Leptons, Loops and Dipoles in Randall-Sundrum Models

J. Rohrwild

Rudolf Peierls Centre for Theoretical Physics
University of Oxford

Particle Physics Theory Seminar — Edinburgh, 26th of November 2014

Outline:

1. Brief intro to RS
2. General strategy
3. Calculations in 5D
4. Lepton phenomenology
Minimal RS model: Setup

Slice of AdS in interval \([1/k, 1/T]\) in conformal coordinates

\[
 ds^2 = \left(\frac{1}{kz}\right)^2 (\eta_{\mu\nu} dx^\mu dx^\nu - d^2 z)
\]

\[
 M_{Pl}^{4d} \approx \frac{M_{Pl}^{5d}}{k}
\]

\[
 \varepsilon \equiv \frac{T}{k} \approx 10^{-16} \approx \frac{1}{M_{Pl}^{4d}}
\]

proper distance between branes (\(=\) boundaries):

\[
 1/k \times \ln(k/T)
\]

Minimal RS model: All SM fields except the Higgs in the bulk; no additional fields

Custodially protected RS: Add \(SU(2)_R\) gauge fields and increase fermion content

lowest KK resonance mass \(\sim 2.5T\)
Minimal RS model: Setup

- in the KK mode language

Note that:

\[Y^{AD}_{ij} \sim f^{(0)}_{Li} \left(\frac{1}{T} \right) y^{(5D)}_{ij} g^{(0)}_{E_i} \left(\frac{1}{T} \right) \]
Minimal RS model: Setup

- the equation in a picture

Note that:

\[Y_{ij}^{AD} \sim f_{L_i}^{(0)} \frac{1}{T} y_{ij}^{(5D)} g_{E_i}^{(0)} \frac{1}{T} \]
Boundary Conditions and Spectrum

Boundary conditions (≡ parities under S^1/Z_2 orbifold Z_2 symmetries)

$$
\partial_z A_\mu \big|_{z=1/T, 1/k} = 0 \\
A_5 \big|_{z=1/T, 1/k} = 0 \\
L_R \big|_{z=1/T, 1/k} = 0 \\
E_L \big|_{z=1/T, 1/k} = 0
$$

Only L_L, E_R have zero modes ($m_0 = 0$). KK excitations describe massive gauge bosons and vector-like fermions.

- 5D gauge fixed such that A_μ and A_5 decouple $\rightarrow \xi$
- wrong-chirality Higgs couplings (WCHC)

$$
\int d^4x \left[(\bar{L}\Phi)E + h.c. \right] \big|_{z=1/T} = \int d^4x \left[(\bar{L}\Phi)E_R + (\bar{L}_R\Phi)E_L + h.c. \right] \big|_{z=1/T}
$$

The WCHC $(\bar{L}_R\Phi)E_L$ vanishes for a brane-localized Higgs due to the boundary condition. Too naive!
RS & Lepton-flavour observables

- Exhaustive phenomenology of tree-level processes (electroweak, flavour)
 from gluon FCNCs KK gluon mass ~ 20 TeV w/o extra flavour structure [e.g. Csaki, Falkowski, Weiler, 2008]

- Higgs production in gluon-gluon fusion [Casagrande et al., 2010; Azatov et al., 2010; Carena et al., 2012; Malm et al., 2013, Archer et al. 2014]

- quark FCNCs: $b \to s\gamma$, $b \to sg$ [Gedelia, Isidori, Perez 2009; Blanke et al., 2012], and $c \to ug$ [Delaunay et al., 2012]

- lepton observables
 - $a_\mu - a^{SM} = 239(63)(48) \times 10^{-11}$
 - $\text{Br}(\mu \to e\gamma) < 5.7 \times 10^{-13} (10^{-14})$ MEG (upgraded)
 - $\text{Br}(\mu \to 3e) < 1.0 \times 10^{-12}$ SINDRUM
 - $\text{Br}^{Au(Al)}(\mu N \to eN) < 7 \times 10^{-13} (10^{-16})$ SINDRUM II (DeeMe, Mu2E, COMET)
Lepton Flavour Observables

- $g - 2$
 - pure loop-induced effect in RS; flavour diagonal; [Davoudiasl et al. 2000]

- d_e
 - pure loop-induced effect in RS; flavour diagonal, CP violating;

- $\mu \rightarrow e\gamma$
 - pure loop-induced effect in RS; LFV [Agashe et al., 2006, Csaki et al., 2010]

- $\mu \rightarrow 3e$
 - tree-dominated effect (?) [Agashe et al., 2006, Grojean et al., 2003; Csaki et al., 2010]

- $\mu \rightarrow e$ in Au
 - tree-dominated effect (?) ; provides “orthogonal” information [Agashe et al., 2006; Chang & Ng, 2005; Csaki et al., 2010]

This talk:
→ a general strategy
→ How do you calculate loops in 5D?
Lagrangian (minimal model)

\[S_{5D} = \int d^4x \int_{1/k}^{1/T} dz \sqrt{G} \left\{ - \frac{1}{4} F_{MN}^M F_{MN} - \frac{1}{4} W_{a, MN}^a W_{MN}^a \right\} + \sum_{\psi=E,L} \left(e^M_m \left[\frac{i}{2} \bar{\psi}_i \Gamma^m (D_M - \bar{D}_M) \psi_i \right] - M_{\psi_i} \bar{\psi}_i \psi_i \right) \right\} + S_{\text{GF+ghost}} \\
+ \int d^4x \left\{ (D^\mu \Phi)^\dagger D_\mu \Phi - V(\Phi) - \left(\frac{T}{k} \right)^3 \left[y_{ij}^{(5D)} (\bar{L}_i \Phi) E_j + \text{h.c.} \right] \right\} \\
\Gamma^m = (\gamma^\mu, i\gamma_5) \quad e^M_m = (kz) \delta^M_m \quad M_{\psi_i} = c_L/E_i \cdot k \\

Two scales:

* \(k \) determines the size of all parameters
* \(T \) put in by hand to address the quantum corrections to the Higgs mass
Strategy

- distinct scale hierarchy $k \gg T \gg v \gg m_\ell$

 matching scale μ

- strategy:

 1. Step (in symmetric phase \to no vev):
 integrate out the “bulk” \to match onto an $SU(2)_L \times U(1)_Y$ symmetric effective theory

 $$\mathcal{L}_{RS} \to \mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{T^2} \sum_i C_i O_i$$

 [Buchmüller & Wyler]

 2. Step: change into the “broken” phase

 3. Step: compute observables in using 4d effective theory
1. Step: EFT before EWSB

- distinct scale hierarchy $k \gg T \gg v \gg m_\ell$

- strategy: integrate out the “bulk” by matching onto an $SU(3) \times SU(2) \times U(1)_Y$

invariant Lagrangian at a scale $T \gg \mu \gg v$ in the unbroken theory:

$$\mathcal{L}_{RS} \rightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{T^2} \sum_i C_i O_i$$

relevant operators include

$$\sum_i C_i O_i \supset a_{B,ij} \bar{L}_i \Phi \sigma_{\mu\nu} E_j B^{\mu\nu} + a_{W,ij} \bar{L}_i \tau^a \Phi \sigma_{\mu\nu} E_j W^{a,\mu\nu} + \text{h.c.}$$

+ $c_{1,i} (\bar{E}_i \gamma_\mu E_i)(\Phi^\dagger iD^\mu \Phi)$ + $c_{2,i} (\bar{L}_i \gamma_\mu L_i)(\Phi^\dagger iD^\mu \Phi)$

+ $c_{3,i} (\bar{L}_i \gamma^\mu \tau^a L_i)(\Phi^\dagger i \tau^a D_\mu \Phi)$

+ $b_{1,ijkl} (\bar{L}_i \gamma_\mu L_i)(\bar{L}_k \gamma^\mu L_i) + b_{2,ij} (\bar{L}_i \gamma_\mu L_i)(\bar{E}_j \gamma^\mu E_j)$

+ $b_{3,ij} (\bar{E}_i \gamma_\mu E_i)(\bar{E}_j \gamma^\mu E_j)$ + ...

+ $b_{L\tau Q,ij} (\bar{L}_i \gamma_\mu \tau^a L_i)(\bar{Q}_j \gamma^\mu \tau^a Q_j) + b_{LQ,ij} (\bar{L}_i \gamma_\mu L_i)(\bar{Q}_j \gamma^\mu Q_j)$

+ $b_{EQ,ij} (\bar{E}_i \gamma_\mu E_i)(\bar{Q}_j \gamma^\mu Q_j) + b_{LQ,ij} (\bar{L}_i \gamma_\mu L_i)(\bar{u}_j \gamma^\mu u_j)$

+ $b_{Ed,ij} (\bar{E}_i \gamma_\mu E_i)(\bar{d}_j \gamma^\mu d_j) + b_{Eu,ij} (\bar{E}_i \gamma_\mu E_i)(\bar{u}_j \gamma^\mu u_j)$

+ $b_{Ed,ij} (\bar{E}_i \gamma_\mu E_i)(\bar{d}_j \gamma^\mu d_j) + \ldots$
1. Step: EFT before EWSB

relevant operators include

\[\sum_i C_i O_i \supset a_{B,ij} \bar{L}_i \Phi \sigma_{\mu\nu} E_j B^{\mu\nu} + a_{W,ij} \bar{L}_i \tau^a \Phi \sigma_{\mu\nu} E_j W^{a,\mu\nu} + \text{h.c.} \]

+ \(c_{1,i} (\bar{E}_i \gamma_{\mu} E_i) (\Phi^{\dagger} iD^{\mu} \Phi) \)
+ \(c_{2,i} (\bar{L}_i \gamma_{\mu} L_i) (\Phi^{\dagger} iD^{\mu} \Phi) \)
+ \(c_{3,i} (\bar{L}_i \gamma^\mu \tau^a L_i) (\Phi^{\dagger} i\tau^a D_{\mu} \Phi) \)
+ \(b_{1,ijkl} (\bar{L}_i \gamma_{\mu} L_i) (\bar{L}_k \gamma^\mu L_l) + b_{2,ij} (\bar{L}_i \gamma_{\mu} L_i) (\bar{E}_j \gamma^\mu E_j) \)
+ \(b_{3,ij} (\bar{E}_i \gamma_{\mu} E_i) (\bar{E}_j \gamma^\mu E_j) + \ldots \)
+ \(b_{L\tau Q,ij} (\bar{L}_i \gamma_{\mu} \tau^a L_i) (\bar{Q}_j \gamma^\mu \tau^a Q_j) + b_{LQ,ij} (\bar{L}_i \gamma_{\mu} L_i) (\bar{Q}_j \gamma^\mu Q_j) \)
+ \(b_{EQ,ij} (\bar{E}_i \gamma_{\mu} E_i) (\bar{Q}_j \gamma^\mu Q_j) + b_{Lu,ij} (\bar{L}_i \gamma_{\mu} L_i) (\bar{u}_j \gamma^\mu u_j) \)
+ \(b_{Ld,ij} (\bar{L}_i \gamma_{\mu} L_i) (\bar{d}_j \gamma^\mu d_j) + b_{Eu,ij} (\bar{E}_i \gamma_{\mu} E_i) (\bar{u}_j \gamma^\mu u_j) \)
+ \(b_{Ed,ij} (\bar{E}_i \gamma_{\mu} E_i) (\bar{d}_j \gamma^\mu d_j) + \ldots \)
2. Step: After EWSB

Changing to the 'broken' phase

\[\Phi \rightarrow \left(\frac{1}{\sqrt{2}}(v + H + iG) \right) \]

\[E_i \rightarrow V_{ij} P_R \psi_j, \quad L_i \rightarrow U_{ij} P_L \left(\frac{\nu_j}{\psi_j} \right) \]

gives

\[\sum_i C_i O_i \rightarrow \frac{\alpha_{ij} + \alpha_{ij}^*}{2} \frac{v}{\sqrt{2}} \bar{\psi}_i \sigma_{\mu\nu} \psi_j F_{\mu\nu} + \frac{\alpha_{ij} - \alpha_{ij}^*}{2i} \frac{v}{\sqrt{2}} \bar{\psi}_i \sigma_{\mu\nu} i\gamma_5 \psi_j F_{\mu\nu} \]

\[+ \beta_{ijkl} (\bar{\psi}_i \gamma^\mu P_L \psi_j)(\bar{\psi}_k \gamma_\mu P_R \psi_l) \]

\[+ \gamma_{1,ij} \frac{v}{2} (\bar{\psi}_i P_L \gamma_\mu \psi_j)(i\partial^\mu H) + \left[\gamma_{2,ij} + \gamma_{3,ij} \right] \frac{v}{2} (\bar{\psi}_i P_R \gamma_\mu \psi_j)(i\partial^\mu H) \]

\[+ \gamma_{3,ij} \frac{v}{\sqrt{2}} (\bar{\psi}_i P_R \gamma^\mu \nu_i)(-i\partial_\mu \phi^-) + \gamma_{3,ij} \frac{v}{\sqrt{2}} (\bar{\psi}_i P_R \gamma^\mu \nu_i)(eA_\mu \phi^-) \]

\[+ \text{h.c. of previous line} + \ldots \]

the Greek Wilson coefficients are Latin ones dressed with flavour rotation matrices
3. Step: Compute Observables

Example: $g - 2 \, \& \, \mu \rightarrow e \gamma$ correspond to the flavour conserving and violating part of

UV and IR divergences require regularisation

BUT finite due to $\frac{1}{\epsilon} \times \epsilon$

Scheme dependent \rightarrow dependence must cancel with the dependence of the 5D loop in α
3. Step: Compute Observables

Example: $g - 2 \, \& \, \mu \rightarrow e\gamma$ also receive enhanced contributions at two loops

- Barr-Zee type contributions
- arise from FCNC Higgs couplings (effect on $g - 2$ negligible)
- effect on e.g. $\mu \rightarrow e\gamma$ studied

Chang, Hou, Keung '93
3. Step: Matching from effective theory onto effective theory

Example: $\mu \rightarrow e$ & $\mu \rightarrow 3e$

- computation straightforward
- must include insertions of the flavour-changing dipole that also mediates $\mu \rightarrow e\gamma$ (same order in the $1/T$ counting)
So all we need is . . .

Wilson Coefficients

- treat RS as (non-renormalisable) QFT in 5D
- derive Feynman rules for 5D theory [Randall & Schwartz 2001]

for the moment we do not consider metric fluctuations

- vertices are simple, e.g.

\[-i \frac{1}{kz} \epsilon^{abc} \eta_{\mu \nu} \left(\partial_z \big|_{\text{on } a'} - \partial_z \big|_{\text{on } b'} \right) \]

- propagators are only treated in Fourier space in the flat directions
 \(\rightarrow \) mixed representation
 \(\rightarrow \) each vertex is accompanied by an integral over the fifth dimension
5D Formalism

- work in a 5D QFT
 no KK sums; vertices and propagators are five dimensional \cite{Randall, Schwartz, 2001}
- zero-mode (\sim SM fields) must be separated explicitly

\[
\begin{align*}
\mathcal{f}_L^{(0)}(z) &= \sqrt{\frac{1 - 2c_L}{1 - e^{1 - 2c_L}}} \sqrt{T(kz)^2(Tz)^{-c_L}} \\
\mathcal{g}_E^{(0)}(z) &= \sqrt{\frac{1 + 2c_E}{1 - e^{1 + 2c_E}}} \sqrt{T(kz)^2(Tz)^{c_E}}
\end{align*}
\]

- use mixed coordinate-momentum representation for propagators in the unbroken theory \cite{Randall, Schwartz, 2001}
 \rightarrow propagators depend on 4D momentum and start/end coordinate in the fifth dimension, e.g.

\[
\left[\frac{1}{kz}\right]^4 \mathcal{D} \Delta_L(p, z, z') = i\delta(z - z') 1 \quad \mathcal{D} = p + i\Gamma^5(\partial_z - \frac{2}{z}) - \frac{c_L}{z}
\]

\[
\Delta_L(p, z, z') = -P_L F^+_L(p, z, z')_p P_R - P_R F^-_L(p, z, z')_p P_L
\]

\[
\begin{align*}
&+ P_L d^+_L(p, z, z') P_L + P_R d^-_L(p, z, z') P_L \\
\sim & \text{mass term}
\end{align*}
\]
5D Formalism

- exact solution in the unbroken phase

\[F^+_L (p, x, y) = \Theta(x - y) \frac{ik^4 x^{5/2} y^{5/2} \tilde{S}^+_+(p, x, 1/T, c_L) \tilde{S}^+_+(p, y, 1/k, c_L)}{S^- (p, 1/T, 1/k, c_L)} \]
\[+ \Theta(y - x) \frac{ik^4 x^{5/2} y^{5/2} \tilde{S}^+_+(p, y, 1/T, c_L) \tilde{S}^+_+(p, x, 1/k, c_L)}{S^- (p, 1/T, 1/k, c_L)} \]

\[S^\pm (p, x, y, c) = I_{c \pm 1/2} (px) K_{c \pm 1/2} (py) - K_{c \pm 1/2} (px) I_{c \pm 1/2} (py) \]
\[\tilde{S}^\pm (p, x, y, c) = I_{c \pm 1/2} (px) K_{c \mp 1/2} (py) + K_{c \pm 1/2} (px) I_{c \mp 1/2} (py) \]

- similar expressions for the different boson propagators
Tree-level coefficients are ’for free’

\[b_{ij} = -i(-g_5')^2 \frac{Y_L Y_E}{4} T^2 \int_{1/k}^{1/T} dx \, dy \, \frac{f_{L_i}^{(0)}(y)}{(ky)^4} \frac{g_{E_j}^{(0)}(x)}{(kx)^4} \Delta_\perp(q = 0, x, y) \]

the hypercharge boson zero-momentum propagator is

\[\Delta_\perp(q, x, y) \xrightarrow{q \to 0} \Theta(x - y) \frac{ik}{\ln k T} \left(- \frac{1}{q^2} + \frac{1}{4} \left\{ \frac{1/T^2 - 1/k^2}{\ln k T} - x^2 - y^2 + 2x^2 \ln(xT) \right. \right. \]
\[\left. + 2y^2 \ln(yT) + 2y^2 \ln \frac{k}{T} \right\} + \mathcal{O}(q^2) \right) + (x \leftrightarrow y), \]

all integrals are elementary

very similar to computation of \(\Delta F = 2 \) tree-level processes

\(\leftrightarrow \) agrees with KK sum calculation [Casagrande et al. 2008]
So all we need is ...

the dipole operator(s) \(\cos \Theta_w a^B - \sin \Theta_w a^W \)

\[\mathcal{L} \supset a^B \bar{L} \Phi \sigma_{\mu \nu} B^{\mu \nu} E + a^W \bar{L} \Phi \tau^A \sigma_{\mu \nu} W_A^{\mu \nu} E \]

- actual 5D loop with different particle species in the loop
- two (3?) different diagram classes

one Yukawa interaction to contribute to \(\bar{L} \Phi \sigma \cdot F E \)

three Yukawa interactions to contribute to \(\bar{L} \Phi \sigma \cdot F E \)
Dipole operator matching–gauge part

- In external line put Φ in vev, and take the superposition of B and W^3 corresponding to the photon

\leftarrow Diagrams in minimal model

- In the custodial model there are 24 non-abelian diagrams and 23 abelian diagrams in 15 distinct topologies
gauge part – extraction the short-distance contribution

There are three different contributions from each diagram

1. the SM corrections; all 5D propagators propagate the zero mode. The loop integral does not contain the short-distance scales T, k explicitly, and is purely long-distance needs to be eliminated by subtraction of the zero-mode from one gauge boson propagator

2. contributions from momentum scales $l \ll T$, at least one of the 5D propagators propagates a KK mode. One-loop long-distance matrix element of tree insertion of four-fermion and fermion-Higgs operator.

3. The short-distance contribution: loop momentum of order $l \sim T$ (or k)

expand in external fermion momenta p, p' to linear/quadratic order eliminates region (2), since the denominator no longer contains long-distance scales
off-shell terms

- non-1PR diagrams are necessary!
- obvious if external leg propagates a massive particle → short distance effect
- but even if the particle is on-shell (mass-less mode) the diagram is relevant
- known from B physics → matching of power-suppressed heavy-to-light SCET currents

\[\frac{p}{p^2} \]

\[\Lambda^\mu = \Lambda^\mu + p \Lambda^{\text{off}, \mu}_1 + \Lambda^{\text{off}, \mu}_2 \]

- after cancelling the propagator the off-shell vertex-function is part of the short-distance coefficient
gauge part – remarks

gauge invariance

- calculation done for general 5d gauge parameter ξ
- one can show analytically that the set of 21 1-loop diagrams is gauge invariant (three gauge invariant subsets)

other checks: scheme independence (naive γ_5 vs general scheme), all integrals can be solved analytically in certain limits (e.g. large loop-momentum)
anapole moment

Most general $U(1)_{em}$ invariant vertex function for on-shell fermions:

$$\Gamma^\mu(p, p') = ie Q_\mu \bar{u}(p', s') \left[\gamma^\mu F_1(q^2) + \frac{i \sigma^{\mu\nu}}{2m_\ell} q_\nu F_2(q^2) + \frac{i \sigma^{\mu\nu}}{2m_\ell} q_\nu \gamma_5 F_3(q^2) + \left(q^2 \gamma^\mu - \not{q} q^\mu \right) \gamma_5 F_4(q^2) \right] u(p, s)$$

- F_1 — charge form factor;
- $a_\mu = (g - 2)_\mu / 2 = F_2(0)$
- F_3 — EDM from factor
- F_4 — anapole moment, $SU(2) \times U(1)_Y$ gauge dependent [Musolf, Holstein, 1991]

$$\not{q} q^\mu \gamma_5 \rightarrow 2m_\ell q^\mu \gamma_5$$

The $EF^{\mu\nu}$ vertex contains both $(p + p')^\mu P_R$ and $(p - p')^\mu P_R$. The latter is associated with the anapole moment.

consistency check (analytical even in RS) coefficient of $(p - p')^\mu P_R$ must be proportional to m_ℓ.

J. Rohrwild (Oxford)
Leptons in RS
PPT Seminar — Edinburgh, 26/11/2014
25 / 35
gauge part – result

- general structure of the gauge diagram contribution with full flavour dependence

\[a_{ij}^{gauge} = i e Q_\mu \frac{\alpha_{em}}{4\pi} \frac{1}{T^2} \times \text{Loop}(c_{Li}, c_{Ej}) \cdot \log \frac{k}{T} \cdot f_{L_i}^{(0)}(1/T) Y_{ij} g_{E_j}^{(0)}(1/T) \left(\frac{T^3}{k^4} \right) = M_{ij} \]

- Loop\((c_{Li}, c_{Ej})\) (here for csRS, RS min is even less sensitive)

\[\rightarrow \text{expect contribution to } g - 2 \text{ to be independent of the Yukawa structure & FCNCs are suppressed} \]

Moch, JR 2014
Phenomenology and Results (gauge part)

- \(a_{ij}^{\text{gauge}} \) relative to the mass matrix

\[
a_{ij}^{\text{gauge}} = \text{Const} \times \text{Loop}(c_{L_i}, c_{E_j}) \cdot M_{ij}
\]

\(\hookrightarrow \) supressed FCNCs

- \(g_\mu - 2 \)

\[
\Delta a_\mu^{\text{gauge}} = 27.2(8.8) \cdot 10^{-11} \frac{1 \text{ TeV}^2}{T^2}
\]

compared to

\[
a_\mu^{\text{exp}} - a_\mu^{\text{the}} = 287(63)(49) \times 10^{-11}
\]
Dipole operator matching– Higgs part

Subtlety: a brane localised Higgs should be described as having a delta-function-like profile

\[\delta(z - 1/T) = \lim_{\delta \to 0} \frac{T}{\delta} \Theta(z - \frac{1 - \delta}{T}). \]

→ limit of a distribution of width \(\delta/T \) for \(\delta \to 0 \)

→ introduces an additional large scale \(\frac{T}{\delta} \) for any finite value

BUT we also have a dimensional regulator → \(\epsilon \to 0 \) before or after \(\delta \to 0 \)?
Dipole operator matching– Higgs part

- answer both options are valid part of the RS model
- the order of limits determines if the Higgs can be resolved or not

simple answer (minimal RS):

$$\Delta a_{ij} = (iQ_\mu e) \times \frac{1}{6} \times \frac{1}{16\pi^2} \frac{1}{T^2} \times f_{L_i}^{(0)}(1/T)[YY^\dagger Y]_{ij} g_{E_j}^{(0)}(1/T) \frac{T^3}{k^4}$$

$$+ (iQ_\mu e) \frac{1}{192\pi^2} \times f_{L_i}^{(0)}(1/T)Y_{ik}F_{E_k}^{(0)}(0, 1/T, 1/T)Y_{kh}^{\dagger}f_{L_h}^{(0)}(1/T)Y_{hj}g_{E_j}^{(0)}(1/T)$$

$$+ (iQ_\mu e) \frac{1}{192\pi^2} \times f_{L_i}^{(0)}(1/T)Y_{ik}g_{E_h}^{(0)}(0, 1/T, 1/T)Y_{kh}^{\dagger}F_{L_h}^{(0)}(0, 1/T, 1/T)Y_{hj}g_{E_j}^{(0)}(1/T)$$
gauge diagram contribution is independent of all model parameters (only overall scales T, k matter)

$$\Delta a_\mu \approx 27 \times 10^{-11} \frac{1 \text{ TeV}^2}{T^2}$$

Higgs contribution depends on the Yukawa size
→ smaller than gauge contribution for Yukawas < 1
→ but can reach $1 \cdot 10^{-9}$ for $Y > 3$.

![Graph showing three distributions with x-axis from 10^{-12} to 10^{-8} and y-axis from 0 to 800.](image-url)
Phenomenology—minimal model

- $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$ ($T = 8$ TeV)

- dipole boundary ($\mu \rightarrow 3e$ dominated by dipole operate)

- in general both tree-level operators (Higgs-fermion and four-fermion) and 5D dipoles are important (esp. in the more natural bulk Higgs case tree-approximation [used in all RS analyses up to now] does not work)

- gauge-contributions prevent reducing $\mu \rightarrow e\gamma$ by just changing the Yukawa magnitude.
Phenomenology—minimal model

- $\mu \rightarrow e\gamma$ and $\mu \rightarrow e$ ($T = 8$ TeV)

- essentially no correlations \rightarrow genuinely “orthogonal” constraints
Phenomenology—custodial model

- $\mu \rightarrow e\gamma$ and $\mu \rightarrow e$ conversion ($T = 8$ TeV)

Yukawa size cannot help to escape bounds

next generation experiments can rule out the parameters space $m_{gluon}^{(1)} < 20$ TeV

one can invent flavour symmetries to avoid bounds, but it is quite hard to avoid all bounds (different operators contribute differently)
Comparisons

- Davoudiasl, Hewett, Rizzo [hep-ph/9911262]
 + KK sums
 + dropped external insertion and half the internal ones
 + Higgs diagrams appear when they should not
 + subset of abelian diagrams remains
 + similar order of magnitude but negative sign

- Csaki, Grossman, Tanedo, Tsai [hep-ph/1004.2037]
 + 5D calculation but no matching onto the effective lagrangian
 + depending on version without external Higgs insertions
 + fixed gauge
 + extracts dominant contributions
Comparisons

+ studies all LFV muon observables
+ only Higgs loop-diagrams
+ consider radiative transition for bulk Higgs
+ do not include loop contributions to $\mu \rightarrow e$, $\mu \rightarrow 3e$
+ general conclusions ✓
+ first to find that Yukawa size cannot be used to evade bounds
 ▶ first to mention wrong chirality couplings
Summary

- complete computation of the leptonic dimension-six Wilson coefficients including the dipole operators without approximations

- without imposing very specific flavour structures the new experiments will rule out KK modes in excess of 20 TeV

- 'gauge' corrections to $g - 2$ is model independent (like S and T parameter) but too small to help

- Higgs contribution is doubly model-dependent

- unmentioned: dimension-eight contributions, gravity, electric dipole moments, . . .