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Feynman diagrams and amplitudes

๏ Diagrammatic representation of the perturbative expansion of a field theory. 

๏ Amplitude: sum of Feynman diagrams contributing to a n      m process. 

๏ Feynman diagrams can be classified according to the number of loops and 
the number of external legs. Their calculation greatly increases with both 
but is necessary for precise prediction for experiments. 

๏ Two complimentary ways to optimise their calculation: 

➡ Mathematics: a large class of Feynman diagrams can be written in 
terms of a specific class of functions. 

➡ Physics: Feynman diagrams describe physical processes.
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Multiple Polylogarithms

๏ A large class of Feynman integrals can be written in terms of multiple 
polylogarithms, defined recursively by the iterated integral: 

!

!

- ex: Classical polylogarithms: 

!

๏ Transcendental weight:
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Multiple Polylogarithms

๏ Iterative definitions is an integration rule: provided an integrand has been 
written in the correct form (!), the integration is trivial. 

๏ This would be of limited interest for analytical calculation if we did not know 
how to work with the very large class of MPLs 

- ex: a 17 page result was reduced to a couple of lines by identifying 
using relations between polylogarithms, see 

!

๏ It is an empirical observation that most Feynman diagrams can be written 
in terms of a limited subset of all MPLs (~ classical and harmonic 
polylogarithms)
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The Hopf algebra and coproduct of MPLs 

๏ The space spanned by all MPLs has a very rich structure. In particular, the 
space of H of all HPLs modulo π forms a Hopf algebra, which can be 
equipped with a coproduct Δ: 

!
๏ Properties 

• Coassociative: 

• Respects multiplication: 

• Respects the weight: 

๏ Examples
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The symbol and the coproduct

๏ The symbol corresponds to the maximum iteration of the coproduct, and 
coassociativity guarantees it is uniquely defined. 

!

๏ Manipulations of the symbol tensor:

S(Fn) ⇠ �1,...,1(Fn)

. . .⌦ log(a b)⌦ . . . = . . .⌦ a⌦ . . .+ . . .⌦ b⌦ . . .

. . .⌦ ⇢n ⌦ . . . = 0 (⇢n)
n = 1

S(⇡nF ) = S(⇣nF ) = 0



The symbol and the coproduct

๏ It is consistent to slightly modify the action of the coproduct so that, e.g.: 

!

!

๏ The coproduct keeps more information than the symbol. E.g.:

�(⇡) = ⇡ ⌦ 1 �(⇣2) = ⇣2 ⌦ 1

S(⇡F ) = 0 �(⇡F ) = ⇡ ⌦ F
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The integrability condition

๏ “Integration” of the symbol (finding a function whose symbol matches a 
given tensor) is a complicated problem, not solved in general. Not all 
tensors are the symbol of a function, they have to satisfy the integrability 
condition: 

!

!

๏ Example: 

       vs
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The coproduct, discontinuities and 
derivatives

๏ The two following identities are conjecture to hold: 

!

- Derivatives act on the last entry of the coproduct 

- Discontinuities act only on the first entry of the coproduct 

๏ In particular, recursive discontinuities are given by: 

!

๏ Notation:  
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Physical constraints: the first entry 
condition

๏ Feynman diagrams have branch points at the threshold for the production 
of new on-shell states: in massless theories, the first entry of the coproduct 
must be (the logarithmic of) a kinematic invariant. 

๏ For these diagrams, the weight (1,n-1) component of the coproduct is: 

!

This is the first entry condition. 

๏ This is not true for other entries of the symbol/coproduct: understanding 
what can appear there is an interesting problem in itself.
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The largest time equation

๏ The largest time equation is: 

!

๏ It allows to: 

1. compute the discontinuity across the physical branch cuts of a 
Feynman diagram 

2. prove the existence of a dispersive representation of individual 
Feynman diagrams (an not amplitudes as the optical theorem, which is 
implied by the largest time equation).
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Cutting rules (scalar) — single cut: 
Cutkosky rules

p

pp

= i

=
i

p2 + i�

= �i

=
�i

p2 � i"

= 2⇡�(p2)✓(p0)

p 2
2

p 3
2

p 1
2

Discp2
3

= �
p 2

2

p 3
2

p 1
2

Example:

R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys., 1(1960)	

L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nuclear Phys. 13 (1959)



Three definitions of discontinuities

๏ Discontinuity across branch cuts:!

!

๏ From the coproduct:!

!

!

๏ Cuts:
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Three definitions of discontinuities

๏ Single cut: 

!

!

๏ How does this generalise for multiple discontinuities (kinematic channels 
no longer the simpler variables)? 

๏ How to compute multiple cuts?

DiscsF = �2⇡i ✓(s) �sF = �CutsF



Multiple unitarity cuts

๏ Crossed cuts are excluded. 

๏ Cuts in which all channels are not distinct are excluded. 

๏ Insist on the use of real kinematics for external and loop momenta. 

๏ These are very restrictive rules.
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Multiple unitarity cuts —Examples

๏ Sequential cut of three mass triangle: 

!

!

!

!

๏ Vanishing crossed cut:
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Relation between different discontinuities

๏ Relation between multiple discontinuities across branch cuts and cuts of 
diagrams 

!

!

๏ Relation between multiple discontinuities and coproduct entries 

!

!

๏ The iε prescription of the xi is inherited from that of the si. Determining 
which xi  corresponds to a given si must be done case by case.
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Example 1: the three-mass triangle

๏ Single cut of the three mass triangle: 

!

!
๏ The invariants p2i are clearly not the most suitable variables; let’s define 
!
!
!
!
!
!
!
!

๏ Cuts provide a way to identify the xi without evaluating the full diagram. 
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Example 1: the three-mass triangle

๏ The variables introduced for the cut triangle are indeed the most suitable 
for the uncut triangle. 

!

!

๏ Coproduct of the three mass triangle.
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Example 1: the three-mass triangle

๏ Double cut of the three mass triangle: 

!

!

๏ Relation between cuts and discontinuities across branch cuts: 

!

๏ Relation between the coproduct and discontinuities across branch cuts:
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Example 1: the three-mass triangle

๏ In this particular example, we can cut through all transcendental functions 
and get to the rational prefactor — the leading singularity. This is not 
always possible with our cutting rules. 

๏ Single (and double) dispersion representation of the triangle particularly 
simple in terms of the correct variables.
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Example 2: three-mass three-point ladder 

๏ The most convenient variables are the same as for the three mass triangle.
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Example 2: three-mass three-point ladder 

๏ p23-channel cuts 

!

!

!

๏ p22-channel cuts



Example 2: three-mass three-point ladder 

๏ All the cut diagrams are divergent in d=4 dimensions (massless internal 
legs). The calculation is done in d=4-2ϵ dimensions. 

!

๏ The sum of cuts on a given channel must be finite: the cancelation of 
divergences follows a pattern similar to the cancelation between the real 
and virtual contributions to a cross-section.

! 
+ +

 !
+ = O(✏0)

Virtual Real



๏ p23-channel cuts 

!

!

!

๏ p22-channel cuts

Example 2: three-mass three-point ladder 
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Example 2: three-mass three-point ladder 

๏ (p23, p21)-channel cuts:  

!

!

!

๏ (p22, p21)-channel cuts:
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๏ (p23, p21)-channel cuts:  

!

!

๏ (p22, p21)-channel cuts: 

!

!

!

๏ Triple cut: unlike what happens with the one-loop triangle, this is as far as 
we can go with our cut conventions: after that we loose the connection to 
kinematic invariants.

Example 2: three-mass three-point ladder 
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Conclusions

๏ We provide a diagrammatic interpretation in terms of cuts of specific terms of the 
coproduct. 

๏ We define a generalised set of cutting rules for multiple cuts, and conjecture relations 
between cuts computed with those rules, discontinuities across physical branch points and 
coproduct entries. 

๏ That the relations we get are precise, including control of all minus sign, is a non-trivial 
check of our generalised cutting rules. 

๏ Other cuts (that do not follow our rules) can reproduce deeper entries of the coproduct. 
However, the control of the signs and knowledge of the precise kinematic region is lost. 

• ex: the leading singularity can always be computed by the maximal cut up to an 
unknown overall normalisation. 

๏ From the components of the coproduct we reproduce through our cut rules, we can 
reconstruct the full symbol of the uncut diagram through a well defined algorithm (relying 
on the integrability and the first entry condition).



Outlook

๏ How useful can cuts be to identify the correct variables for a given multi-leg 
diagram? 

๏ What are the implications of our very strict cutting rules (dispersive 
representation, reconstruction of the symbol, generalisation of the largest 
time equation…)? 

๏ How do this rules hold when we increase the number of loops and/or the 
number of legs? 

๏ The coproduct provides a way to organise the information obtained from 
cuts. Can it be used to better interpret more general cuts (with complex 
kinematics)?


