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Introduction and motivation

Introduction and motivation

Motivation
@ Theoretical understanding of scattering amplitudes
e basic analytic/algebraic structure of loop integrands and integrals
@ Need of theoretical predictions for colliders (LHC)
e probing large phase space = several external legs
e need of NLO or higher accuracy = computations at the loop level

@ Automation of methods for predictions in perturbative QFT

We developed a coherent framework for the integrand decomposition
of Feynman integrals

@ based on simple concepts of algebraic geometry
@ applicable at all loops
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Introduction and motivation

Integrand reduction

@ The integrand of a generic ¢-loop integral:
@ is a rational function in the components of the loop momenta g;

e polynomial numerator AV ...;, —///_\

J\/il'“i
D; ---D;

e quadratic polynomial denominators D; \_/

@ they correspond to Feynman loop propagators

M= [ d% ---d%q T,.i,,  Tiiy=
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Introduction and motivation

Integrand reduction

The idea

Manipulate the integrand and reduce it to a linear combination of
“simpler” integrands.

@ The integrand-reduction algorithm leads to

N JAN I LA,
— il iy o it A
19 in D,']“'D Dil"‘Di,, + + ; 4D[k + 0

in

@ The residues A,,..;, are irreducible polynomials in g;

e can’t be written as a combination of denominators D;, ..., D;,
e universal topology-dependent parametric form
e the coefficients of the parametrization are process-dependent
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Introduction and motivation

From integrands to integrals

@ By integrating the integrand decomposition

_ _ Ay, ¢
M”:/ddq"”dd‘” (DD Fot Y
k=1

i in

A,
A
D;, + @>

e some terms vanish and do not contribute to the amplitude
= spurious terms
@ non-vanishing terms give Master Integrals (Mls)

@ The amplitude is a linear combination of Mls

@ The coefficients of this linear combination can be identified with some of
the coefficients which parametrize the polynomial residues
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Introduction and motivation

From integrands to integrals

@ By integrating the integrand decomposition

N d
M”:/ddq"”dd‘” (DD Fot Y
k=1

i in

A,
A
D;, + @>

e some terms vanish and do not contribute to the amplitude
= spurious terms
@ non-vanishing terms give Master Integrals (Mls)

@ The amplitude is a linear combination of Mls

@ The coefficients of this linear combination can be identified with some of
the coefficients which parametrize the polynomial residues

= reduction to Mls = polynomial fit of the residues
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Introduction and motivation

The one-loop decomposition

At one loop the result is well known:

@ the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

7= N Djijsjniais Ajijajsis
iy iy = =
Dy, D, J1ees Dj, Dj, Dj; Dj, Djs Jiaiaja Dj, Dj, Dj; Dj,
+ 2 : Ajijjs +§ : Ajijp +§ : Aj,
— iDj, Dj — D D; — D,
Jujy TR Jup T2 a N

@ the integral decomposition

7N
= C40 + €30 ]> + c10 Q
C37]> + 629

@ all the Mater Integrals are known!
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Integrand reduction via polynomial division

Integrand reduction and polynomials

@ At /-loops we want to achieve the integrand decomposition:

> _ N A "
Ii]..-i,,(ql,-.~ ,qz) D _ll.'g_ :DA '11”15 + -+ Z
: ' k=1

In 1 In

A
A
D, + 5

they must be irreducible

@ We trade (g, ..., ge) with their coordinates z = (z1,...,zm)
= numerator and denominators = polynomials in z

Ni-i,(2)

Liywi)(2) = D\ (z)-- D, (z)

= Integrand reduction = problem of multivariate polynomial division

The problem of the determination of the residues of a generic diagram
has been solved. [Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012-14)]J
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Integrand reduction via polynomial division

Residues via polynomial division

Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)
@ Define the Ideal of polynomials

@ Take a Grdbner basis Gz, ., of J,...i,
Gg, ., = {g1,...,8s} suchthat J .. = (g1,..-,8)

@ Perform the multivariate polynomial division NV;,.., /G7, .,

Ml"'in(z> = ZMI"'ik—lik+1"'in(Z> Dik(Z) + Ail...i’l(Z)
k=1

quotient € J,vl ceiy remainder

@ The remainder A,,..;, is irreducible = can be identified with the residue
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Integrand reduction via polynomial division

Recursive Relation for the integrand decomposition

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

The recursive formula
n
Ml"‘in = ZMI“'ikflikH“'in D;, + Ail“'in
k=1

Ajy iy
Liyiy = D ---D: = ;Iil"'ik—]ik+l"'in + ﬁ

l.l... in

@ Fit-on-the-cut approach

e from a generic NV, get the parametric form of the residues A
e determine the coefficients sampling on the cuts (impose D; = 0)

@ Divide-and-Conquer approach

e generate the A/ of the process
e compute the residues by iterating the polynomial division algorithm
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Integrand reduction via polynomial division

Fit-on-the-cut approach

[Ossola, Papadopoulos, Pittau (2007)]

The decomposition of the numerator

Noiw =% A I Dn

k=0 {ji--+ji} he{iv--in ]\ {ji-- i}

@ Fit the coefficients of the residues sampling on the multiple cuts
@ First step: n-ple cut
@ impose D;, =---=D; =0
Ajyoiy = Niyoi,
@ Further steps: k-ple cut
e impose D;, = --- =D, = 0for any subset {i; ...}
_ N,...;, — higher-point contibrutions

1 lk
Hh#'l,m,ik Dy
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Integrand reduction via polynomial division

Fit-on-the-cut approach: The reducibility criterion

What happens if a cut has no solution?

The reducibility criterion

@ IfacutD;, =--- =D, =0 has no solutions, the associated residue
vanishes. In other words, any numerator is completely reducible.

@ This generally happens with overdetermined systems i.e. when the
number of cut denominators is higher than the one of loop coordinates.

@ When D; = --- =D, = 0 has no solution:
Ay =0 = no need to perform the fit
n
M]"'in = ZMl'“ikqikM-“in D;,
k=1
Il']"-l'n = ZLI"'ik—lik+]“'i11
k
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Integrand reduction via polynomial division

Fit-on-the-cut approach: The maximum-cut theorem

The maximum-cut theorem

@ We define maximum-cut, a cut where

#(cut-denominators) = #(components-of-loop-momenta)

@ In non-special kinematic configurations it has a finite number of solutions

#(coefficients-of-the-residue) = #(solutions-of-the-cut)

@ The fit-on-the-cut approach therefore gives a number of equations which
is equal to the number of unknown coefficients.

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 11




Integrand reduction via polynomial division

Fit-on-the-cut approach: The maximum-cut theorem

Examples:

| diagram A Tls H diagram A Tg

CE o 1 j:[ o+ 1z 2
T ket 4O Thesst
]:E[ Yigazt 8 @:Q Yioaz' 8
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Integrand reduction via polynomial division

Fit-on-the-cut approach

Pros:
@ each multiple cut projects out the corresponding residue
= the systems of equations for the coefficients are much smaller

@ can be implemented either analytically or numerically
@ very successful application at one-loop
Cons:

@ at higher-loops the solutions of the cuts can be difficult to find
@ it cannot be applied in to all integrands/topologies
e if we have e.g. quadratic propagators the formula yields

N, ...;, — higher-point contibrutions 0

théil,‘..,ik Dy, 0
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Integrand reduction via polynomial division

Fit-on-the-cut approach

Pros:
@ each multiple cut projects out the corresponding residue
= the systems of equations for the coefficients are much smaller

@ can be implemented either analytically or numerically
@ very successful application at one-loop

Cons: ( )
@ at higher-| _OBSERVATION: cult to find
. these issues are not present
@ itcannotly . .
i we in the divide-and-conquer approach I
e fhwe which instead can be applied to e10s
any integrand D
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Application at one-loop

One-loop decomposition from polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)
@ Start from the most general one-loop amplitude in d = 4 — 2¢
@ Apply the recursive formula for the integrand decomposition

= it reproduces the OPP result
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

@ Drop the spurious terms

= Get the most general integral decomposition (well knwon result)

= €40 + €30 ]> + cC20 O + c10 Q
+ 03.7 + C2.9

PN

+

o
'
FS
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Application at one-loop

One-loop decomposition from polynomial division
At one loop in 4 — 2¢ dimensions:

@ 5 coordinates z = (z1,22,23,24,25)

@ 4 components (z1,22,73,24) Of ¢ w.r.t. a 4-dimensional basis
e z5 = 4 encodes the (—2¢)-dependence on the loop momentum

@ we start with

M..‘n(Z) ‘/_\ most general 1-loop numerator

L.=1i.,= ———F—
n 1on Di(z)---D,(z) - generic 1-loop denominators

@ if m > 5 any integrand Z;, ...;, is reducible (reducibility criterion)

Ii]mim = ZIil"'ik—lik+]“'im7 = Ail"'im =0 form>35
k

@ for m < 5 the polynomial-division algorithm gives the already-known
parametric form of the residues Ay...
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Application at one-loop
@ Choice of 4-dimensional basis for an m-point residue
2

2 2 2
e =e=0, ej e =1, e3 =e5 = 0ms, e3-e4 =—(1—Opa)

@ Coordinates: z = (z1,2,23,24,25) = (X1,%2, X3, X4, %)

=2 2 2
g =-pi txief tme) txzef txef, T=q¢ —p
@ Generic numerator
Nijovin = Z ozl 2 1 4 7, (1---js) suchthat rank(Nj...;,) <m
J1s-+4Js

@ Residues

A iyizigis = €0
Aijiyiziy = co + c1xg + ¥ (e2 + c3x4 + pilcs)
Ay = o + €133 + 233 + 333 + caxg + csx3 + coxy + 2 (c7 + csxz + coxs)
Ajjiy, = co + c1x2 + cox3 + c3x4 + C4X% + 65X§ + Csxi + c7X2X3 + Cox2X4 + C()HZ

A = co +crx) + caxp + c3x3 + caxy

@ It can be easily extended to higher-rank numerators
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Application at one-loop

Fit-on-the-cut at 1-loop

Integrand decomposition: Q zﬁ' +xj:( MAH O (O

Fit-on-the cut
- x A fit m-point residues on

m-ple cuts
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)
The integrand reduction via Laurent expansion:
[P. Mastrolia, E. Mirabella, T.P. (2012)]

@ fits residues by taking their asymptotic expansions on the cuts

@ yields diagonal systems of equations for the coefficients

@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified

e implemented as corrections at the coefficient level

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014



Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)
The integrand reduction via Laurent expansion:
[P. Mastrolia, E. Mirabella, T.P. (2012)]

@ fits residues by taking their asymptotic expansions on the cuts

@ yields diagonal systems of equations for the coefficients

@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified

e implemented as corrections at the coefficient level

% Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]

Laurent expansions via a simplified polynomial-division algorithm
interfaced with the package GOSAM

interface with FORMCALC [T. Hahn et al.] under development

is a faster and more stable integrand-reduction algorithm

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 18



Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)
The integrand reduction via Laurent expansion:
[P. Mastrolia, E. Mirabella, T.P. (2012)]

@ fits residues by taking their asymptotic expansions on the cuts

@ yields diagonal systems of equations for the coefficients

@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified

e implemented as corrections at the coefficient level

% Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]

Laurent expansions via a simplified polynomial-division algorithm
e interfaced with the package GoSAM

e interface with FORMCALC [T. Hahn et al.] under development

e is a faster and more stable integrand-reduction algorithm

% NINJA is public = ninja.hepforge.org

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 18



Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z \Q’ +zj:( mAm O~ = (O
i Laurent-expansion method
B B g o -

T. Peraro (MPI - Miinchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 19



Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z _\Q’ +zj:( mAm O~ = (O

Laurent-expansion method

@ pentagons not
needed

T. Peraro (MPI - Miinchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 19



Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z _\Q’ +zj:( mAm O~ = (O

Laurent-expansion method

@ pentagons not
needed

@ boxes never
subtracted
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z _\Q’ +zj:( +‘2A+: O ==

Laurent-expansion method

@ pentagons not
needed

@ boxes never
subtracted

@ diagonal systems of
equations

T. Peraro (MPI - Miinchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 19



Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z _\Q’ +zj:( +‘2A+: O ==

Laurent-expansion method

@ pentagons not
needed

@ boxes never
subtracted

@ diagonal systems of

- A\ ~_(diagonal .

T @ 9 equations
@ subtractions at

*ﬁ*( g %ﬁdiagonal coefficient level

T. Peraro (MPI - Miinchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 19




Integrand reduction via Laurent expansion (NINJA)

One-loop boxes via Laurent expansion

@ The residue of a box reads

Ajwi(q, 12) = do + dop® + dy pi* + (dy + dsp®) (g - v1)

@ d, via 4-dimensional 4ple cuts [Britto, Cachazo, Feng (2004)]

@ d, from d-dimensional 4-ple cuts in the limit > — oo [S. Badger (2008)]

e d-dimensional solutions of a 4-ple cut

[ 2 v
q:‘::a#i OL+@ #72‘: /Bﬂ VﬁL_"‘O(l)

e the integrand in the asymptotic limit > — oo of the cut-solutions

N(g, 11?)
Hm;éiJ,k,l Dy,

@ d,,d,,ds are spurious and do not need to be computed

= dap* + O(1)

cut

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Integrand reduction via Laurent expansion (NINJA)

One-loop triangles via Laurent expansion

@ The residue of a triangle
Aiie(q) = co+c7p” + (c1 +csp’) (g e3) +ca(g-e3)’ +c3(q-e3)’
+ (ca +cop?) (q-ea) +¢5(q-ea)’ +c6(q - ea)’

@ solutions of a triple cut D; = D; = Dy = 0 parametrized by the free
variables r and 1/
2

2
o a—+ w

+ W
q+:aﬂ_|_tgé‘_|_ T ey, qli:a#-i- /

2t
@ inthelimitr — oo [Forde (2007)]

N(Qi) Al“kl A"kln
_ T \dxE) = Ay + y + ykir
Mosiju |~ ZI: ) > DiD,,

I H
ez +1ey

u Im

= Ay +dE +dF 12+ O(1)1)
with d;" +d7 =0
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Integrand reduction via Laurent expansion (NINJA)

One-loop triangles via Laurent expansion

@ In the asymptotic limit ¢t —

N(q+)

S = (@ dE ) + A+ O(1 1) withd;" +d” =0
Hm;éij,k Dy,

cut
e the integrand

N(q+)

=nt +nF P+ nE P b0 P n P+ 0(1)0)
[Lsi i Om

cut

o the residue
Aji(g4) =co+¢7 pr = (cq+cop®)t+est> —cet® +O(1/1)
Aje(g-) =co+crp> — (e1 +esp?)t+cat> — ez’ + O(1/1)
e by comparison we get

+ _
_ Ny +ny - - -
co = 2 ) L= —ng, C=n,, €3 = —ns,
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Integrand reduction via Laurent expansion (NINJA)

One-loop bubbles via Laurent expansion

@ The residue of a bubble
Ai(q) =bo+bi(q-ex) +ba(q-e2)” + b3 (g e3) +ba(g-es)’ +bs(q-es)
+be(q-es)’ +bi(q-e)(g-es) +bs(q-e)(q-es)+ boy’
@ solutions of a double cut D; = D; = 0, parametrized by the free variables
1, x and *
Bo + Bix + Box® 4 1
2t

2
g- =xe1+ (a0 +xau)exr + Po + Brx —;lﬁzx Rl es+tey

g+ =xer + (ao+xai)es +tes +

@ inthelimitr — oo
N(Cli) Ajjk jkl A
- NI A + l + l] ijklm
[Ltij |, v Z Z DD, %n: DyD\D,,

_A,]+Z ”k+0 (1/1)
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Integrand reduction via Laurent expansion (NINJA)

One-loop bubbles via Laurent expansion

@ In the asymptotic limit t —
@ the integrand
N(qx)
Hm;éi,j,k Dm cut
@ the subtraction term

A (q+)
Dy

e b"* are known functions of the triangle coefficients
@ the residue

Ay(gs) = o+ bo ti> + by x + bax® — (bs + ng) t+ber + O(1/1)

Aji(g-) = bo + bo uz +bix+box® — (b3 +b7x> t+bat + O(1/1)

@ by comparison, applying subtractions at the coefficient level

bo=ni = SOBE, bi=at = ST, b= —ny + B
k k k

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014

=ny +ng i’ +nf x+ny O+ <n§[+nfx)l+n5it2+(’)(l/l)

R A T R Y S e (Ef;’i + l;ﬁ’ix)f +BE2 +O0(1/1)
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Integrand reduction via Laurent expansion (NINJA)

Semi-numerical implementation in NINJA

@ The input is the numerator A/ cast in (three or) four different forms

o leading terms of parametric expansions of the numerator
e coefficients of the expansion written to an array A/ []
o all easily obtained from its analytic expression

@ The PYTHON script NINJANUMGEN uses FORM-4 to

e automatically compute expansions from a FORM expression of A/
@ generate optimized source code needed as input for NINJA

@ NINJA at run-time

e computes parametric on-shell solutions

e performs Laurent expansions via pol. div.

e implements subtractions at coefficient level

e multiplies the obtained coefficients with the MI’'s

@ Semi-numeric Laurent expansion via polynomial division
e expansion of numerator A'[] / denominators D;

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Integrand reduction via Laurent expansion (NINJA)

Semi-numerical implementation in NINJA

// Numerator: can be generated using the script ninjanumgen
class MyNumerator : public ninja::Numerator ({
public:

// evaluates the numerator ,‘V(q,pz) - same as Samurai
virtual Complex evaluate (g, ;Lz,...);

// (optional) expansion for 4-ple cut rational term g" — tv*i#»@(l)
virtual void muExpansion (vy,..., Complex N);

B+p? oH

// expansion for triangles and tadpoles g — V(/)LthvglJr /)

virtual void t3Expansion (vy,Vv3,v4,f3,..., Complex N'[]);

Bo + Bix + Box® + p? e

// expansion for bubbles g" — V' +xvi +1vh + h

virtual void t2Expansion (v{,V,Vv3, V4,0, ..., Complex N'[]);
bi

note: t2Expansion is t3Expansion with: vy — vf +xv5, B = Bo + Bix + Box’

T. Peraro (MPI - Miinchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Integrand reduction via Laurent expansion (NINJA)

Semi-numerical implementation in NINJA

Master Integrals:
@ are called via a generic interface
= any user-defined library of Master Integrals can be used
@ the library of MI’s to be used can be specified at run time

@ NINJA provides the interface for two default libraries
@ ONELOOP library [A. van Hameren] wrapper + caching

@ computed MI’s are cached by NINJA
@ constant-time lookup from their arguments

o LOOPTOOLS library [T. Hahn]
@ an internal cache is already present = interface is a simple wrapper

Higher-rank:
@ support for higher-rank r = n + 1
@ higher-rank MI’s (can but) do not need to be provided

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 27



Integrand reduction via Laurent expansion (NINJA)

Automation of one-loop computation

In several one-loop packages we can distinguish three phases:

© Generation

@ generate the integrand
e cast it in a suitable form for reduction
e write it in a piece of source code (e.g. FORTRAN or C/C++)

@ Compilation
e compile the code
© Run-time
e use a reduction library in order to compute the integrals

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Integrand reduction via Laurent expansion (NINJA)

Automation of one-loop computation in GOSAM

GOSAM is a PYTHON package which:
@ generates analytic integrands
o using QGRAF [P. Nogueira] and FORM [J. Vermaseren et al.]

@ writes them into FORTRAN90 code

@ can use different reduction algorithms at run-time
@ SAMURAI (d-dim. integrand reduction)

@ faster than GOLEM95 but numerically less stable
@ former default in GOSAM-1.0

o GOLEM95 (tensor reduction)
@ slower than SAMURAI but more stable
@ default rescue-system for unstable points
o NINJA
@ fast (2 to 5 times faster than SAMURAI)
@ stable (in worst cases O(1,/1000) unstable points)
@ current default in GOSAM-2.0 « just released

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Integrand reduction via Laurent expansion (NINJA)

Benchmarks of GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T.P. (2013)

Benchmarks: GOSAM + NINJA

{ Process [ #NLO diagrams [ ms/event®
[W+3j [ dn — Dee”geg | 1411 ] 226
[z+3) [ dd — eTe geg | 2928 | 1911
mmso i
[[d+2) [ gs — ftge | 4700 | 13827
[ Wbb+ 1] (my, # 0) [ ud — et v bbg [ 312 [ 67
ud — eT v, bbss 648 181
Wbb+ 2j(my, # 0) ud — ¥ v bbdd 1220 895
ud — eT v, bbgg 3923 5387
[ H+3jinGF [ ¢ — Hgeg [ 9325 | 8961 |
[ 1TH+1j [ g¢ — riHg [ 1517 | 1505 |
[ H+3jinVBF [ un — Hguu [ 432 | 101 ]
[ H +4jinVBF [ un — Hggun [ 1176 | 669 |
[ H+5jinVBF [ un — Hgggun | 15036 | 29200 |

more processes in arXiv:1312.6678

&Timings refer to full color- and helicity-summed amplitudes, using an Intel Core i7 CPU @

3.40GHz, compiled with i fort.
T. Peraro (MPI - Miinchen)

Integrand reduction techniques at one and higher loops

Edinburgh, 2014
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Integrand reduction via Laurent expansion (NINJA)

Stability of NINJA

@ H +4jin VBF (un — Hgguii) @ ttH+ 1j(gg — ttHg)
0.09 T T T T T T T 0.05 T T T T T T T T T
double pole mm=m double pole Em=m
single pole - 0.045 | single pole b
finite part m— finite part mm—
4 0.04 4
g i ‘E 0.035
S ] S o003
5 S 0025
< ] c
2 2 002
3] | 3]
g £ o015
) 0.01
7 0.005
0 . . . ol
-16 -14 -12 -10 -8 -6 -4 2 0 -6 14 -2 -0 -8 -6 4 -2 0 2 4
log10(3) 10g10(3)

Rate of unstable points, i.e. with error § > dyesnoa ON the finite part:

Othreshold ~ uit — Hggun  gg — ftHg

1073 0.02% 0.06%
10-* 0.04% 0.16%
1073 0.08% 0.56%
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Integrand reduction via Laurent expansion (NINJA)

From amplitudes to observables with GOSAM

Subtraction Born & Real emission
N L pa ./
s __ ¥

Monte Carlo
/(aMC@NLO Herwig++,
Madevent, Powheg,

GoSam

(Samurai, Ninja, Golem95)

The GOSAM collaboration:
G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella,
G. Ossola, J. Reichel , J. Schlenk, J. F. von Soden-Fraunhofen, T. Reiter, F. Tramontano, T.P.
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — ttH + jet with GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)
@ Interfaced with the Monte Carlo SHERPA

5 T ]
10 y=20A, ]
a o o "
g = = Fmeme Yot o =208, ]
£ W= Y, 10 pzH ]
q £ SNOpsH ]
o1af “ ) E
q or2f 4
o 3
t £ |
008 5
_ \ 1% 1
i N oo6f- B
H 3 ‘ ]
05 T 2
Wy
HtE+ jet: t-invariant mass HEF+ jet: Higgs transverse momentum H ti+ jet: Higgs pseudorapidity
T T T T T T T T T T T T | AR R AR
—— ITHjLO ji = 2xGAr 38 —— 1HjLO ;= Hy
HIH NLO i = 2xGA7 % —— #HjNLO j = Hy

—— HHjNLO t = 2xGAr

—— HjLO = Hy
—— {fH]NLO = Hy

LHCS TeV.

LHC§ Tev .
107 b CTio pdf

CT1o pdf
antikt: R=0.5, pr > 15 GeV, |y < 40

LHC 8 Tev
CT1o pdf
antikt: R=05, pr > 15 GeV, [y < 40

anti-kt: R=o.5, pr > 15 GeV, |y <40

SE jE e E SE E
o ieE E e o ieE E
S b E 2 uE < 2 E E
“ osE E “ o EE E “ s =
06 B 1 1 1 1 1 1 = 06 1 1 1 1 1 = 06 Er 1 1 1 1 =
o a0 w0 &e  me  &e w0 o wewe we e ew T,
miGev] pralGe] I
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — H + jets in GF with GOSAM + NINJA

@ m; — oo approximation

e effective couplings H + (2,3,4)gl.
e o e higher-rank integrands =
extension of int. red. methods

[P. Mastrolia, E. Mirabella,T.P.(2012),
H. van Deurzen (2013)]
@ H +2j (GOSAM+SAMURAI+SHERPA)
[H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, J. F. von
Soden-Fraunhofen, F. Tramontano, T.P.(2013)]
@ H + 3j (GOSAM+SAMURAI+SHERPA+MADGRAPH4/MADEVENT)
[G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola,
F. Tramontano, T.P.(2013)]
@ new analysis with ATLAS-like cuts, using NINJA for the reduction
[G. Cullen, H. van Deurzen, N. Greiner, J. Huston, G. Luisoni, P. Mastrolia, E. Mirabella,
G. Ossola, F. Tramontano, J. Winter, V. Yundin, T.P. (preliminary, 2014)]
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — H + jets in GF with GOSAM + NINJA

@ new distributions using NINJA (preliminary)

o better accuracy
@ better performance

Hr 1
BE=HR = T2 =5 (\/m%l +rigt+ Z Pt,jet|2>

Jjets
@ ATLAS-like cuts

R=04,  puja>30GeV, | <44

@ total cross section

ot (pbl) = 1.2343%, ofg " (ipb]) = 0381137

—24%> —32%
oo™ (Ipbl) = 1.59073%, o5 ¥ (Ipb]) = 0485737,
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — H + jets in GF with GOSAM + NINJA

do/dpy, ulpb/GeV]

NLO/LO

T. Peraro (MPI - Miinchen)

@ new distributions using NINJA (preliminary)

1073

o better accuracy
@ better performance

se momentum

—— LO (cteq6ll PDFs)
=~ NLO (CT10nlo PDFs)
LHC 8 TeV

anti-kt: R=0.4, pr > 30GeV, [y < 4.4

L L 3
50 00 50 200 250 300
pnlGeV]

dor/dyy [pb]

NLO/LO

\ my +!7,2,H + Z ‘Pt,jet|2

Jjets

H +3 jets: Higgs rapidity

—— LO (cteq6ll PDFs)
= NLO (CT10nlo PDFs)
LHC 8 TeV
anti-kt: R=0.4, pr > 30 GeV, [y] < 4.4
| |
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — H + jets in GF with GOSAM + NINJA

do/dpy, ulpb/GeV]

Ratio

T. Peraro (MPI - Miinchen)

@ new distributions using NINJA (preliminary)

1072

3

o better accuracy
@ better performance

HUF = R =
H + 3 jets: Higgs transverse momentum
e e e e
—— H42jets NLO . _|
== H+3 jets NLO 3
LHC 8 TeV 1
CT10nlo pdf —H
anti-kt: R=0.4, pr > 30GeV, [n| < 4.4 1
S e e RN
P S B I
50 100 150 200 250 300

pnlGeV]

dor/dyy [pb]

Ratio

\ my +!7,2,H + Z ‘Pt,jet|2

107!

1072

1073

104

1002

0.8
0.6
0.4
0.2

0

H

Jjets

+3 jets: Higes rapidity

—— H+2 jets NLO
= H+3 jets NLO

LHC 8 TeV
CT10nlo pdf
anti-kt: R=0.4, pr > 30 GeV, [y] < 4.4
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Higher loops

Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop
@ can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NINJA]
e has produced (and is still producing) results for LHC
[GOSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]

@ At two or higher loops

@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities
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Higher loops

Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop

@ can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NINJA]
e has produced (and is still producing) results for LHC
[GoSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
@ At two or higher loops

@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.
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Higher loops

Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop

@ can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NINJA]
e has produced (and is still producing) results for LHC
[GoSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
@ At two or higher loops

@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.

@ ... we are moving the first steps in this direction
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Higher loops

N =4 SYM and N = 8 SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

@ Examples in N/ =4 SYM and N/ = 8 SUGRA amplitudes (d = 4)

@ generation of the integrand
@ graph based [Carrasco, Johansson (2011)]
@ unitarity based [U. Schubert (Diplomarbeit)]

e fit-on-the-cut approach for the reduction
@ Results:

N =4 linear combination of 8 and 7-denominators Mls
N = 8 linear combination of 8, 7 and 6-denominators Mls

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Higher loops

Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)
The divide-and-conquer approach to the integrand reduction

@ does not require the knowledge of the solutions of the cut

@ can always be used to perform the reduction in a finite number of
purely algebraic operations

@ has been automated in a PYTHON package which uses
MACAULAY2 and FORM for algebraic operations

= (o)

@ also works in special cases where the fit-on-the-cut approach is
not applicable (e.g. in presence of double denominators)

PYTHON

[ MACAULAY2 ] <:
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Higher loops

Divide-and-Conquer approach: a simple example

Dy =q;—m’,
Ty = Nii234 Dy = (g, — k) —m?,
11234 — —
D2D;D3Dy4 D; =33,

Dy = (g1 +q)* — m?
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Higher loops

Divide-and-Conquer approach: a simple example

Dy =g —nm?,
T — Mz Dy = (g1 — k)* —m?,
11234 — —
D}DyD3Dy D; =33,

Dy= (g1 +q)" —m’
@ Basis {e;} = {k k1, e3,e4} and coordinates z = (x1,x2, X3, X4, Y1, Y2, V3, V4, B11, f12, 422)

q=Y xe, q@=y_ vie, (@-3)=/(q-q) —
i i
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Higher loops

Divide-and-Conquer approach: a simple example

Dy =gi —m’,
T — Mz Dy = (g1 — k)* —m?,
11234 — _
D2D;D3Dy4 D; =33,

Dy = (@1 + @) —m’
@ Basis {e;} = {k, k. ,e3,e4} and coordinates z = (x1,x2, X3, %4, V1, V2, V3, Vas [h115 12, 1422)
q1 = sz ei, g2 = Z}'i €i, (gi - Gj) = (qi - gj) — pij
i i
@ division of NVy1234 modulo G 7, .., (= G750,)
Nii2zs = N12aaD1 + N13aD2 + Nii2aDs 4+ Ni12aDa + Aqia
——

quotients remainder
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Higher loops

Divide-and-Conquer approach: a simple example

D1 = Z]l — m2
Ti1asa = Nii234 (q1 —k)? —
11234 — 5
DID,D3Dy D3 =g, ,
= (@ +512) —m

@ Basis {¢;} = {k,ky,e3,e4} and coordinates z = (xy,x2, X3, X4, Y1, Y2, Y3, V4, (11, [412, [22)
=> xe,  @=Y ve, (@) =(qq) — W
f i

@ division of NVy1234 modulo G 7, .., (= G750,)
NMi2za = Ni2saDi + NiizaDy + Ni12aD3 + Niio3Dy + Ajiozs
N——

quotients remainder

@ division of N5, modulo Gz, .., €.9.

N234/G 70 = Nizu = ngf“)D. + Q%iM)Dz + Q$;§34>D3 + QE;§34)D4 + A

quotients remainder

1134 134 1134)
Mi34/G75, = N = Q§34 D, + Q§14 )D; + 9513 Dy+ Az

quotients remainder
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Higher loops

Divide-and-Conquer approach: a simple example

Dy =gy —m*,
T — Mz Dy = (g1 — k)* —m?,
11234 — 5 _
D2D;D3Dy4 D; =33,

Dy= (g1 +q)" —m’
@ Basis {e;} = {k ko1, e3,es} and coordinates z = (xi,x2,X3, X4, V1,2, Y3, Vds [115 12, [122)

q=Y xe, q@=y_ vie, (@-3)=/(q-q) —
i i

@ division of NVy1234 modulo G 7, .., (= G750,)
NMi2za = Ni2saDi + NiizaDy + Ni12aD3 + Niio3Dy + Ajiozs
N——

quotients remainder

@ division of Vj,i,i,i, modulo GTininis

Nz = -/\/’234D% + Ni34D 1Dy + N124D1 D3 + Ni23D1 Dy + N11aD2D3 + Nj13D2Dy

(sums of) quotients
+ A1234D1 + Ay13aDs + A124D3 + Aq123D4 + Aq1nze

remainders

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 39



Higher loops

Divide-and-Conquer approach: a simple example

@ after a further step (division J\/}liziS/gJiliziB) no quotient remains

Nizsa = Aqioza+A123a D1+ Av134D2 + A 112403+ A1123Da + Ao3a DT+ A114D2 D3+ A113Da Dy

@ the integrand decomposition becomes

T — Miza Ay Az + AVIEY: ANTEN
"B DID,DsD,  D*D,DsDy | DiDyD3Ds | D2DsDy | DPDyDy
Ajp23 Anzq Apg | A

DID,Ds  DyD3Dy  DID,  D3Ds
Al = 16m? <k2 +om?— kze) ,
Ajzg =16 [(qz k)1 —e)? + mz] ,
Ajppg = — A =8(1 —¢) [kz(l -+ 2m2] ,
Ay = —16m* (1 —¢) ,
Az = — Ay =2 =8 (1—¢).
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Higher loops

Examples of divide-and-conquer approach

@ Photon self-energy in massive QED, (4 — 2¢)-dimensions

@ & Q1 ‘
A e
(a) (0) ()

@ Diagrams entering gg — H, in (4 — 2¢)-dimensions

a1
(73 ---- -—-- % -—--
Q1 k q2 k k
q1
(a) O] (o)

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Higher loops

Additional relations between integrals

P. Mastrolia, G. Ossola, T.P. (work in progress)
@ The integrals given by the integrand reduction can be further
reduced with additional identities
e traditional approach: Integration by Part (IBP)
o N(@)"

I~
0 DD

@ A 2-step strategy
@ use integrand reduction first
= integrals with higher multiplicity should be reduced
@ then apply IBP
= could be easier after integrand reduction
@ Can we instead see IBPs from Integrand Reduction?
e Can we recover IBPs from int. red. relations computed in step 1?
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Higher loops

Dimensionally shifted integrals

One-loop case:

@ with v = ¢, . koo kMt we can prove
N 1 1

“tHn—1 n—1"7

Ilmn[:ufz} = - GI([H_Z)

l-n

2
1%
Il»--n[(q : VJ_)Z} = Il---n[e(qvkla cee aknfl)z] = _TLIth,Z)

@ perform integrand reduction of Z;...,[(¢ - v.)*] from n = 1 to higher-points
@ we can reuse the same pol. divisions of integrand reduction

@ if Z,..,[(¢ - v.)? reducible at integrand level = then Z;..., reducible at
integral level

e we get an homogeneous equation with integrals in d + 2
o afterd — d — 2 we get an IBP relation

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 43



Higher loops

Example: one-loop tadpole

2

Tadpoles: N = €(q)* = ¢*:

@ No external vectors = use special case
I()[qz] — 721-(§d+2)
@ After integrand reduction

24" = To[g’) = Lol + m’ Ty
d—4

5 Iéd+2) + m2 To

Dimensional shift for tadpoles

dI(gd+2) _ 2m2 I()

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Higher loops

Example: one-loop bubble

N N =eq.k)? =K —(q-k?*
_&_ Toil(g-v1)?] = Dy=¢

DyD,
Dy =g +2(q-k)

@ Integrand reduction

N =m? @? + Dy (%rn2+%((‘1+k)~k)) + Dy (—%(q.k))

3m?

m? d—4 d
2 I = o N = mTo (2] + Fh=— i+ - Sz

4
@ The resultin d + 2 dimensions

(@+2) _ 1 (d+2)
(al—l)IOl 7md11

Result in d dimensions

1
d—3)Zyp = — (d —2) I
@=3)To =575 @d=-2)L

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014

45



Higher loops

Example: one-loop triangle

N Dy=¢q
DoD D, D=3 +2(q k)
Dy =7 —2(q- k)

@ With a similar procedure, from Zy2[e(q, k1, k2)?] and Ziz[e(q, ki + k2)?], we get

Ton[N] =

C-a)z{ S =1,
4m? —
(1-4d) 11(;#2) = %Ilz +I
@ The resultin d + 2 dimensions

@+2 _ 2 7(d+2) d 7(d+2)
2 —d) i 7m((l—d) +5 51 )

Result in d dimensions

(4-DTo= 2 (G-d)To+ 52 11)

2
4m? —

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Higher loops

Higher loops

@ At one-loop we used
Tle(g,kiy - ka1)?],  Z[1?]
@ At higher loops we should use
Tle(qi,. ., qe,ki,. .. ko 1)?], Tle(fir,. .., )]

@ Relations for integrals in ;> can be easily found at any loop using
Schwinger parametrization

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014
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Higher loops

Example: two-loop

N Dy =gi —m’ =g —m’ — pn
ZlZ}[M:m Dy=q —m* =g} —m* — ux»

Dy = (G — 3)* = (¢1 — @2)* — 1 — p22 + 212
@ The integrand reduction gives

d+2
—321(23+ ) = Tinsle(q1,92)*] = Tinsl(a1 - 42)* — 4343)
1 > > m?
= 11123 [4uty — 4pripon] + m Tios[2p12 — pi1 — poo] — EX L.

@ Integrals in p;

—d

4
Tins[dpdy — dpnipa] = —2e(1 +2¢) 20+, T123 2112 — p11 — p2] = — uAp)

Final result in d dimensions
d—2

Tp=— —
B om2(d - 3)

Ty
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Summary and Outlook

Summary and Outlook

@ Summary
e we have a framework for the all-loop reduction at the integrand level
e the integrand is decomposed via multivariate polynomial division
o at one loop it reproduces well knwon results (OPP)
@ one-loop reduction is improved by Laurent expansion (NINJA)
@ algebraic reduction at any loop via divide-and-conquer approach
o IBPs via integrand reduction and d-shifts

@ Outlook

e improve one-loop generation (recursion, global abbreviations,. . .)
treatment of (few) remaining unstable points within NINJA
application of int. red. + d-shifts a full two-loop QED/QCD process
fully automated analytic one-loop via divide-and-conquer

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops Edinburgh, 2014 49
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Rotation method for error estimation

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

@ Definitions
A: numerical result for the amplitude
Aor : numerical result for the amplitude with rotated kinematics
Ay exact result for the amplitude ~ amplitude in quad. prec.

@ the exact error is defined as

A, — A
Bor = ex 7
2
@ the estimated error is defined as
At — A
5rot =2 d
A +A

@ one can check that 6,,; ~ 0

T. Peraro (MPI - Mlnchen) Integrand reduction techniques at one and higher loops
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Rotation method for error estimation

A validation of the rotation method
@ example: Wbb + 1j (ud — e*v,bbg), with my, # 0

fraction of points

T. Peraro (MPI -
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| L |

Miinchen)
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10910(rot) / 10910(Sex) - 1
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