A (quasi-real) photon tagging facility for CLAS12

Derek Glazier

University of Edinburgh

for the CLAS collaboration

QCD10, Montpellier
CLAS at Jefferson Lab.

- CEBAF Large Acceptance Spectrometer
- Part of Jefferson Lab, 6GeV e- beamline

Torus Magnet
6 Superconducting Coils

Target + γ start counter

Drift Chamber
35,000 cells

Time of Flight
Plastic Scintillator,

Electromagnetic Calorimeter
lead/plastic scintillator, 1296 PMTs

Cherenkov Counter
e/π separation, 256 PMTs

- Excellent charged particle ID and reconstruction
- Used for reactions with up to 6 GeV e- beam
- Or secondary bremsstrahlung photon beams...
Real Photon Tagger

- Real photons produced via bremsstrahlung in radiator
- Momentum of degraded e^- analysed in dipole spectrometer
- Characteristic $1/E_\gamma$ distribution
- Tagged range: $0.2 < E_\gamma < 0.95$
- Linear polarised photons using coherent brem. on diamond radiator
- High polarisation, up to 90%, at low E_γ
- Maximum $W = 3.4$ GeV
- Intensity of $10^7 \gamma$ s$^{-1}$ integrated over full energy range

Within 3 years – JLAB upgrade to 11 GeV
But cannot use present tagger with 11 GeV e^- beam!!
CLAS12

- Large angle acceptance for charged and neutral particles
- Excellent momentum resolution for charged particles

Forward Detector
- TORUS Magnet
- Forward silicon vertex tracker
- HThresh Cerenkov Counter
- LThresh Cerenkov Counter
- Forward TOF System
- Preshower calorimeter
- E.M. Calorimeter

Central Detector
- SOLENOID magnet
- Barrel silicon tracker
- Central TOF

Proposed updates
- Micromegas (CD)
- Neutron detector (CD)
- **Forward Tagger** ➔ Enable e- detection below 5°
Photoproduction with CLAS12

- CLAS12 has evolved to study internal nucleon dynamics through GPDs, using high intensity 11 GeV e^- beam
- Detector also meets requirements of measuring photoproduction reactions with multiparticle final states
 - Many interesting physics possibilities:
 - **Meson spectroscopy on H searching for exotic states**
 - **Spectroscopy on He4 and other nuclear targets**
 - **Heavy mass baryon resonances (Cascades and Ω)**
 - **Baryon spectroscopy (hyperon production)**
 - **Glueball search in k^0k^0 channel**
 - **Baryon/meson radiative decays**
 - **J/Psi photoproduction near threshold (on H and nuclei)**
Quasi-Real Photon Tagging

(...will enable these interesting physics measurements)

- Small angle e^{-} scattering

 $\Rightarrow Q^2 < 0.1 \text{(GeV/c)}^2$ virtual photon \Leftrightarrow (almost)real photon

 -high virtual photon flux \Rightarrow high production rates

- Tagged by measuring forward angle e^{-} ($< 5^\circ$)

- $0.5 < E_{e'} < 4 \text{ GeV} \Leftrightarrow 7 < E_y < 10.5 \text{ GeV}$ with 11 GeV beam

- Quasi-real photons are linearly polarised wrt scattering plane

 - Simplifies PWA

- High e^{-} luminosity $10^{35} \text{ cm}^{-2}\text{s}^{-1}$ or $10^{7} \gamma\text{s}^{-1}$

- Only e^{-} contributing to hadronic interactions are detected in coincidence

 with CLAS12

Cross section for inclusive hadronic reactions

Hadronic rate $2-5^\circ = 8.6\text{kHz}$

$5-20^\circ = 3.8\text{kHz}$
The Tagger
-Still under development!!

- **calorimeter** to determine the electron energy with few % accuracy

- **tracker** to determine precisely the electron scattering plane and the photon polarization
 - GEM or micromegas

- **veto** to distinguish photons from electrons
 - plastic scintillator tiles
The Calorimeter

- Requirements:
 - Operate in high em background
 - Moeller (10MHz), Elastic Radiative (0.1MHz)
 - Small Moliére radius
 - Radiation hardness
 - Fast timing
 - Avoid pile-up
 - Coincidence with CLAS12
 - Energy resolution
 - ID final states with missing mass
 - Light read-out in magnetic field
 - APD readout

PbWO4

- $\tau_{\text{Decay}} \sim 6.5 \text{ ns}$
- $R_M \sim 2.1 \text{ cm}$
- $\rho \sim 8.3 \text{ g/cm}^3$
- $X_0 \sim 0.9 \text{ cm}$
- Light yield 0.3% (LY NaI(Tl))

- Existing CLAS inner calorimeter
- 424 16cm PbWO4 crystals
- $\sigma_E \sim 3\% E$

Also testing LYSO, considering sampling cal.
The geometry of the Forward Tagger Calorimeter based on the PbW04 crystals has been implemented in GEMC:

- 408 crystals
- 15x15x200 mm size
- Coverage from 1.8 to 5.2 deg.
- Tungsten beam pipe to shield from beam halo
Meson Spectroscopy

- Hybrid mesons contain excited gluons
- Study of excited gluons should enhance understanding of confinement
- Can have quantum numbers forbidden by quark model (exotic)
- Mesons with exotic quantum numbers likely to be hybrids

Normal meson:
- Flux tube in ground state
- Allowed 0-+, 1-+, ...

Exotic meson:
- Flux tube in excited state
- Combine quantum numbers of quark pair and flux tube
- Exotic 0+-, 1++, 2+-

- Lattice predicts 1^+ exotic states masses around 2GeV, i.e. JLAB energies (1-3GeV)
- In photoproduction rates for exotics expected to be similar to normal mesons
- Linear polarisation has correlation with naturality of produced meson

- Half free parameters in PWA

Complimentary to JLAB GLUEX experiment
Partial Wave Analysis

- Required to factor out different isobar contributions
- e.g. photoproduction of $\pi_1(1600)$
 - $S=1, L_{QQ}=0, L_g=1 \Rightarrow J^{PC}=1^{-+}$
- Decays to $\rho\pi$ in P-wave

- Design of tagger being studied with simulation of CLAS12 and PWA
- INT/JLAB 12 GeV collaboration formed to provide numerical and phenomenological tools for amplitude analysis
Coherent production on nuclei

- Production of mesons on light nuclei can help simplify PWA
 - Significantly reduce s-channel resonance background
 - $S=I=0$ target acts as spin and parity filter for final state meson
 - Method requires detection of low energy recoil nucleus
 - Thin gas target (need high luminosity)
 - Time Projection Chamber e.g. GEMs (CLAS experiment EG6)

Incoherent production on nuclei

- Can filter additional spin-parities of final state meson
- Identify final state quantum numbers of recoil nucleus
 - Tag with nuclear decay γ
 - e.g. $^{12}\text{C}(0)\ 0^+ \rightarrow ^{12}\text{C}(4.4\text{ MeV})\ 2^+$
- No threshold on recoil energy or t
Cascade

Doubly strange members of SU(3)
Number of Ξ^* should equal N^* and Δ^*
Currently 2, 4^* and 4, 3^* resonances measured
Properties not well known

Advantages

- Excited states narrow compared to N^* (10MeV<100MeV)
- Extraction of excitation spectrum relatively straightforward
- 2 detached vertices from decays
- 2 kaons in final state

$\sigma_{\text{total}}(\gamma p \rightarrow 2K^+\Xi^-) \sim 10\text{nb}\sim1\text{Hz production rate}$

L. Guo et al. PRC 76, 025208 (2008)

- Will cover masses from 1.5 to 3.8 GeV
- Measure decay distributions
 \Rightarrow Model independent extraction of properties

Derek Glazier
University of Edinburgh, for the CLAS collaboration
QCD10, Montpellier
Ω⁻ - the strangest baryon

Gell-Mann, Ne'eman predicted, as part of quark model, the Ω⁻ (1670) with S=-3, JP=3/2+
Observed in 1964 BNL confirming SU(3)$_F$

σ$_{\text{total}}$(γp → 3K$^+$Ω⁻) ~ 1nb~0.1Hz production rate

- Cross section measurement of γp → Ω⁻K$^+$K$^+$K0
- Direct determination of quantum numbers with no assumptions
 - BABAR → J=3/2 , parity unknown experimentally
- Search for Ω⁻ excited states
 - Only 3 possible resonances measured
- Study of the photoproduction mechanism
 - First baryon where no constituents come from target proton
Summary

- JLAB e^- beam will be upgraded to 11 GeV for 2013
 - 12 GeV for new Hall-D (GlueX experiment)
- The CLAS detector will undergo a complementary upgrade
 - CLAS12 – excellent charged and neutral particle detection
- A high luminosity ($10^{35} \text{cm}^{-2}\text{s}^{-1}$) e^- will be used on a hydrogen target for several years to meet the requirements of DVCS experiments
- Addition of a quasi-real photon tagger will allow parasitic measurements in hadron spectroscopy
- **Exotic mesons, cascades, Ω^-...**