylogarithms which individually have a very

complicated branch cut structure, and the different cuts conspire such that Q3(z) is single-

valued. We therefore prefer to present Q3(z) in the form (3.7). Furthermore note that, just

like the singe-valued analogues of the classical polylogarithms (3.2), Q3(z) has a definite

parity under complex conjugation, z ↔ z̄. More generally, we can choose all the basis

elements as eigenstates of the action of the Z2 symmetry group corresponding to complex

conjugation. The indecomposable basis elements up to weight four with given parity under

complex conjugation are shown in tab. 1. Note that we introduce the short-hand

Pn(z) ≡

{
2Pn(z) , if n odd ,

2iPn(z) , if n even ,
(3.8)

in order to absorb the normalization factor coming from the real and imaginary part (be-

cause we will have to consider these functions as well in the region II, III, IV, where z and

z̄ are not complex conjugate to each other).

Let us conclude this section with a discussion on how the symmetries of three-mass

triangle integrals are implemented into the space of single-valued polylogarithms we just

– 9 –

• If we enlarge the space of functions to include these 
functions as well, we can find a solution for the hard 
integral!
➡ Result rather long, so will not be shown here.

• But extension of the space of functions seems rather ad hoc...

➡ More on this shortly!



The correlator
• Conclusion: We have now the full analytic result for the 

three-loop four-point correlator.

• The remaining integrals were obtained without computing 
any actual integral!
➡ Residues of loop integrals.

➡ Basis for the space of polylogarithms.

➡ Asymptotic expansions.

• Were we just lucky..?

• What about the rather ad hoc extension of the space of 
functions..?



Going beyond 
three loops

A specific four-loop 
integral



A 4-loop integral

• To see how robust our method is, we went to the simplest 
non-trivial 4-loop integral

Di↵erential equation for a four-loop integral

Let us consider the following Euclidean four-loop integral,

I(4)(x1, x2, x3, x4) =
1

⇡8

Z
d4x5d

4x6d
4x7d

4x8x
2
14x

2
24x

2
34

x2
15x

2
18x

2
25x

2
26x

2
37x

2
38x

2
45x

2
46x

2
47x

2
48x

2
56x

2
67x

2
78

=
1

x2
13x

2
24

f(u, v) ,

(0.1)
where, as usual,

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

. (0.2)

Let us use the magic identity [] on the two-loop ladder subintegral

I(2)(x1, x2, x4, x7) =
1

⇡4

Z
d4x5d

4x6x
2
24

x2
15x

2
25x

2
26x

2
45x

2
46x

2
67x

2
56

(0.3)

The magic identity reads

I(2)(x1, x2, x4, x7) = I(2)(x2, x1, x7, x4) . (0.4)

Using this on the four-loop integral we find

I(4) =
1

⇡4

Z
d4x7d

4x8

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78

I(2)(x1, x2, x4, x7)

=
1

⇡4

Z
d4x7d

4x8

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78

I(2)(x2, x1, x7, x4)

=
1

⇡8

Z
d4x5d

4x6d
4x7d

4x8x
2
17x

2
14x

2
34

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78x

2
25x

2
15x

2
16x

2
75x

2
76x

2
64x

2
56

. (0.5)

The resulting integral is ‘boxable’, i.e. we may apply the Laplace operator at the point x2.
The only propagator which depends on x2 is the one connected to the point x5 and we have

⇤2
1

x2
25

= �4⇡2�4(x25) . (0.6)

Thus on the full integral I(4) we have

⇤2I
(4)(x1, x2, x3, x4) = �4

1

⇡6

Z
d4x6d

4x7d
4x8x

2
17x

2
14x

2
34

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78x

2
12x

2
16x

2
72x

2
76x

2
64x

2
26

= �4
x2
14

x2
12x

2
24

E(1, 4; 2, 3) , (0.7)

where we have recognised the Easy integral

E(1, 4; 2, 3) =
1

⇡6

Z
d4x6d

4x7d
4x8x

2
34x

2
24x

2
17

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78x

2
16x

2
72x

2
76x

2
64x

2
26

=
1

x2
13x

2
24

f
E

(u, v) . (0.8)

Thus we find the following di↵erential equation for the function f ,

⇤2
1

x2
13x

2
24

f(u, v) = �4
x2
14

x2
12x

2
13x

4
24

f
E

(u, v) . (0.9)

1

• How far do we get..?



A 4-loop integral

• To see how robust our method is, we went to the simplest 
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The magic identity reads
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37x
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The resulting integral is ‘boxable’, i.e. we may apply the Laplace operator at the point x2.
The only propagator which depends on x2 is the one connected to the point x5 and we have

⇤2
1

x2
25

= �4⇡2�4(x25) . (0.6)
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Thus we find the following di↵erential equation for the function f ,

⇤2
1

x2
13x

2
24

f(u, v) = �4
x2
14

x2
12x

2
13x

4
24

f
E

(u, v) . (0.9)

1

• How far do we get..?

• There is only one residue (up to conjugation):
1

x� x̄

➡ We are looking for a function of the form:
�(x, x̄)
x� x̄

• What about the space of polylogarithms?



A 4-loop integral

• The asymptotic expansions for this integral can be 
computed.

• Using the same ansatz for the space of polylogarithms as 
for the ‘easy’ and ‘hard’ integrals we find



A 4-loop integral

• The asymptotic expansions for this integral can be 
computed.

• Using the same ansatz for the space of polylogarithms as 
for the ‘easy’ and ‘hard’ integrals we find

• So it seems hopeless...
...nothing...



A 4-loop integral

• The asymptotic expansions for this integral can be 
computed.

• Using the same ansatz for the space of polylogarithms as 
for the ‘easy’ and ‘hard’ integrals we find

• So it seems hopeless...

• But there is a differential equation for the 4-loop integral:

...nothing...

@

x

@

x̄

� = �x� x̄

xx̄

E(x, x̄) = � 1
xx̄(1� xx̄)

E(x, x̄)

➡ The leading singularity of the ‘easy’ integral enter as the 
kernel of the differential equation



A 4-loop integral

# Loops LS Polylogarithms

1 & 2 1
x� x̄

{x, 1� x, x̄, 1� x̄}

G

✓
0,

1
x

,

1
x

; 1
◆

G

✓
0,

1
x̄

,

1
x̄

; 1
◆



A 4-loop integral

# Loops LS Polylogarithms

1 & 2 1
x� x̄

{x, 1� x, x̄, 1� x̄}

G

✓
0,

1
x

,

1
x

; 1
◆

G

✓
0,

1
x̄

,

1
x̄

; 1
◆

3

1
x� x̄ + . . .

1
(x� x̄)(1� xx̄)

{x, 1� x, x̄, 1� x̄, x� x̄}

G

✓
0,

1
x

,

1
x̄

; 1
◆



A 4-loop integral

# Loops LS Polylogarithms

1 & 2 1
x� x̄

{x, 1� x, x̄, 1� x̄}
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✓
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x
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◆
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◆

3
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✓
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1
x
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1
x̄

; 1
◆

4
1

x� x̄

+ . . .
G

✓
0,

1
x

,

1
xx̄

; 1
◆

G

✓
0,

1
x̄

,

1
xx̄

; 1
◆

{x, x̄, 1� x, 1� x̄, 1� xx̄}



A 4-loop integral

# Loops LS Polylogarithms

1 & 2 1
x� x̄

{x, 1� x, x̄, 1� x̄}

G

✓
0,

1
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,

1
x

; 1
◆
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1
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1
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; 1
◆

3
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✓
0,
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x

,
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; 1
◆

4
1

x� x̄

+ . . .
G

✓
0,

1
x

,

1
xx̄

; 1
◆

G

✓
0,

1
x̄

,

1
xx̄

; 1
◆

{x, x̄, 1� x, 1� x̄, 1� xx̄}



Conclusion

• We have computed the fully analytic result for the three-loop 
four-point correlator in planar N=4 SYM, solely by using

➡ Symmetries.
➡ Leading singularities - algebraic geometry.
➡ Symbol - number theory - modern algebra.
➡ Asymptotic expansions.

• Four-loop analysis seems to suggest that space of function is 
related to the leading singularities at lower loop orders.

• While the computation was performed for N=4 SYM, the 
technique might also apply outside this theory.
➡ New way to compute Feynman integrals.





• Algebras • Coalgebras

➡ ‘Two become one’ ➡ ‘One becomes two’

µ(a⌦ b) = a · b �(a) =
X

i

a(1)
i ⌦ a(2)

i

µ : H⌦H ! H � : H ! H⌦H

• In a Hopf algebra these two operations are compatible.

• Idea: if combinatorics of some object is too complicated, 
‘break’ it into smaller pieces and work with these.

�(a · b) = �(a) · �(b)

Hopf algebras


