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Abstract We implement image correlation, a funda-

mental component of many real-time imaging and tracking

systems, on a graphics processing unit (GPU) using NVI-

DIA’s CUDA platform. We use our code to analyze images

of liquid-gas phase separation in a model colloid-polymer

system, photographed in the absence of gravity aboard the

International Space Station (ISS). Our GPU code is 4,000

times faster than simple MATLAB code performing the

same calculation on a central processing unit (CPU), 130

times faster than simple C code, and 30 times faster than

optimized C?? code using single-instruction, multiple-

data (SIMD) extensions. The speed increases from these

parallel algorithms enable us to analyze images down-

linked from the ISS in a rapid fashion and send feedback to

astronauts on orbit while the experiments are still being

run.

Keywords GPU � CUDA � Autocorrelation �
International Space Station � SIMD

1 Introduction

Most computer programs are serial, where the results of

one stage of computation are used as input for the next.

Since they execute on a computer’s central processing unit

(CPU), their performance is determined by CPU clock

speed. For the early years of CPU evolution, clock speeds

increased exponentially, but over the past decade this rate

increase has not persisted; instead, computers have inclu-

ded multiple CPU cores to increase computational power.

Unfortunately, serial code cannot automatically take

advantage of multiple cores to execute more quickly, so

that software performance has not in general kept pace with

hardware in this period.

Nevertheless, some applications commonly used by

scientists and engineers can use multiple cores in parallel

for specialized operations. MATLAB, for example, uses

parallel processes on multiple cores to accelerate fast

Fourier transforms (FFTs) and certain aspects of image

processing; these calculations are ideal for parallelism

because the same operation is applied independently to

different pieces of data. Software development tools have

also simplified the process of parallelizing code, including
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specialized libraries [43] and modern compilers that par-

allelize certain operations automatically, without requiring

additional work by the programmer [5]. While convenient

and simple to use, these CPU-based parallel approaches are

ultimately limited by the number of processor cores, rarely

more than four; the resulting performance increases are

generally less than an order of magnitude [5].

By contrast, all modern PCs come equipped with a

specialized multiprocessor, a graphics processing unit

(GPU) containing up to hundreds of simplified processor

cores—opening up the tantalizing possibility of far greater

speed increases. In fact, although they are designed

and heavily optimized for rendering pixels on a screen,

GPUs can also be harnessed for general computation

in a modality known as general-purpose GPU (GPGPU)

[29–31]. In the earliest GPGPU applications, the GPU

performed operations on regular data formatted as graphics

objects [11, 31], a tricky programming task that limited its

use to graphics experts.

In recent years, however, GPGPU computing has been

revolutionized by the advent of general programming

languages implemented on the GPU [28]; an excellent

overview of the different approaches is given in [30]. Of

particular present interest are the CUDA C [48] and

OpenCL [49] languages supported by the CUDA architec-

ture. CUDA C is a set of parallel extensions to the C/C??

programming languages and interacts with a special hard-

ware interface built into all current NVIDIA GPUs; within

CUDA, the GPU appears to the programmer as a collection

of general-purpose parallel processors [29, 48]. Specific

knowledge of graphics programming is no longer necessary

for GPGPU; as a result of CUDA, the number of GPGPU

applications in science and engineering has increased sig-

nificantly [14]. Impressive performance gains have been

achieved in several types of CUDA simulations [29],

including molecular dynamics [2, 20, 41, 45], Monte–Carlo

[1], N-body gravitation [4], Navier–Stokes [44], lattice

quantum chromodynamics [17], particle-in-cell plasma

[40] and schooling fish [18]. A number of computational

algorithms and numerical calculations have also been

implemented in CUDA [9], including parallel sorting [39],

binary-string search for digital forensics [27], sparse-

matrix factorization [36], fast-multipole methods [15] and

diffraction integral calculations [37]. CUDA applications

that analyze experimental data mostly involve information

and image processing [8], including matching DNA

sequences [26, 35], correlating cosmological data [32] and

radio-astronomy telescope output [16], laser-speckle

imaging of blood flow [19], digital holographic microscopy

[38], face tracking [21], magnetic resonance image (MRI)

reconstruction [42], and aligning and deforming micros-

copy images for 3D reconstruction [33, 34]. Using CUDA,

most of these applications accelerate performance by one

to two orders of magnitude over that of a single CPU, far

more than usually possible with only four CPU cores [48].

In this paper, we present several parallel implementa-

tions of a fundamental image-analysis calculation, spatial

autocorrelation. We step through its expression in a simple

MATLAB code, a simple C code, and an optimized C??

version that uses single-instruction, multiple-data (SIMD)

extensions to improve CPU-based calculation speed. We

then present our CUDA C implementation, and demon-

strate how the GPU performs the same calculation several

orders of magnitude faster. We characterize and explain the

strengths and weaknesses of the approaches taken in the

different codes, emphasizing underlying concepts for sci-

entists and engineers who may not be expert programmers.

We apply our code to analyze images of liquid–gas phase

separation, collected in the low-gravity environment by

astronauts aboard the International Space Station (ISS) [3].

Our accelerated parallel algorithms enable rapid analysis of

images downlinked from ISS to earth, allowing us to pro-

vide feedback to the astronauts on orbit in time to make

changes while the experiment is still running. This inter-

active mode of operation is a significant departure from

most other ISS experiments, which are typically configured

to run in an automated fashion and cannot be modified after

launch.

2 Materials and methods

2.1 Sample preparation and photography

Our colloid-polymer sample preparation procedure is

described in detail in chapter 12 of [25]. We suspend

polymethylmethacrylate spheres in a solvent mixture that

nearly matches the particles’ index of refraction. The

samples are transparent when viewed straight on, but

scatter blue light at a high angle. We induce phase sepa-

ration by adding a linear polystyrene, which creates a

depletion attraction between the particles, which we tune

chemically to mimic the role of temperature in molecular

systems [22–24, 47]. Our samples have polymer and col-

loid concentrations near where previous experiments have

extrapolated the liquid–gas critical point [6, 7].

2.2 Performance testing

Differences in CPU hardware limit useful comparison of

CUDA speedups to order-of-magnitude estimates. While

GPUs are fairly standard (G80 or GT200), almost every

paper compares to a different CPU; in general, Pentium 4

CPUs are roughly twice as slow, and Core i7 CPUs

twice as fast, as Core2 CPUs at the same clock speed. For

our testing platform, we selected a middle-of-the-road
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consumer desktop PC configuration likely to represent

what is found in a typical laboratory: a Dell XPS 730

with an Intel Q6600 Core2 Quad at 2.4 GHz, with 3GB of

RAM and WinXP SP2. We observe the same GPU per-

formance on the Tesla C1060, Quadro FX 5800, and

reference-design GeForce GTX 280 graphics cards.

Because our code uses an atomic operation, it requires a

GPU with CUDA Compute Capability level 1.1 or

greater; in particular, the G80 series of cards, with

capability level 1.0, cannot run this code in its entirety.

An earlier version of our code therefore wrote interme-

diate values back to global memory, which were summed

using a second kernel; this leads to an overall decrease in

performance of 25%, relative to the GPU results pre-

sented in Fig. 9.

We compare results for total program execution times

on a single CPU core and single GPU, motivated by the

hardware of recent GPU clusters [32]. Because autocorre-

lation involves only one image at a time, the most efficient

way to parallelize is to designate each CPU core or GPU to

separately analyze a different image from the time

sequence; OpenMP provides a convenient and straightfor-

ward way to implement this parallelization, though the data

handling becomes slightly more complicated. We have

achieved the expected, nearly fourfold performance

improvement for the C?? algorithm using OpenMP and

executing the code on the quad-core processor, relative to

the single core, non-OpenMP version. However, a nearly

identical speedup would be achieved by using OpenMP to

send the images to four graphics cards, which could take

the form of two GeForce GTX 295 cards; these cards

would provide the four GT200 GPUs to match the four

CPU cores in the quad-core processor. This perfect scaling

applies equally to all codes, so that the relative speedups

shown in Fig. 9 will remain unchanged.

3 Photographing phase separation onboard the

International Space Station

Understanding the separation of liquid and gas phases is a

fundamental problem with myriad practical applications,

including the formation of clouds, the decompression of

liquid fuel in a rocket engine, and the spray from an aerosol

can. The liquid form is denser than the gaseous form of the

same material, so investigating the structures formed in this

process is difficult in the presence of gravity on earth. We

therefore launched a series of liquid–gas mixtures to the

ISS as part of the BCAT3 and BCAT4 experiments, where

the effects of gravity are reduced by six orders of magni-

tude. Our samples comprise colloids and polymers diffus-

ing in a background solvent; this model system mimics the

behavior of molecular liquids and gases using larger

particles that we photograph, and whose interactions we

control with chemistry [24, 47].

Samples are loaded into glass cuvettes, which are then

placed inside a sample holder, shown in Fig. 1. Inside each

cuvette is a tiny teflon stir bar, which is agitated to mix the

colloids and polymers. The samples then separate into

colloid-rich liquid and colloid-poor gas phases, much like

salad dressing separates into an oil layer and a water layer.

We photograph this process with a digital SLR camera

(Kodak DCS760) and flash (Nikon SB28) controlled

remotely via firewire from a laptop running EarthKAM

software, which inputs a list of times to trigger the camera,

then automatically downloads the resulting images without

astronaut intervention. The photography setup onboard the

ISS is shown in Fig. 2.

We usually take a photograph every hour for a week,

generating a few hundred images of the sample evolution

throughout the course of a complete data acquisition run.

Each day, we receive a couple dozen images, downlinked

from ISS, showing how the sample evolved during the

previous day; we analyze these images immediately to

monitor the progress of the experiment. Based on these

results, we can communicate feedback to the astronauts on

ISS, who can then alter the experiment, if necessary, before

the next day’s data are collected and downlinked. A typical

raw, unprocessed image from the middle of one of these

sequences is illustrated in Fig. 3a. We use the Adobe

Camera RAW converter [12] to import the camera’s CCD

data stored in the Camera RAW format into Adobe

Photoshop CS3, where we convert the image to grayscale,

as illustrated in Fig. 3b. To remove the random motion due

to drift over time in the relative positions of camera and

sample, we stabilize the converted grayscale image

sequence in Adobe After Effects CS3 [10], which pre-

cisely registers and aligns all images in the time series.

Fig. 1 BCAT sample holder with ten glass cuvettes in an anodized

aluminum frame, between two sheets of plexiglass
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We remove the uneven lighting background by blurring an

inverted copy of the image on a separate layer, using the

Overlay blending mode with 50% opacity, resulting in the

image in Fig. 3c. To remove the dust on the camera sensor

and in the sample, we use the Color Key Filter to select the

white and black pixels and replace these regions with

copies of the original image offset by a few pixels, main-

taining the correct brightness and noise distributions, as

shown in Fig. 3d. In the last step, we enhance contrast and

crop, yielding the final image shown in Fig. 3e. All inter-

mediate steps are implemented as 16-bit nested (precom-

posed) projects in After Effects, maximally preserving

image information before final output. The resulting ima-

ges, typically 750 9 1,500 pixels, are converted in

Photoshop to losslessly compressed 8-bit grayscale PNG

format and form the data input for the autocorrelation

calculation.

4 Image autocorrelation analysis

The network structure that appears in the phase separation

images has a characteristic length scale, which in Fig. 3 is

about one-eighth of the width of the sample. How this

length changes with time gives insight into the thermody-

namics driving the phase separation [13]. To quantify this

length, we calculate the 2D intensity autocorrelation [3]:

C2DðX0; Y0Þ ¼
P

x;y Iðx; yÞIðx� Y0; y� Y0Þ
P

x;y I2ðx; yÞ ð1Þ

Each processed image is represented as an intensity

distribution I(x, y), where x and y are integer pixel

coordinates. For each image, a copy of the same image is

made and offset by the vector R~ ¼ ðX0; Y0Þ, where the

offsets X0 and Y0 are also in units of pixels. The

overlapping portions of the two images are multiplied,

and the product is normalized by the square of the image’s

total integrated pixel intensity,
P

x,y I2(x, y), as shown in

Fig. 4. Because the image is multiplied by a copy of itself,

this form of correlation is known as auto-correlation;

choosing two different images quantifies their degree of

cross-correlation, but the underlying calculation is

otherwise the same. When the offset is zero, the overlap

is complete:

C2Dð0; 0Þ � 1

As the offset increases, the function decays to zero:

C2Dð1;1Þ ! 0

The resulting C2D for the image in Fig. 3e is shown in

Fig. 2 Camera setup onboard the ISS, clamped to bars that attach to

the walls and ceiling for greater stability

Fig. 3 Automated processing of photographs of liquid-gas phase

separation collected onboard the ISS as part of the BCAT3

experiment. The colloid-rich liquid is the brighter phase; the

colloid-poor gas appears darker. a Original image before processing.

b Grayscale image after conversion in Camera Raw. c Cropped image

after uneven lighting background has been removed. d Image after

automated dust removal. e Final image, after further cropping and

final contrast enhancement
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Fig. 5a. The azimuthal average of C2D is the 1D

autocorrelation function,

C1DðRÞ � C2DðX0; Y0Þh ih¼ C2D R cos h;R sin hð Þh ih ð2Þ

where R � jR~j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

0 þ Y2
0

p
is the scalar offset magnitude,

and the brackets hih indicate an azimuthal average over all

angles h � arctan Y0=X0ð Þ. The characteristic length scale is

the local maximum at Rmax, which quantifies the average

separation between bright features in the image [3] and is

marked with a blue dot on the plot of C1D in Fig. 5b. Rmax

grows over time to magnitudes comparable to the length L

of the image. Using autocorrelation to locate the peak

position in real space, when Rmax is tens to hundreds pixels,

is far more accurate than using a fast Fourier transform to

locate the corresponding peak in reciprocal space at 2 p L/

Rmax pixels. This value quickly shrinks to just a few pixels,

requiring sub-pixel accuracy to locate the peak properly,

and is far more susceptible to noise effects than the more

robust real-space analysis.

4.1 Simple CPU-based MATLAB and C

implementations

In the most straightforward algorithm to calculate C2D,

each pixel in the image at position (x, y) is multiplied by

another pixel in the offset copy at (x - X0, y - Y0), as

shown in Fig. 4. Four loops are needed to cover all pixel

values at all offsets. Our simple MATLAB code loops over

X0 and Y0, then uses its native matrix operations to multiply

the image by a copy offset by (X0, Y0) and sum the result in

Eq. 1. We measure the time to calculate C1D(R) for the

image in Fig. 3e on an Intel Core2 Quad 2.4 GHz CPU for

all offsets up to R pixels, and plot these execution times

with red symbols in Fig. 6. We obtain the same perfor-

mance running the code from the internal MATLAB

command line, and by compiling the program first and

running it externally; MATLAB takes several hours to

calculate C1D(250). Expressing the same algorithm (Fig. 4)

using C requires four nested for() loops: two outer loops

(3,1) (4,1)(1,1) (2,1)

(3,2) (4,2)(1,2) (2,2)

(3,3) (4,3)(1,3) (2,3)

(3,4) (4,4)(1,4) (2,4)

(3,5) (4,5)(1,5) (2,5)

(3,6) (4,6)(1,6) (2,6)

(3,1) (4,1)(1,1) (2,1)

(3,2) (4,2)(1,2) (2,2)

(3,3) (4,3)(1,3) (2,3)

(3,4) (4,4)(1,4) (2,4)

(3,5) (4,5)(1,5) (2,5)

(3,6) (4,6)(1,6) (2,6)

(x2,y2)

(X0,Y0)

(1,2)

(0,0)

(-1,-2)

(x1,y1)

(c)(b)(a)

Fig. 4 Schematic of a simple algorithm to calculate the autocorre-

lation of an example image with dimensions of 4 9 6 pixels, at an

offset of (X0, Y0) = (? 1, ? 2). a The original image is shown in red;

the copy offset by (? 1, ? 2), in blue. The center of each image is

marked by a colored circle. The overlapping area multiplied in the

two images is shaded in purple. b In the blue image, the shaded

overlap region corresponds to 1 B x2 B 3 and 1 B y2 B 4; in the red

image, 2 B x1 B 4 and 3 B y1 B 6. All elements in these overlapping

regions are multiplied and summed, following Eq. 1. In the images

above, the pixel value at (x2, y2) = (1, 1) is multiplied by (x1, y1) =

(1 ? 1, 1 ? 2) = (2, 3); (x2, y2) = (1, 2) by (x1, y1) = (1 ? 1,

2 ? 2) = (2, 4); and so on. The total sum of all products in the

overlap region forms the numerator in Eq. 1; this value is stored in the

C2D(X0 = 1, Y0 = 2) matrix element shaded in green in c. By

symmetry, C2D(1, 2) = C2D(- 1, - 2), since both the original

image and the copy are identical
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over X0 and Y0, as before, and two inner loops over x and y

[3] in place of the MATLAB matrix multiplication. This

simple C implementation is about 30 times faster than

MATLAB, as shown with black symbols in Figs. 6 and 7.

4.2 Accelerated CPU-based C?? implementation

optimizing cache and using SIMD

Within the innermost loop, the simple C code multiplies

the values of pixels located at (x, y) and (x - X0, y - Y0);

in general, these two pixel values will reside in locations

far away from each other in main memory, and will rarely

be loaded into the CPU’s memory cache at the same time.

Direct multiplication thus requires two independent

accesses of main memory, a relatively slow process in the

absence of caching. We therefore reorder the loops to

access adjacent memory locations consecutively, allowing

the CPU to load the whole neighborhood of pixels into

the cache once. In our re-ordered code, the outermost

loop is over the Y0, as before. The second loop is over y;

the third, over X0. With this arrangement, the innermost

loop multiplies pixels with consecutive x coordinates;

these reside in adjacent memory locations that are

cached when the memory is accessed, significantly

speeding memory access. We also exploit the symmetry

C2D(X0, Y0) = C2D(- X0, - Y0) to calculate only half of

the Y0 values; these changes improve performance by a

factor of two.

Additional performance comes by carrying out the

multiplication in Eq. 1 in parallel, since each product is

independent of all others. Modern CPUs, such as Intel’s

Pentium and Core2, have specific circuitry devoted to

vector operations, where a single instruction is executed on

multiple data at the same time. SIMD instructions that

exploit this special hardware can be added automatically to
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standard C?? code by modern compilers, such as the Intel

Compiler 11 that we use. In a process called ‘‘autovec-

torization,’’ the compiler examines for() loops and adds

appropriate parallel SIMD instructions if performance will

improve as a result [5]. Without further changing the code,

but only recompiling with the proper options, we gain an

additional factor of two in performance as a result of the

SIMD instructions. Overall, this optimized C?? code

executes four times faster than the simple C implementa-

tion, and more than 100 times faster than the MATLAB

implementation, as shown in Figs. 6 and 7.

4.3 Parallel GPU-based CUDA C implementation

To further improve performance with greater parallelism,

we implement the autocorrelation using CUDA C and

execute the code on an NVIDIA Tesla C1060, which

contains a GT200 GPU [48]. The GT200 contains thirty

streaming multiprocessor (SM) units; each SM contains

eight streaming processors (SP) and 16 KB of high-speed

shared memory accessible to all SPs within the same SM.

Each of the 240 SPs is analogous to a simplified CPU core,

and interacts with the 4 GB of GPU main memory in the

form of generic read/write global memory, and cached

read-only texture memory for large 2D arrays. The CPU

exchanges data with global and texture memory over the

PCI express (PCIe) bus, but cannot access any data in

shared memory. Each SP executes one thread at a time;

each SM executes one block of threads at a time, with its

constituent threads exchanging data via shared memory

[48].

We first implement the simple MATLAB/C algorithm of

Fig. 4 using CUDA C, loading the image into texture

memory. Each GPU thread is assigned a particular (X0, Y0)

offset, and sums over x and y pixel coordinates with two

for() loops. This simple GPU implementation executes

about six times faster than the simple C approach, due to

the large number of processors and high memory band-

width inside the graphics card. However, this algorithm is

only slightly faster than the optimized C?? CPU code,

because it suffers from the same design limitation inherent

in the simple C implementation: multiplication of two

pixels at (x, y) and (x - X0, y - Y0) requires reading from

two distant locations in the GPU’s texture memory, which

on average will not be cached. As a result, every pass

through the inner loop in every thread incurs two memory-

access delays of up to hundreds of clock cycles each; SPs,

therefore, spend most of their time waiting for data to

arrive instead of calculating.

To rectify this problem, we create a new CUDA C

implementation which places pixels to be multiplied into

shared memory. Because shared memory is so much

smaller than global memory, we can only load a pair of

lines of image data into shared memory at one time. As a

result, we organize the calculation so that each thread

sums the contribution of a single line in the image to a

running total at each offset; thus, the final C2D(X0, Y0),

stored in global memory, accumulates the results of many

threads.

We use a two-dimensional grid of thread blocks, and a

one-dimensional line of threads in each block. Each thread

has three unique indices: block indices blockIdx.x and

blockIdx.y, and thread index threadIdx.x. Each

block loads two lines of the image into shared memory,

whose y-coordinates are given by y0 = blockIdx.x (line

9 in code Listing 1) and y1 = blockIdx.x ? bloc-

kIdx.y (line 10), as shown in Fig. 8a. Each thread con-

tains a single for() loop over the x coordinate of the

image lines; inside this loop, the products of the pixel

values at x and x - X0 are summed (lines 14–16). The

same value of the pixel at x is broadcast to all threads in the

block simultaneously, while no two threads access the

same memory address for the pixel at x - X0, because each

thread has a different X0 = threadIdx.x (line 15); this

strategy reduces shared-memory queues and memory-bank

conflicts, as shown in Fig. 8b. After performing this sum,

each thread adds its contribution from line y to the accu-

mulating sum collected for the offset at (X0, Y0), as shown

in Fig. 8c. We use an in-place atomic addition operation to

increment directly the value stored in the corresponding

element of the global memory array output_2DCorr

(line 18); this obviates the need to read the old value

from global memory to an SP, add the new result and

write it back.
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Together, these optimizations dramatically increase the

speed of the code: the execution time, even for the largest

offsets, is mere seconds; by contrast, MATLAB requires

hours, as shown in Fig. 6. Our optmized CUDA C imple-

mentation runs nearly 4,000 times faster than MATLAB,

130 times faster than simple C, and 30 times faster than the

SIMD-optimized C??, as shown in Fig. 9. All of these

codes yield the same results, up to small rounding errors,

and demonstrate a linear growth of Rmax(t) over time t [13],

as shown in Fig. 10.

5 Discussion

Our method to calculate autocorrelation rapidly joins a

family of related algorithms that tackle different aspects

of the general problem of correlation. An optimized

method to calculate a single matrix multiplication, com-

putationally equivalent to the autocorrelation at zero

offset, is presented as an example chapter in the NVIDIA

CUDA programming guide. There, large matrices are

broken into a number of smaller two-dimensional sub-

matrices, called tiles, which are loaded into shared

memory; a block of threads performs the multiplication of

two tiles, then these partial sums are added up for the

complete multiplication results (see, for example, exam-

ples and tutorials at [48]). These algorithms operate

efficiently because the tiles are two-dimensional and fit

entirely into shared memory; the actual multiplication,

which requires two nested loops in sequential code, is

carried out by a two-dimensional block of threads. The

size of the tiles is determined by the capabilities of the

GPU, specifically the number of threads in a block, and

the total shared memory size.

Our algorithm, however, is not merely a simple extension

of these principles. We have four nested loops, which

exceeds the total dimensions available to threads in a block.

That is, we cannot simply replace each loop with a thread

coordinate, and directly extend these well-known approa-

ches. Instead, we use the described line-by-line approach,

and replace the four loops with two grid coordinates, one

thread coordinate, and one loop inside each thread. This

architectural choice was motivated by the sizes of our data

and the capabilities of the current generation of NVIDIA

GPUs. Our images are roughly a thousand pixels on a side;

therefore, several lines will fit into the 16 kB of shared

memory available on the GT200. Moreover, we typically

examine offsets of a couple of hundred pixels, so that setting

the number of threads to equal twice the maximum offset

conveniently falls within the limitation of the GT200’s
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maximum of 512 threads per block. By calculating the sums

for multiple offsets in each thread block, we maximize the

usage of our lines of image data residing in shared memory.

In our particular situation, there is no obvious reason to use

square tiles: we would rapidly run out of shared memory for

any useful offset value, as the tile size grows as the square of

the offset value following our approach. Using a small tile in

shared memory, however, might be useful in the calculation

of particle image velocimetry (PIV) or optical flow, as these

procedures correlate smaller subregions of images, instead

of the entire large images in our case. Other types of cor-

relation on the GPU, for instance of a one-dimensional time

series, or the two-dimensional angular distribution of the

cosmic microwave background radiation [32], require

approaches that differ significantly from ours.

The performance of our CUDA C code exceeds that of

the simple C code, executed on a recent Intel Core2 Quad

CPU, by more than two orders of magnitude. This per-

formance increase is relatively rare among CUDA appli-

cations involving real experimental data [16]; more typical

(X0,Y0)

(1,2) (2,2)(0,2)

(0,0)

(-1,2)(-2,2)

(3,4) (4,4)(1,4) (2,4)

(3,4) (4,4)(1,4) (2,4)

(3,1) (4,1)(1,1) (2,1)

(3,2) (4,2)(1,2) (2,2)

(3,3) (4,3)(1,3) (2,3)

(3,5) (4,5)(1,5) (2,5)

(3,6) (4,6)(1,6) (2,6)

(3,2) (4,2)(1,2) (2,2)

(3,2) (4,2)(1,2) 0000 (2,2)

(3,4) (4,4)(1,4) (2,4)

(3,2) (4,2)(1,2) 0000 (2,2)

(3,4) (4,4)(1,4) (2,4)

(3,2) (4,2)(1,2) 0000 (2,2)

(3,4) (4,4)(1,4) (2,4)

(3,2) (4,2)(1,2) 0000 (2,2)

(3,4) (4,4)(1,4) (2,4)

(3,2) (4,2)(1,2) 0000 (2,2)

(3,1) (4,1)(1,1) (2,1)

(3,3) (4,3)(1,3) (2,3)

(3,4) (4,4)(1,4) (2,4)

(3,5) (4,5)(1,5) (2,5)

(3,6) (4,6)(1,6) (2,6)

(x2,y2)

(x1,y1)

(c)(b)(a)

T
hr

ea
d 

1

+
T

hr
ea

d 
1 

re
su

lt

+
T

hr
ea

d 
2 

re
su

lt

+
T

hr
ea

d 
3 

re
su

lt

+
T

hr
ea

d 
4 

re
su

lt

+
T

hr
ea

d 
5 

re
su

lt

T
hr

ea
d 

2
T

hr
ea

d 
3

T
hr

ea
d 

4
T

hr
ea

d 
5

Fig. 8 Schematic of a CUDA

algorithm using shared memory

to calculate the autocorrelation

of the image in Fig. 4a for

- 2 \ X0 \ 2 and Y0 = 2.

a The CUDA algorithm loads

into shared memory only one

line from the original image at

y1 = 2, shown shaded in red; and

one line from the offset copy at

y2 = y1 ? Y0 = 4, shown shaded

in blue. b Each thread multiples

the same two lines in shared

memory, but with a different

offset equal to its index, X0

= threadIdx.x.

For example, thread 1 calculates

the sum of the products

I(1, 4) 9 0 ? I(2, 4)

9 0 ? I(3, 4)

9 I(1, 2) ? I(4, 4) 9 I(2, 2), as

shown in the top line. c the

results of the partial sums

calculated by each thread are

added to the accumulating

values for C2D(X0, Y0) in global

memory
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CPU-based MATLAB/C/C?? (blue circles) codes are the same as

from the GPU-based CUDA C implementation (red line), up to small

rounding differences. Both sets of data conform to a best-fit black line

that passes through the origin, demonstrating a linear growth of the

sample’s characteristic length scale, a hallmark of a type of phase

separation known as late-stage spinodal decomposition [13].
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maximum speedups range from 30 to 60 times [19, 26, 34,

42]. Several factors limit GPU-based analysis of real data.

Data transfers from CPU host memory to the GPU must

cross the relatively slow PCIe bus. Moreover, data size or

format is often ill-suited for the GPU memory organiza-

tion; instead, data must be partitioned into pieces suitable

for analysis, adding overhead. By contrast, simulations and

numerical calculations remove these constraints; they

generally transport little input data across the PCIe bus, and

they can format their generated data (e.g. random numbers)

optimally. As a result, the best CUDA simulation speedups

are between 2 to 3 orders of magnitude faster than imple-

mentations on the older Pentium architecture [1, 18, 45];

however, top speedups of 100 times relative to the more

recent Core2 CPU are more common [4, 15, 41]. Simula-

tions also benefit from community expertise in program-

ming and algorithm design; with few exceptions [1], papers

describing CUDA simulation speedups of two or more

orders of magnitude have corresponding authors in com-

puter engineering departments [4, 15, 18, 41, 45]. By

contrast, experimentalists have on average far less pro-

gramming experience. Many experimental papers achiev-

ing the best CUDA speedups are collaborations involving

co-authors in computing-related departments [16, 26, 34,

42], with few exceptions [19].

Is CUDA practical for scientists and engineers who do

not specialize in programming? This dilemma reflects the

tradeoff between performance and development effort. In

general, solutions that require the least programming tend

to execute slowest. MATLAB programs are quite easy to

write, but their performance is heavily constrained by the

significant inefficiencies and overheads inherent in the

MATLAB application, which cannot be removed by the

programmer. For R &100, our CUDA C code executes

completely in the same time that MATLAB merely opens

the image and loads it into memory, with no calculation

of Eq. 1 at all. No matter how fast that calculation

runs—even with specialized toolboxes, multiprocessor

support, or a cluster of machines—the MATLAB code

will always trail by orders of magnitude in this particular

application.

Using C/C?? requires somewhat greater development

effort, but boosts performance significantly. Application

overheads are minimized, and optimizing compilers and

libraries can automatically utilize SIMD instructions

without much additional programmer effort [5]. A major

motivation for our inclusion of the autovectorized C??

code was to demonstrate that, by only switching the order

of a few loops and recompiling with different options,

performance can be improved by half an order of magni-

tude. Undoubtedly, even greater gains could be achieved

with explicitly adding CPU assembler or intrinsics, but

require a substantially greater amount of skill and effort.

In between CPU-based C?? and a full CUDA C

implementation are ordinary C libraries available for some

common operations that execute on the GPU, including

matrix multiplication (CuBLAS), fast Fourier transforms

(CuFFT) and a number of image processing functions

(NPP) [48]. The inner workings of these functions on the

GPU are transparent to the programmer, who only interacts

with the standard C/C?? interface; some scientific appli-

cations leverage GPGPU capabilities in this way [38].

However, because only some operations in an otherwise

serial program can execute on the GPU, total speedups

exceeding a factor of ten are rare with this approach.

To achieve speedups greater than an order of magnitude,

some specific programming of the GPU’s hardware is

usually required; this is a major difference between pro-

gramming the GPU and the CPU. In general, MATLAB

and C/C?? do not require, or even allow, direct access to

the CPU hardware and memory caches. Indeed, this access

is usually not necessary: the x86 CPU architecture is

mature, and optimizing compilers will typically generate

faster code than that tuned by hand in most cases [5]. By

contrast, the GPU architecture is still evolving. Not only

are the compilers at an earlier stage of development, but the

optimizations of parallel algorithms also require the inter-

play of many more factors, many based on the specifics of

the application that cannot simply be guessed by a com-

piler. Consequently, the GPU programmer must exercise a

greater degree of control over the hardware to maximize

performance. The earliest GPGPU applications required

programming the graphics pipeline explicitly [30] and

manually inserting processor-specific assembler instruc-

tions. In particular situations, this approach can still lead to

impressive benefits today on GPUs [42] and the closely-

related Cell processor inside the Sony Playstation3 [26,

46], but requires tour-de-force programming feats. Fortu-

nately, CUDA opens up the GPU architecture for general

computation in a way that requires no previous knowledge

of graphics or assembler. CUDA programming does

require a reasonable foundation in C/C??, though, and a

willingness to redesign algorithms to take advantage of

specific features of current GPU hardware, particularly the

various sizes and speeds of the different memory buffers.

Nevertheless, our work uses a few dozen lines of CUDA C

code to achieve thousands-fold performance increases rel-

ative to MATLAB, demonstrating the practicality of

CUDA in a real-world science application.

In general, however, such large performance increases

may not always be achievable. Our algorithm’s speed is

due to several factors that make it a nearly-ideal candidate

for CUDA implementation. We perform a large number of

calculations on a moderately-sized data set, so that the

GPU spends far more time performing numerical opera-

tions than transferring data; this is a general principle
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which all of the most efficient algorithms use. We use the

line-by-line approach to maximize the usage of shared

memory: different offsets are all calculated within the same

thread block, maximizing the amount of computation per-

formed on data already in shared memory; in general,

maximizing shared memory usage may be the single most

important factor in achieving high CUDA performance.

There is a cost in flexibility to this specific approach,

however, as offsets in our algorithm are limited by the

maximum number of threads that can occur in a single

block, 512 on the current GT200 hardware [48]. This size

happens to be convenient for our specific application,

where the image size is limited by the resolution of the

CCD chip in the cameras on-board the ISS; correlations

greater than a third of the image width suffer from poor

statistics, so we do not need to measure offsets greater than

about 250 pixels. Were our images an order of magnitude

larger or smaller, we would have opted for a different

approach. Finally, our algorithm repeatedly performs very

simple operations, essentially only multiplication and

addition, so that the GPU can be very effectively deployed;

had our algorithm required more complex functions, or

even a large number of divisions, the speedups would not

have been so large relative to CPU-based code. Conse-

quently, speedups exceeding two orders of magnitude may

not be achievable in many applications, but most well-

implemented CUDA algorithms can perform faster than

CPU-based code by more than a factor of ten.

Tantalizingly, increasing performance by several orders

of magnitude may enable qualitatively new applications

in science and technology. While researchers often focus

on minimizing development time, writing the simplest

piece of software that will ‘‘get the job done’’ regardless

of performance, the dramatic speedups offered by GPGPU

may fundamentally change what that ‘‘job’’ is. Dramati-

cally faster analysis can enable commensurate increases in

the amount of data collected, particularly in fields like

radio astronomy [16] where data collection is limited by

processing rates downstream; observation of structures in

space with increased resolution facilitates more-detailed

understanding of how the universe formed. On a practical

level, a patient often waits idly in an MRI machine during

the reconstruction of a scan to check its accuracy; faster

reconstruction yields more time to collect higher-resolu-

tion data [42] that may facilitate earlier detection of

diseases like cancer. For our code, the frame rate obvi-

ously depends on image size; for standard video-sized

images of 640 9 480, calculation of the autocorrelation

of offsets up to 16 pixels will exceed real-time video rates

of 30 frames per second. Beyond our particular applica-

tion, our code could find real-time usage in stabilizing or

tracking full-frame displacements in live-motion video,

for example, bringing data analysis into the interactive

real-time realm. In this regime, fully-analyzed results can

be obtained fast enough to influence the data collection

process itself [23], and existing applications include the

real-time tracking of moving targets like faces [21].

Clearly, CUDA applications are beginning to have a

significant impact in several key areas of science and

engineering, and will undoubtedly continue to do so in the

future.
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