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Abstract
A combination of confocal microscopy and rheology experiments, Brownian dynamics (BD)
and molecular dynamics (MD) simulations and mode coupling theory (MCT) have been
applied in order to investigate the effect of shear rate on the transient dynamics and
stress–strain relations in supercooled and glassy systems under shear. Immediately after shear
is switched on, the microscopic dynamics display super-diffusion and the macroscopic
rheology a stress overshoot, which become more pronounced with increasing shear rate. MCT
relates both to negative sections of the generalized shear modulus, which grow with increasing
shear rate. When the inverse shear rate becomes much smaller than the structural relaxation
time of the quiescent system, relaxation through Brownian motion becomes less important. In
this regime, larger stresses are accumulated before the system yields and the transition from
localization to flow occurs earlier and more abruptly.

(Some figures may appear in colour only in the online journal)

1. Introduction

The glass transition of colloidal hard spheres has attracted
considerable scientific interest for many years [1–3]. The
behaviour of hard spheres is controlled by the volume fraction
φ, i.e. the fraction of the sample volume occupied by particles.
For φ & 0.58, slightly polydisperse samples do not show
crystallization, which is the thermodynamically preferred
state, but remain in an amorphous, glassy non-equilibrium
state. The glass transition seems to coincide with the onset
of structural arrest, suppression of long-distance diffusion

and partial freezing of density fluctuations [4–6]. This can
be qualitatively explained on the basis of the cage effect:
as φ increases, particles are increasingly hindered in their
motions, i.e. ‘caged’, by their nearest neighbours until they
become localized and dynamical arrest takes place. This can
be theoretically described by mode coupling theory (MCT) [7,
8]. Ageing and hopping processes are believed to allow
particles to escape from their cages and can lead to long-time
diffusion and flow [3, 9].

The glass transition is reflected in the linear regime
of the rheological response: dynamical arrest leads to
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a solid-like response [10]. Whilst the elastic response
dominates, dissipative contributions are nevertheless present
due to activated processes leading to long-time relaxation.
The linear viscoelastic properties can be described by using
MCT-based theories [10, 11].

Upon exceeding the yield stress or strain, the glass
begins to plastically deform [12, 13] and the relation
between the applied field and the system’s response becomes
non-linear. The steady non-linear response of concentrated
dispersions and glasses to shear has been investigated
in experiments [11–16], simulations [17, 18] and theory
[9, 19, 22–25]. In the glass, these studies indicate that this
state is characterized by a finite value of the yield stress.
Under application of a constant shear rate, glasses start to
flow; simulations [18] and experiments [24–26] show that
the non-affine motions of the particles, initially arrested,
become diffusive once shear is applied for some time. The
long-time diffusion coefficient is controlled by the shear
rate γ̇ , the only control parameter. Only some time after
the commencement of shear is the steady state of flow
established. A transient regime occurs during which the
stress–strain relation displays an overshoot [26–29], which
has also been observed in other soft materials [29–36]. At
comparable strains, a pronounced structural anisotropy of
the cage develops [26, 37, 38] that does not fully relax
even in the steady state of shear. Furthermore, in a similar
range of strains, the transient dynamics show super-diffusive
motion [26, 27, 39]. Using MCT, these phenomena have
been related to negative sections of the generalized shear
modulus [27]. However, the dependence of the transient
rheological response, structure and dynamics on the control
parameters, in particular the shear rate γ̇ , i.e. the scaled Peclet
number Pe = γ̇ tB, where tB is the Brownian relaxation time,
or the Weissenberg number Pew

= γ̇ τR, where τR is the
structural relaxation time, have not been investigated so far.

Here we investigate the shear rate dependence of the
microscopic particle dynamics and macroscopic rheology of
concentrated colloidal suspensions under steady shear and
while steady shear develops. We present results obtained
using different approaches: experiments, Brownian dynamics
(BD) simulations of hard spheres, molecular dynamics
(MD) simulations of a binary Yukawa mixture, and MCT
calculations. This also allows us to investigate the influence
of interactions on the transient phenomena. We limit our
study to shear rates where homogeneous flow is observed,
i.e. we avoid combinations of volume fractions and shear rates
which produce non-homogeneous velocity profiles with shear
banding [40, 41].

2. Materials and methods

2.1. Samples

Polymethylmethacrylate (PMMA) colloids sterically stabi-
lized with a layer of polyhydroxystearic acid (PHS) and
fluorescently labelled with nitrobenzoxadiazole (NBD) were
dispersed in a mixture of cycloheptyl bromide and cis-decalin
that closely matches the density and refractive index of the

colloids. In this solvent mixture, the particles acquire a small
charge which is screened by adding 4 mM tetrabutylammo-
niumchloride [42]. The system displays almost hard-sphere
behaviour, with the volume fraction φ = (4π/3)nR3 being
the only thermodynamic control parameter, with n the particle
number density and R the particle radius.

The radius R = 770 ± 6 nm was determined by means
of static light scattering on a very dilute colloidal suspension
(φ ' 10−4). This value is similar to that estimated from
the position of the first peak of the radial distribution
function obtained by confocal microscopy [43], which was
found to be R = 780 nm. The very dilute sample was
also used for dynamic light scattering measurements; the
radius extracted from the diffusion coefficient, D0, was
found to be in agreement with the other values. From the
angular dependence of the diffusion coefficient, a relative
polydispersity in size of 0.062 was determined [44]. Samples
for confocal microscopy and rheology were prepared from
a random-close-packed (RCP) stock solution which was
obtained by sedimenting a dilute colloidal suspension in a
centrifuge. Given a polydispersity of 0.062, the sediment
is expected to have a volume fraction φ ≈ 0.66 [45].
Subsequently, the sample was diluted and its volume fraction
determined as follows. The imaged volume was partitioned
into Voronoı̈ cells and the mean size of the Voronoı̈ volume
per particle determined. The ratio of the particle volume
to the mean Voronoı̈ volume provides an estimate of the
volume fraction of the sample, φ = 0.56 ± 0.01 [46]. In
order to improve the signal-to-noise ratio in the rheology
measurements, similar, but smaller and not fluorescently
labelled particles with radius R = 267 ± 3 nm and a
polydispersity of about 0.06 (from dynamic light scattering),
dispersed in cis–trans-decalin, were used. Samples of these
smaller particles were prepared from a stock solution with
the volume fraction determined in the fluid–solid coexistence
region [47].

2.2. Confocal microscopy under shear

Shear was applied to suspensions of the large spheres by
means of two parallel plates using a home-built shear cell
(sketched in figure 1) [27, 48]. In order to prevent wall slip, the
plates, two glass coverslips, were coated with a layer of very
polydisperse PMMA particles [24]. Before each experiment
was conducted, a rejuvenation protocol was performed in
order to reduce history effects on the sample. This consisted
of applying typically 10 large amplitude oscillations (at a
strain in excess of 100%) at a frequency below 0.1 Hz, and
subsequently waiting 600 s before starting the experiment.

Confocal microscopy experiments were performed using
a VT-Eye confocal microscope (Visitech International)
mounted on a Nikon TE2000-U inverted microscope and
using a Nikon Plan Apo VC 100× oil immersion objective.
Two-dimensional images of the samples were recorded at a
depth of 30 µm inside the sample in order to probe bulk
behaviour and to retain good quality images. The image size
was chosen to be 512 pixels × 512 pixels, corresponding to
an area of 57 × 57 µm2. A series of images was acquired at

2



J. Phys.: Condens. Matter 24 (2012) 464104 M Laurati et al

Figure 1. Schematic representation of the parallel plate shear cell
used in combination with confocal microscopy. A piezo-actuator
drives the bottom plate in the positive x direction and a rotating
lever transfers the movement to the upper plate. The axis of rotation
of the lever can be translated vertically, thereby changing the
amplification of the movement of the bottom plate. The sample is
contained between microscope coverslips glued to the plates. The
velocity (x), vorticity (y) and gradient (z) directions are indicated.
The velocity profile, represented by the black lines in the sample,
contains a zero-velocity plane due to the movement of the plates in
opposite directions.

a fast sampling rate (compared to the shear rate) during the
application of shear. Additional experimental details can be
found in previous work [27].

Particle coordinates and trajectories were extracted from
the confocal images using standard routines [49]. The shear
rates applied here were sufficiently small that particles did not
move very far between two consecutive frames, even in the
direction of shear (x). It was thus not necessary to remove
affine motions before tracking [25]. Particle trajectories
were used to calculate mean squared displacements (MSD)
〈1y2(t, tw)〉 as a function of time t in the vorticity direction
(y):

〈1y2(t, tw)〉 =

〈
1
N

N∑
i=1

(yi(t + tw)− yi(tw))
2

〉
(1)

where tw is the waiting time, N is the number of particles
found in an image, typically about 1200, and 〈 〉 indicates the
average over independent experiments. In order to study the
dependence on waiting time tw, only trajectories starting at a
time tw after the commencement of shear are included. This
significantly reduces the statistics compared to measurements
at rest, where an average over tw can be performed and
hence trajectories starting at different times are taken into
account. In order to improve the statistics, MSDs extracted
from typically ten experiments were averaged after checking
the reproducibility of the measurements.

2.3. Rheology

Rheological measurements for samples of small spheres
were performed on a stress controlled Anton Paar MCR-501
rheometer at T = 20 ◦C. A cone and plate geometry with a
diameter of 50 mm and an angle of 0.0175 rad was used
in order to accommodate the low stress of the sample. The
cone truncation was 0.102 mm. Measurements of samples
of large spheres were performed using a TA Instruments

ARES-G2 strain controlled rheometer at T = 20 ◦C and a
cone and plate geometry. A cone of diameter 50 mm and
angle 0.04 rad was used with a truncation gap of 0.048 mm.
To reduce statistical noise, 30 measurements for each shear
rate were performed, which is at the limit of sample stability.
A rejuvenation protocol similar to that used for confocal
microscopy experiments was also applied.

2.4. Simulation models

In the BD simulations for the hard-sphere system, hy-
drodynamic interactions (HI) were ignored, allowing the
simulation of highly concentrated colloidal suspensions and
larger particle systems, in comparison to the more accurate but
computationally more demanding Stokesian dynamics [50]
where HI are included. The particle motion in colloidal
suspensions is described by the N-body Langevin equation:

m(dU/dt) = FH
+ FB

+ FP, (2)

where m is the generalized mass/moment of inertia tensor, U
is the particle translational/rotational velocity vector, FH is the
hydrodynamic force vector, FB is the stochastic force vector
that gives rise to Brownian motion, and FP is the deterministic
non-hydrodynamic force vector. For N rigid particles of radius
R and density ρ in a medium of viscosity η, we study states
at a shear rate γ̇ where the inertial forces are negligible
compared to viscous forces, i.e. at small Reynolds number,
Re = ρR2γ̇ /η � 1, where the above equation reduces to
FH
+FB
+FP

= 0. In BD (ignoring HI between particles), the
hydrodynamic force reduces to Stokes drag: FH

= −6πηRU.
For a simple hard-sphere system, the non-hydrodynamic force
vector becomes equal to the hard-sphere interaction forces
occurring at contact.

The hard-sphere interactions are based on the ‘potential-
free’ algorithm [51] in which the overlap between pairs
of particles is avoided by moving the particles with equal
force along the line of centres, back to contact. In order
to calculate the stress, the algorithm directly calculates the
pairwise interparticle forces that would have resulted in
the hard-sphere displacements during the course of a time
step [52]. Therefore we may write FP

= 6πηR(1xHS/1t),
the average Stokes drag on the particle during the course
of the hard-sphere displacement, which is then used to
calculate the rheologically relevant contribution to the stress,
σxy = −N〈xFP

〉 [51]. Details of the specific BD simulation
method used here can be found elsewhere [52]. At rest
and for relatively low Pe, Brownian dynamics simulations
qualitatively capture experimental stresses and displacements,
even though HI are ignored [50, 53], but stresses may not be
quantitatively correct.

The main details of the BD simulations are as follows: a
volume fraction ϕ = 0.56, with N = 5405 particles at rates
of Pew

= 4.9, 49 and 490 (Pe = 0.1, 1 and 10, with τR =

44.4 tB), was examined using multiple runs (eight runs) in
order to average initial configurations. Data for accumulated
strains larger than 1 were taken from single runs. To avoid
ordering during shear, polydispersity was added, which is
represented by a discrete Gaussian distribution of radii with
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80 components and a root mean squared deviation of 10%.
The effect of the polydispersity on stresses and displacements
was found to be minimal in comparison to that for the
monodisperse system.

The MD simulations were performed for a binary AB
mixture, modelled by the Yukawa potential,

uαβ = ε
MD
αβ dαβ

e(−καβ (r−dαβ ))

r
(3)

with α, β = A,B. The functions uαβ are truncated at a cut-off

distance rαβc , defined by uαβ(r
αβ
c ) = 10−7εMD

AA . The ‘particle
diameters’ were set to d ≡ dAA = 1.0, dBB = 1.2d and dAB =

1.1 d, the energy parameters to εMD
≡ εMD

AA = 1.0, εMD
BB =

2.0εMD, εMD
AB = 1.4εMD, and the screening parameters to

κAA = κBB = κAB = 6/d. The masses of the particles were
set to unity, i.e. m = mA = mB = 1.0. kB is set to unity.
The choice of these parameters ensures that, at the density
% = 0.675mA/d3

AA used in this work, no problems with
crystallization or phase separation occur, at least in the
temperature range under consideration.

The simulations were performed for a 50:50 mixture
of N = 2NA = 2NB = 1600 particles, placed in a cubic
simulation box of linear size L= 13.3d. Systems were sheared
via Lees–Edwards boundary conditions. To keep temperature
constant, the system was coupled to a dissipative particle
dynamics (DPD) thermostat. Further details on the simulation
and the thermostat can be found in [27, 38]. Note that for
our Yukawa model at the number density considered, the
critical temperature of mode coupling theory is approximately
Tc = 0.14. The shear rates used in the simulations were
6× 10−5, 3× 10−4, 6× 10−4 and 3× 10−3, corresponding to
Pew
= 5.8, 29, 58 and 288, with τR = 9.7× 10−4.

2.5. Mode coupling theory

MCT provides, via integration through transients (ITT), a
closed set of equations of motion (EOM) for calculating
the transient dynamics of dispersions under shear [21,
54–57]. Here, a schematic model which neglects the spatial
correlations, but keeps the form and asymptotic behaviour of
the full model near the glass transition, is used to describe the
mean squared displacements (MSD) as a function of time. The
basic version of the model is able to describe linear response
moduli, flow curves and stress–strain curves. It has been
discussed extensively elsewhere [11, 58, 59] and is hence only
briefly summarized here. The EOM of a density correlator
8(t), which encodes structural rearrangements, reads [60]

∂t8(t)+ 0

{
8(t)+

∫ t

0
dt′ m(t − t′)∂ ′t8(t

′)

}
= 0, with (4)

m(t) =
v18(t)+ v28

2(t)

1+ (γ̇ t/γc)2
. (5)

Short-time Brownian motion initiates 8(t) = 1 − 0t.
The exponential decay rate 0 describes the microscopic
dynamics on short timescales and depends on structural
and hydrodynamic correlations. The memory kernel m(t)
captures the dynamic arrest of slow density fluctuations

when approaching the volume fraction of the glass transition
from below and prevents 8(t) from decaying to zero in
the glassy phase (ideal glass). The memory kernel of the
frequently used F12 model is also used here [8, 61]. In
the denominator of m(t), an additional strain term γ̇ t/γc
with constant shear rate γ̇ accounts for the shear induced
decay of the transient correlator to zero, which captures shear
melting. This shear rate generalization is called the F(γ̇ )12
model [56, 60]. As a model parameter, γc determines the
influence of shear on the memory kernel or, more precisely,
the strain scale for shear-driven correlator decay. A parameter
set v1 = vc

1 + ελ/(1− λ), with vc
1 = (2λ− 1)/λ2, v2 = vc

2 =

1/λ2, and 1/2 6 λ 6 1, describes a bifurcation scenario of
the non-ergodicity parameter f (ε) ≡ 8(t→∞, ε), which is
f (ε < 0) = 0 and f (ε > 0) > f (0) > 0, with ε = (φ−φg)/φg
the separation parameter denoting the relative distance from
the glass transition. A value of λ = 1/

√
2, i.e. f c

≡ f (0) =
(1 − λ) ' 0.293, is often chosen, which we also adopt [8].
These parameters have already been used previously to
describe stationary, start-up and large amplitude oscillatory
stress measurements [11, 57–59].

To describe the shear stress σ(t) (with orientational de-
pendences neglected), the numerically determined correlator
8(t) is used in our non-linear constitutive equation

σ(t, γ̇ ) =
∫ t

−∞

dt′ g(t − t′, γ̇ )γ̇ (t′)

= γ̇

∫ t

0
ds g(s, γ̇ ), with (6)

g(t, γ̇ ) ≡ vσ (tγ̇ ) 8
2(t, γ̇ )+ η∞δ(t − 0+), (7)

where constant shear starts at t = 0. The generalized shear
modulus g(t, γ̇ ) is a stress auto-correlation function, which
reflects the MCT approximation that stress fluctuations
decay due to structural rearrangements (captured in 8(t))
and includes the strain dependence of an effective elastic
coefficient (namely vσ (tγ̇ )). It characterizes the magnitude of
stress fluctuations and decorrelates with strain due to the affine
distortions under flow [27, 59]. The short-time high-frequency
viscosity η∞ accounts for viscous processes that require
no structural relaxation, e.g. the viscosity of the solvent or
hydrodynamic interactions.

In order to observe a stress overshoot, the generalized
shear modulus g(t, γ̇ ) must cross zero. That this is possible
within MCT has been observed [60] and discussed in
detail [27, 59]. In the F(γ̇ )12 model, a simple strain-dependent
form of vσ (t, γ̇ ) = vσ (γ = tγ̇ ) from equation (7) captures this
as

vσ (tγ̇ ) = v∗σ

(
1−

(
γ̇ t

γ ∗

)4
)

e−(
γ̇ t
γ ∗∗

)4
. (8)

The strain parameter γ ∗ marks the peak of the stress overshoot
and is directly obtained from the experimental stress–strain
curve, whilst the strain parameter γ ∗∗ indicates the strain at
which the stress approaches its steady limit corresponding to
the flow-curve value.

The MSD of a tracer particle under shear was obtained
within microscopic MCT in two dimensions [40]. While
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general solutions in three dimensions have previously not
been possible, a quite involved model based on a generalized
Stokes–Einstein relation provides isotropically averaged
spatial information [27]. Here the model is simplified even
further. The stress overshoot and super-diffusive particle
motion are directly connected within the F(γ̇ )12 model. It is
based on the generalized Stokes–Einstein relation (GSE) and
a link between coherent and incoherent memory functions
that would arise in microscopic MCT has been formulated.
Microscopic MCT gives for the MSD of a Brownian
particle [8, 39, 62, 63]

〈y2(t)〉 + D0

∫ t

0
dt′ m(0)(t − t′)〈y2(t′)〉 = 2D0t, (9)

with D0 the short-time diffusion coefficient describing the
local motion of the particle. Introducing just one fitting
parameter, α, we approximate

m(0)(t, γ̇ ) =
6πRα

kBT
g(t, γ̇ ). (10)

This leads to the familiar approximation for the long-time
diffusion coefficient, DEQ

L ≈ kBT/(6πRαη), which connects

the diffusion coefficient, DEQ
L , with the long-time shear

viscosity, η = σ(t→∞)/γ̇ (equation (6)) [10]. Equation (9)
is derived within quiescent MCT [8], but holds in specific
directions under flow [40]. In contrast, the schematic model
does not discriminate between different directions and thus
can only be used for the directions perpendicular to the flow.
The effect of η∞, equation (7), is that of a rescaling of D0
through division by 1 + D0η∞, which we consider to be
outside the range of applicability of the model; hence η∞ = 0
is chosen for the calculation of the MSDs in the following.

At short times, MD simulations yield ballistic motion, in
contrast to the diffusive motion in equation (9). To allow for a
better comparison with the MD data, we change (1/0)∂t8(t)
to (1/�2)∂2

t 8(t) in equation (4) and 〈y2(t)〉 to ∂t〈y2(t)〉 in
equation (9). These two equations lead to short-time ballistic
motion, whilst the long-time behaviour is not changed.
Evidently these changes are not needed when comparing
theory with results of experiments and BD simulations.

3. Results and discussion

3.1. Experiments: confocal microscopy and rheology

Confocal microscopy was used to determine mean squared
displacements (MSDs, equation (1)) under shear for different
shear rates γ̇ = 0.0011, 0.0022, 0.0038 and 0.0076 s−1

and a fixed volume fraction φ = 0.56. The shear rates can
be converted to Weissenberg numbers Pew

= 2γ̇R2/DEQ
L

by using the long-time diffusion coefficient DEQ
L = 2.3 ×

10−13 cm2 s−1 as determined from the long-time behaviour
of the MSD of the quiescent, equilibrated sample at rest
(figure 2(a), solid circles), yielding Pew values of 56, 113, 194
and 389. For these Pew values, the MSD at rest, the transient
MSDs with a waiting time tw = 0 s and the MSDs in the
steady state of shear have been determined (figure 2(a)). Data,

normalized by the particle radius squared, R2, are shown as a
function of time, t− tw, which is normalized by the structural
relaxation time τR = R2/DEQ

L = 2.56 × 104 s (figure 2). The
absolute level of the MSDs of the two highest shear rates have
been corrected by subtracting a constant value (0.01R2) which
accounts for the higher noise level in these confocal images,
and hence in the data, when compared to the images for the
other shear rates.

At sufficiently long waiting times, tw, when the system
has reached the steady state of shear, the MSDs exhibit
faster dynamics than at rest, as indicated by the earlier onset
of diffusion and the correspondingly larger value of the
out-of-cage long-time diffusion coefficient, DSS

L . This is in
agreement with previous studies on concentrated colloidal
dispersions under flow [18, 24, 27]. With increasing Pew,
the steady-state dynamics become faster and the long-time
diffusion starts earlier, which indicates that the shear rate γ̇
governs the characteristic timescale of the dynamics. Indeed,
DSS

L increases with shear rate γ̇ or Pew according to a power
law with exponent ν = 0.92;DSS

L ∼ γ̇
0.92 (data not shown).

This exponent lies between the values of 1.0 for a fluid
dispersion and 0.8 for a glassy sample [18, 24].

The transient MSDs for tw = 0 initially follow the MSD
at rest and then exhibit a super-diffusive regime before, at
long times, displaying diffusive behaviour and merging with
the steady-state MSDs. With increasing waiting time, the
super-diffusion becomes less prominent and the dynamics
approach the steady-state curve, while its range remains about
constant (figure 3(a)), in agreement with the findings of
previous work [27]. Super-diffusion gets more pronounced
as Pew increases. This becomes more apparent if the MSDs
are plotted against the rescaled strain, γ − γw (figure 2(b)),
whilst dividing the MSD by the rescaled time, which yields
an effective diffusion coefficient, D/DEQ

L = 〈1y2(t)〉 τR/(t −
tw)2R2. Here the super-diffusive regime is indicated by a
positive slope, which occurs after a minimum and before a
plateau, the latter reflecting the long-time diffusive regime.
The deviation from diffusive behaviour can be quantified by
the difference between the value at the minimum, Dmin, and
the value at the plateau, Ddiff = DSS

L /D
EQ
L (figures 4(a) and

2(b), dashed lines). The relative difference between Dmin
and Ddiff increases with Pew, reflecting a more pronounced
super-diffusion, at least for the three lowest values of Pew.
It grows from about 2.7% at Pew

= 56 to about 17% at
Pew
= 389.
The transient super-diffusive regime is observed over

a narrow range of strains only. Its beginning, taken as the
strain, γnoneq, at which the transient MSD starts to deviate
from the MSD at rest (indicated in figure 2(b) for one
value of Pew), is almost independent of Pew

−γnoneq ≈ 1.5%
(figure 4(a)). Similarly, the transition from super-diffusion
to long-time diffusion occurs at γdiff ≈ 6% (indicated in
figure 2(b) for one value of Pew) and 〈1y2

〉/R2
≈ 0.1, which

is about the cage size, again almost independent of Pew

(figure 2(a)). The transient super-diffusive regime is thus
essentially independent of Pew occurring at 1.5% . γ −γw .
6% (figure 5(a)), with the minimum of D/DEQ

L at γmin ≈ 2%
and showing a slight increase with Pew (figure 5(b)). That the
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Figure 2. ((a), (c), (e)) Mean squared displacement, in units of the radius squared R2, as a function of time t − tw, in units of the structural
relaxation time, τR. ((b), (d), (f)) The same mean squared displacement normalized by time t − tw/τR, yielding an effective diffusion
coefficient D in units of DEQ

L , as a function of strain γ − γw. The data were obtained at rest (denoted as ‘EQ’; the corresponding strains in
plots (b), (d), and (f) were calculated by multiplying by the lowest shear rate respectively), in the transient regime immediately after
application of shear, i.e. waiting time tw = 0 s (denoted as ‘tw = 0’), and in the steady state of shear (denoted by ‘SS’) for different values of
Pew (as indicated). ((a), (b)) Experiments, φ = 0.56, data in the vorticity direction. ((c), (d)) BD simulations, φ = 0.56, data in the vorticity
direction. ((e), (f)) MD simulations, Tc = 0.14, data averaged in the vorticity and gradient directions. Arrows indicate the characteristic
strains γnoneq, γmin and γdiff whilst the dashed horizontal lines show the values of Dmin and Ddiff.

extent of the transient regime is independent of Pew and tw
suggests that it might be related to some static length scale in
the system, possibly the average neighbour separation.

Rheology experiments were performed mainly with
smaller particles to increase the signal, which is proportional
to the energy density (R = 267 nm instead of 770 nm).
Otherwise the experimental conditions were similar to the
confocal measurements, namely φ = 0.56 and Pew

= 21,
42, 209 and 418, with the last two closely comparable to
the two highest Pew in the confocal experiments. We also
performed one measurement with the large spheres used for
the confocal microscopy experiments at Pew

= 389 (γ̇ =

0.0076 s−1) to check for consistency of the results. The
stress, σ , was measured as a function of strain, γ , or time,

t = γ /γ̇ . Normalized stresses (σ/nkBT), measured for the
large and small spheres at comparable Pew values, show a
similar dependence on strain. The absolute values measured
for the large spheres are smaller by a factor of about 2, which
can be considered a fair agreement keeping in mind possible
differences in volume fraction [46], the different solvents used
(i.e. the large spheres could be slightly charged) and a small
difference in polydispersity. In addition, the measurement
with the large spheres seems to display a smaller stress
overshoot in comparison with the data for the small spheres,
even though this result could be influenced by the large noise
level in the measurements with the large spheres.

In the following we will discuss the results obtained with
the small spheres. After a linear regime (figure 6(a)), the
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Figure 3. Mean squared displacement, in units of the radius
squared, R2, as a function of time, t − tw, in units of the structural
relaxation time, τR, obtained at rest (symbols and dashed lines) and
at different waiting times, tw, after application of shear (solid lines).
Arrows indicate increasing tw. (a) Experiments, φ = 0.56 and
Pew
= 194, tw = 0, 20 and 200 s. Data in the vorticity direction. (b)

BD simulations, φ = 0.56 and Pew
= 4.9, tw = 0, 0.5 and 1 (in

units of tB). Data in the vorticity direction. (c) MD simulations,
Tc = 0.14 and Pew

= 5.8, tw = 0, 1342 and 14 763 (simulation
units). Data averaged in the vorticity and gradient directions.

stress increases non-linearly and then reaches its maximum
σmax at a strain γmax, after which it decays to a plateau, σdiff.
The stress overshoot is quantified by the relative difference
between σmax and σdiff. The relative magnitude, quantified
by (σmax − σdiff)/σdiff, and strain, γmax, of the overshoot
increase with Pew (figures 4 and 5). This may be attributed
to the inability of Brownian motion alone to fully relax the
distorted structures formed under higher Pew values; hence
the ability of the system to store stress, and also the maximum
deformation of the cage before it yields, both increase [26].

Previously, we have shown that the super-diffusion
observed in the microscopic dynamics and the stress
overshoot in the macroscopic rheology can be linked through
negative sections of the generalized shear modulus [27]. The
increase in the degree of super-diffusion with increasing
Pew is similar to that of the overshoot, which suggests that
the larger stored stress results in a stronger super-diffusive
response when the system yields. Super-diffusion and the

Figure 4. (a) Peclet number Pew dependence of the degree of
super-diffusion, quantified by the relative difference between the
effective diffusion coefficients at the minimum, Dmin, and long-time
plateau, Ddiff (figures 2(b), (d) and (f)). The initial transient
dynamics (filled symbols) and the steady state of shear (open
symbols) are presented for the experiments (�), BD simulations
(•), and MD simulations (N). (b) Relative magnitude of the stress
overshoot, quantified by the difference between the stresses at the
peak, σmax, and the long-time plateau, σdiff for the experiments, BD
and MD simulations.

overshoot both extend over about half a decade. However,
the super-diffusion seems to occur at slightly smaller strains
than the stress overshoot, γmin < γmax (figures 2(b), 5(b) and
6(a)). This difference increases with Pew since the increase in
γmax is more strongly dependent on Pew than is the increase
in γmin (figure 5(b)). The observed difference could result
from instrumental differences in the synchronization between
application of shear and data acquisition in the shear cell and
rheometer, or could be the effect of differences between the
dynamics of tagged particles, measured in the MSDs, and
the collective dynamics related to the macroscopic rheological
response.

3.2. Simulations

BD simulations of hard spheres are compared to MD
simulations of a binary Yukawa mixture for which Newton’s
equations of motion are solved. Although colloidal hard
spheres are widely used as models for various phenomena
in fluids and solids, the extent to which hard spheres
exhibit ‘universal’ features of glass-forming liquids under
shear and in particular whether they are a good model for
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Figure 5. (a) Extent of the transient regime, quantified by the
strains at the beginning, γnoneq, and end, γdiff, of the transient
regime. Symbols as in figure 4. (b) Strain γmin at the minimum of D
for experiments (�), BD simulations (•) and MD simulations (N),
as a function of the Peclet number Pew, compared to the strain γmax
(open symbols; same colour coding as γmin) at the peak of the stress
overshoot.

sheared molecular glasses is still under debate. Particle-based
computer simulation is an ideal tool for inferring similarities
between hard spheres and atomistic model systems (such as
multicomponent metallic mixtures). Apart from the different
interactions between the particles, the microscopic dynamics
in atomistic models differ from those in colloidal hard spheres,
being Newtonian in the former and Brownian in the latter case.

BD simulations, which apply hard-sphere interactions,
and MD simulations based on Yukawa interactions yield
qualitatively the same dynamic behaviour, seen here in the
MSDs at rest and in the transient and steady state (figures 2(c)
and (e)); both agree with the experimental observations. (Note
that in the experiments and BD simulations the MSDs are
in the vorticity direction, whilst in the MD simulations,
the MSDs are averaged over the vorticity and gradient
directions.) Both MSDs at rest depart from the plateau at times
comparable to the experimental ones. Thus the structural
relaxations of the three systems at rest are very similar. In the
steady state, both simulations indicate faster dynamics than at
rest. The long-time diffusion coefficient DSS

L increases as Pew

increases, in agreement with the experiments. The transient
MSDs show super-diffusion, which becomes less pronounced
with increasing waiting time, tw (figures 3(b) and (c)), in
agreement with the experiments and as previously discussed
elsewhere [27]. Increasing Pew enhances super-diffusion in

Figure 6. Normalized stress, σ/(nkBT), as a function of strain, γ ,
for different Weissenberg numbers, Pew (as indicated). (a)
Experiments, φ = 0.56, (filled symbols) spheres of radius
R = 267 nm and (open symbols) spheres of radius R = 770 nm.
Lines: MCT fits. (b) BD simulations, φ = 0.56 with MCT fits (lines)
and (c) MD simulations (symbols), T = 0.14 with MCT fits (lines).

the BD simulations (figure 2(d)); the relative difference
between Dmin and Ddiff increases from about 1% at Pew

= 4.9
to about 40% at Pew

= 490. The BD results show a Pew

dependence which is qualitatively and almost quantitatively
similar to the experiments (figure 4(a)).

However, MD simulations indicate that super-diffusion
does not significantly depend on Pew (figure 2(f)); the relative
difference between Dmin and Ddiff remains approximately
constant at about 60% (figure 4(a)), which is larger than in
the experiments and BD simulations. This is consistent with a
more pronounced stress overshoot in the stress–strain curves
found in the MD simulations (figure 6). In addition, neither
the stress overshoot nor the super-diffusive behaviour changes
significantly with Pew (figure 4(b)). In the BD simulations,
the stress overshoot is less pronounced and similar to that in
the experiments. Furthermore, the BD simulations indicate an
increase of the overshoot with Pew (figures 4(b) and 6(b)),
in line with the increasingly pronounced super-diffusion.
The more pronounced super-diffusion and stress overshoot
in the MD simulations is attributed to the softer Yukawa
interactions, compared with the hard-sphere interactions in
the BD simulations and experiments. Due to their softness,
it is possible to compress particles in their cages and hence
to store larger stresses before yielding occurs. A similar
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dependence of the stress overshoot on softness has been
found experimentally when comparing hard spheres, microgel
particles and star polymers [29]. Note also that in the linear
viscoelastic regime at small strains, the stress in the BD
simulations shows a sub-linear dependence on γ and some
degree of dependence on Pew, whilst stresses in the MD
simulations show a linear dependence on γ and almost
no Pew dependence. This can be attributed to the different
microscopic dynamics: in the BD simulations the short-time
Brownian dynamics are reflected in a linear modulus, which
depends on D0 and is shear rate dependent, and in a
finite viscous contribution, which dissipates energy during
the elastic deformation (sub-linear increase). Moreover, the
absence of diffusion at short times in the MD simulations
explains the linear modulus being independent of the shear
rate; the Newtonian dynamics do not contribute to the
relaxation of structural deformations and stresses. This could
also explain the general absence of a Pew dependence of the
super-diffusion and stress overshoot in the MD simulation
results.

The super-diffusive regime is limited by γnoneq and γdiff.
In the BD simulations this regime is shifted to larger strains
as compared with the experiments, but shows a similar extent,
which increases with increasing Pew from about 16% to
43% (figure 5(a)), with the increase mainly caused by γdiff.
The difference compared to the experiments might be due to
the neglect of the hydrodynamics in the simulations. In the
MD simulations, the onset of the transient regime, γnoneq,
strongly increases with Pew, while diffusion is reached at
an almost constant value, γdiff ≈ 200%, resulting in an even
broader range of strains where transient dynamics and a stress
overshoot are found. Furthermore, both simulation techniques
find a value of γmin which is larger than in the experiments
(figure 5(b)). The ranges of strains where super-diffusion
and the stress overshoot occur are comparable in the MD
simulations, whilst they do not exactly coincide in the BD
simulations and are shifted with respect to each other to an
even greater extent in the experiments (figure 5(a)). Since
the similar long-time dynamics at rest suggest comparable
structural relaxations of the three systems, and since both
BD and MD simulations neglect hydrodynamic interactions,
the different strain ranges might result from the different
interactions. In addition, differences in the distance to
the glass transition between BD simulations, experiments,
and MD simulations could contribute to the discrepancies
observed.

In the steady state, super-diffusion disappears completely
in the MD simulations and cannot be detected in the
experiments. However, in the BD simulations, super-diffusion
is observed in the steady state at the highest Pew studied
(figure 2(d)). The relative difference (Ddiff − Dmin)/Ddiff ≈

43% is even larger in the steady state than at tw = 0
(figure 4(a)). Super-diffusive behaviour in the steady state has
been recently associated with continuous cage breaking and
reformation in concentrated hard-sphere dispersions [26].

The BD simulations indicate that, in contrast to the
long-time diffusion, the short-time diffusion in the steady state
is reduced, compared to that in the transient or quiescent

state [26], which becomes more noticeable with increasing
Pew (figures 2(c) and (d)). This effect could not be observed
in the experiments, due to the limited scanning speed of the
confocal microscope, or in the MD simulations, due to the
Newtonian dynamics which give rise to a ballistic regime at
short times.

3.3. Mode coupling theory (MCT)

The experimental and simulation results are compared to
mode coupling theory (MCT) using the schematic F(γ̇ )12
model (section 2.5). The BD and MD simulations provided
rheological data which could be used to set the parameters
of the theory (figures 6(b) and (c)). Whilst experimental
rheological data are also available, it is not possible to
simultaneously fit the stress–strain curves and MSDs as
the experiments were performed using small and large
particles, respectively, and the fits are quite sensitive to
the absolute values of the steady-state stresses, which show
some discrepancy at the same nominal volume fraction
(figure 6(a)) [46]. Therefore, the rheological data and
MSDs from experiments were separately and independently
modelled. In the fits to the rheological data, v∗σ is determined
from the linear regions of the stress–strain curves and 0, ε and
the initial value of γc determined from the steady-state stress
values of the same curves. Then, γ ∗ is chosen as the peak of
the stress–strain curves, γc is fitted to all stress–strain curves
and γ ∗∗ is fitted to each curve. The parameters of the fits are
listed in table 1.

For the MSDs, a set of parameters (reported in table 2)
is obtained for all data by iteratively fitting theory curves to
the experimental data and long-time diffusivities. In doing so,
v∗σ determines the plateau value of the MSD, ε the plateau
width, 0 the departure from the plateau at long times, D0 the
short-time dynamics, γ ∗∗ and γc the scale for shear induced
correlator decay and γ ∗ the stress overshoot and the onset of
super-diffusive motion.

The theoretical fits reproduce the experimental data at
all Pew (figures 6(a) and 7(a)). In particular, they show a
stress overshoot and a super-diffusive regime at intermediate
times. In agreement with the experiments, stress overshoots
and super-diffusion are more pronounced at larger Pew values.
This results from the negative section of the generalized
shear modulus, g(t, γ̇ ), which becomes more pronounced
with increasing Pew (figure 8, obtained for MSDs, where
m(t, γ̇ ) ∝ αg(t, γ̇ ) from equation (10) is plotted, α being a
constant). The transition from super-diffusion to long-time
diffusion, however, is not perfectly reproduced. This is
attributed to the compressed exponential decay used to
describe the time dependence of vσ (t, γ̇ ) (equation (8))
which describes the stress overshoots very well [27, 59],
but seems to underestimate the fast process observed in
the experimental MSDs. Moreover, fits of the stress–strain
curves show some deviations from the data for the largest
values of Pew. These values of the Weissenberg number are
relatively large and therefore the timescales of the short-time
and long-time dynamics become close, which means that the
limit of applicability of the MCT description is approached.
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Table 1. Parameters of the schematic model used for the fits to the experimental rheology data (figure 6(a)). The first two rows list
parameters which are independent of Pew whilst the following rows report the shear-rate-dependent parameters specific to each value of Pew.

Experimental rheology

Parameters independent of Pew

v∗σ /[nkBT] = 291 0[s] = 19 ε = −1.4× 10−2 γc = 0.18 η∞/[(nkBTs)] = 6.15

Parameters dependent on Pew

Pew 21 42 209 418
log10 (γ̇ [s]/6.4) −3 −3+ log102 −2 −2+ log102
γ ∗ 0.0972 0.106 0.149 0.171

γ ∗∗ = 0.983 γ ∗ + 3.97× 10−2

Table 2. Parameters of the schematic model used for the fits to the experimental MSDs (figure 7(a)). In this case all parameters are
independent of Pew.

Experimental dynamics (MSDs)

αv∗σ [R
3/(kBT)] = 1700/(6π) 0[s] = 700 ε = −3× 10−3 γc = 0.068 η∞ = 0

D0[s/R2
] = 0.10 γ ∗ = 0.022 γ ∗∗ = 0.039

Figure 7. Mean squared displacement, in units of the radius
squared, R2, as a function of time, t − tw, in units of the structural
relaxation time, τR. The data were obtained at rest (denoted as ‘EQ’;
full symbols) and in the transient regime immediately after
application of shear, i.e. waiting time tw = 0 s (‘tw = 0’; open
symbols) for different values of Pew (the same as in figure 2). Mode
coupling fits (lines) are compared to (a) experimental results (in the
vorticity direction), (b) BD simulation results (in the vorticity
direction) and (c) MD simulation results (the average of the
vorticity and gradient directions).

For the simulations, the fitting procedure for the
stress–strain curves is similar to that for the experiments,
except that in the case of MD simulations, values of v∗σ
are obtained by fitting flow curves (not shown) and the

Figure 8. Memory kernel m(t, γ̇ ) ∝ αg(t, γ̇ ) obtained by fits to the
experimental MSDs at equilibrium (EQ) and at different values of
Pew (indicated). Inset: magnified plot of the region of the negative
portion of the memory kernel under shear.

same set of parameters used to describe the MSDs. In order
to reflect the short-time Newtonian dynamics in the MD
simulations, the microscopic MCT equation (equation (4))
was generalized to generate short-time ballistic motion (as
discussed in section 2.5). This allows the MSDs to be
successfully reproduced also at short times (figure 7(b)). The
parameters of the fits of the BD and MD simulations are
reported in table 3.

The schematic MCT model reproduces the simulated
MSDs well and in particular shows super-diffusive behaviour
at intermediate times (figures 7(b) and (c)). Only for the BD
simulations with Pew

= 490 is the agreement between the
MSD and the rheology curve poor. This is due to the fact
that the glass transition in the current BD simulations of
polydisperse hard spheres is at φ = 0.6, i.e. the sample at
φ = 0.56 is still well in the fluid phase. Therefore, for the high
Pew considered, the timescales of the short-time and long-time
dynamics are too close to be correctly described by MCT
(this is similar to the case for the experimental rheological
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Table 3. Parameters of the schematic model used for the fits to the BD and MD simulations. For BD simulations, the model parameter D0
in equation (8) is fitted to the short-time MSD of figure 7(b).

BD simulations

Parameters independent of Pew

v∗σ /[nkBT] = 112 α = 0.48 0[R2/D0] = 100 ε = −4.5× 10−2

γc = 0.3 η∞ = 0

Parameters dependent on Pew

Pew 4.9 49 490
log10

(
γ̇ [R2/D0]/1.29

)
−1 0 1

γ ∗ 0.16 0.25 0.36
γ ∗∗ = 0.769 γ ∗ + 1.21× 10−1

MD simulations

Parameters independent of Pew

v∗σ /[nkBT] = 222 α = 0.18 �2
[τ 2
] = 325 ε = 5× 10−4

γc = 0.576 η∞ = 0 D0[τ/d2
] = 0.41 [τ ] =

√
md2/εMD

Parameters dependent on Pew

Pew 5.8 29 58 288
log10 γ̇ [τ ]/3 −5+ log102 −4 −4+ log102 −3
γ ∗ 0.078 0.078 0.088 0.11

γ ∗∗ = 1.58 γ ∗ − 1.30× 10−2

data at the highest Pew). Moreover, the super-diffusion is
significantly less pronounced in the theoretical prediction
than in the MD simulations. The discrepancy is larger
than between the MCT predictions and the experiments,
as expected from the comparison of the MD simulations
and experiments (figure 2, section 3.2) and attributed to the
different interactions. Note also that the long-time part of
the equilibrium MSD of the MD simulation is not properly
modeled by MCT. This is due to the fact that the rheological
stress–strain and flow curves show the response of a glass
and therefore are described using a positive value of ε in
the MCT model. On the other hand, a glass state (positive
ε) in MCT is ideal, i.e. it does not show long-time diffusion,
contrary to the simulated MSD. We attribute this equilibrium
long-time diffusion in the simulated MSD to thermally
activated hopping processes, which are not described by MCT.
Nevertheless, it is noteworthy that a comparison to the MD
and BD rheological and MSD data is possible with identical
model parameters, thus quantitatively confirming the relation
between the macroscopic rheology and the microscopic
dynamics. It should be noted, however, that the difference
between the position of the peak of the stress overshoot and
the onset of super-diffusion seen in the BD simulation data
(and in experiments) is an effect currently not considered by
theory.

4. Conclusions

Using experiments, BD and MD simulations as well as MCT,
we have investigated concentrated colloidal suspensions, and
in particular their macroscopic rheological and microscopic
dynamical response to the application of shear with a constant
shear rate, or Weissenberg number Pew, with a particular
focus on the dependence on Pew. The transient dynamics
exhibit super-diffusion, which occurs between the short-time

localized motion and the long-time out-of-cage diffusion.
In experiments, BD simulations and MCT, super-diffusion
becomes more pronounced with increasing Pew. Upon
increasing Pew, the timescale introduced by shear (the
inverse shear rate) becomes increasingly shorter than the
structural relaxation (or α-decay) of the system. The internal
dynamics of the system thus contribute less and less to the
relaxation of structural deformations and stresses. Hence,
the cage can store more stress before it yields, as seen
in the increase of the stress overshoot in the macroscopic
rheological response [26]. An increasingly larger stress
is hence released during yielding and super-diffusion is
enhanced. MCT explains both trends through the negative
section of the generalized shear modulus, which becomes
more pronounced with increasing Pew. The degree of
super-diffusion is, however, underestimated by MCT, which
is due to the chosen compressed exponential time dependence
for vσ (t, γ̇ ) characterizing the strength of fluctuations. Whilst
the theory does not capture the fast super-diffusion and, where
present, differences in the characteristic strains of the stress
overshoot and of the onset of super-diffusion, it reproduces
the stress–strain curves very well. In contrast, the MD
simulations, which are based on Yukawa interactions, yield
only a very weak Pew dependence of both the super-diffusion
and the stress overshoot. This could be attributed to the
missing short-time diffusion in the Newtonian dynamics and
the absence of a short-time dynamics contribution to the
relaxation of structural deformations and stresses. Moreover,
MD simulations yield stronger stress overshoots compared to
experiments and BD simulations, probably due to the softer
interactions involved in the former, in agreement with recent
experimental findings [29]. In any case, the super-diffusion
and the stress overshoot occur at similar strains. The range of
strains is minimal in experiments, larger in BD simulations
and largest in MD simulations. This might be caused by the
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neglect of the hydrodynamics (in the simulations) and the
softer interactions (in the MD simulations).
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