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Abstract

Oscillatory rheology, at both small and large (LAOS) amplitudes, was performed to measure the dynamic response of a soft solid,
formed on dispersing colloids into a thermotropic nematic liquid crystal at volume fractions of f . 18%. Due to weak homeotropic
anchoring of nematogens at colloid surfaces, a Saturn-ring defect line, known as a “disclination,” encircles each particle and entangles
with neighboring Saturn-ring disclinations [Wood et al., Science 334, 79–83 (2011)]. We present the first experimental investigation of
the yielding behavior of the resulting gel to reveal the underpinning physics. Results reveal that the frequency response of the composite
is independent of volume fraction f, an indication that the dispersed phase simply increases the density of disclinations spanning the
composite without further effect. Beyond the linear viscoelastic regime (LVR), LAOS experiments indicate the composite is an elasto-
plastic fluid exhibiting both strain-hardening and shear-thinning behaviors with Chebyshev coefficients e3 . 0 and ν3 , 0, respectively.
We deduce that the disclination number density nd is constant until the strain amplitude is sufficient to break disclinations leading to
shear-thinning behavior beyond the LVR. A simple theory is introduced revealing that the Ericksen number Er determines the onset of
flow, when Er . 1, generating a strain-hardening response since Frank elasticity resists reorientation of molecular alignment within con-
fined nematic domains. Above a critical frequency ωc, the loss modulus G00 increases slowly due to enhanced viscosity within confined
nematic domains, G00 / ω1=2 [Larson, R. G., The Structure and Rheology of Complex Fluids (Oxford University, 1999), p. 463].
Observation of this behavior in a small-molecule nematic solvent provides insights into the physics of flow behavior in other, more
complex, defect-mediated liquid crystalline structures exhibiting similar properties [Colby, Europhys. Lett. 54, 269–274 (2001); Sahoo
and Dhara, Liq. Cryst. 44, 1582–1591 (2017); and Romo-Uribe, Polym. Adv. Technol. 32, 651–662 (2021)]. © 2021 The Society of
Rheology. https://doi.org/10.1122/8.0000243

I. INTRODUCTION

Physical stability, preventing sedimentation or creaming,
is key to the shelf-life of formulations and composites.
Stability can be assured if the storage modulus G0 describing
elasticity is higher than the loss modulus G00 describing the
viscous properties of a fluid to timescales longer than a year,
which is equivalent to applied frequencies of ω , 10�7 rad/s.
Nonequilibrium structures such as gels and glasses are char-
acterized by yield stress that allows dispersed colloids to
remain distributed homogeneously over a long timescale,
ideally years. The microstructure can rearrange if the interac-
tion energy between neighboring particles is close to the
thermal energy, U � kBT . This is common for colloid-
polymer mixtures, typically used in agrochemical and ink
formulations, and renders them sensitive to phase separation
[1]. Over 20 years ago, Poulin et al. dispersed colloids
within a thermotropic nematic liquid crystal and found that
the interaction energy U . 100kBT overcomes Brownian
motion [2] leading to the formation of colloid chains and
aggregates. A decade ago, a novel defect-stabilized gel was
discovered with G0 . 103 Pa, when colloids are mixed
directly into a nematic phase at volume fractions of
f . 18% [3]. For the first time, we explore, systematically,

the yielding behavior of these composites using small-
amplitude oscillatory strain (SAOS) and large-amplitude
oscillatory strain (LAOS) measurements using a strain-
controlled rheometer, and we present a simple theoretical
model to explain the behavior.

Frequency sweep measurements provide vital insights into
the underlying physics determining gel formation, for
example, the cross-link density in polymeric gels [4] and
rubbers [5] and the strength of the interaction between the
interface and the matrix in dispersions [6]. For strain-
controlled deformation, the imposed strain takes the form
γ(t) ¼ γ0 sinωt which, consequently, imposes the strain rate
_γ ¼ γ0ω cosωt, and the resulting oscillatory shear stress
σ ¼ G*γ can be recorded by a rheometer. The complex shear
modulus G* ¼ G0 þ iG00 with the storage G0 and loss G00

moduli as its real and imaginary parts. In the linear viscoelas-
tic regime (LVR), G0 and G00 describe the strength of the
elastic (solidlike) and viscous (liquidlike) responses of the
sample, respectively [7]. When a dispersed phase provides
mechanical reinforcement to the surrounding matrix, it is
considered an “active filler” resulting in an increase in G0

with volume fraction f [8]. The converse occurs in the case
of an inactive or “passive” filler that has little affinity for the
environment it is in. Within a nematic phase, rheology mea-
surements have shown G0 � f2:5, which suggests that col-
loids may act as “active” fillers [3]. For polymeric systems, it
is known that the number density of gel-strengthening agents
(e.g., the cross-link density [4]) increases the critical
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frequency ωc at which the gel yields, where G0 ¼ G00.
Motivated to explore whether the volume fraction of colloids
shifts ωc, we measured the frequency dependence across the
range of 20% � f% � 45% of colloids dispersed in a
nematic liquid crystal.

More in-depth insights into yielding behavior can be
revealed through LAOS measurements, having been applied
to a wide variety of soft matter systems including polymer
solutions [9], drilling fluids [10], dense suspensions [11],
and wormlike micelles [12]. When the oscillatory strain
amplitude is large enough to disrupt the structure of the
samples, the resulting stress is no longer purely sinusoidal
but includes higher harmonic frequencies. We present the
first LAOS measurements and analysis on colloidal disper-
sions in nematic liquid crystals.

Before considering the physics of the composite, we
must first consider the flow behavior of a pure nematic
liquid crystal, which is itself a complex fluid. A thermo-
tropic nematic liquid crystal is composed of rodlike mole-
cules, nematogens, preferring to orient along a direction
known as the “director,” n(r) [13]. A pure nematic phase
has no intrinsic positional order, only orientational order,
and appears liquidlike with G00 � G0 at all frequencies. At
the surface, nematogens are held with an anchoring energy
W and are unable to align with the bulk director [13]. The
resistance of the local director to deformation is dependent
on the type of distortion, e.g., splay, twist, and bend, and
is described by the Frank elastic constants, k1, k2, and k3,
respectively. The orientation of the director with respect to
the direction of flow affects the measured viscous response
(described by the Miesowicz viscosities, η1, η2, and η3)
[14] and generates an elastic response such that the storage
modulus G0 is slightly elevated (although G0 , G00) close
to the resonance frequency ωr � 18:65 k1

η1h2
, where h is the

smallest dimension of the geometry [15–17]. The reso-
nance frequency ωr � 0:005 rad/s is toward the lower limit
available for practical rheology experiments, calculated
using typical values for a thermotropic nematic material
(5CB), having k1 ¼ 5:5 pN and η1 ¼ 88 mPa s, measured
between a typical rheometer geometry gap of h ¼ 0:5 mm.
The full behavior is explained by the universal theoretical
description provided by Rey et al., which is valid for a
broad range of nematic materials including those that are
flow-aligning and tumbling, polymeric, and lyotropic [17]
and confirms that the viscous properties dominate, such that
G00 . G0, while G00 � ω for all frequencies. The director
of a nematic liquid crystal rotates in phase with the
shear rate for low frequencies (ω , ωr) generating
tan δ ¼ G00=G0 � ω�1, classic behavior for a viscous fluid
in the terminal regime. At frequencies above the resonance
frequency (ω . ωr), the director rotates in phase with the
shear strain so that tanδ � ω1=2 [18,19]. Although the flow
behavior in the presence of colloids has not been modelled
to date, Burghardt warned in 1990 that “in the presence of
monodomains, the estimated time scale for director relaxa-
tion becomes short enough that distortional elastic effects
may contribute significantly to the macroscopically
observed viscoelastic response” [15].

When a spherical colloid is dispersed in a nematic liquid
crystal, nematogens can lie parallel or perpendicular
(homeotropic) to the colloid surface [2,13,20]. In general
terms, the type of defect induced by colloids in the nematic
liquid crystal depends upon the strength of generalized
elasticity K of the nematic phase, the particle radius r, and
strength of anchoring W of mesogens at the surface of the
colloids [2,13]. Weak homeotropic anchoring with Wr

K � 1
induces a quadrupolar director field, represented in two
dimensions in Fig. 1(a), which generates a “Saturn-ring”
defect-line, or “disclination” that encircles the colloid, as
shown in Fig. 1(b), at an orientation normal to the local
director orientation. This type of disclination has a topolog-
ical charge of s ¼ � 1

2 and, typically, a core radius
rc � 5 nm for a thermotropic nematic liquid crystal [21].
Within the quadrupolar director field, colloids experience
highly anisotropic interactions, jUj � 103kBT [22], with
both attractive and repulsive components depending on the
relative orientation of neighboring colloids and the far-field
director [2,23–25]. Anisotropic interactions result in the
formation of clusters [22] and the deep potential suppresses
Brownian motion. In close proximity, “Saturn-ring” discli-
nations can entangle with a range of possible topological
configurations of which the most common, the “figure of
eight” disclination [shown in Fig. 1(c)], provides a center
to center particle separation of d0 ¼ 1:1D, where D is the
particle diameter [26]. Each disclination carries a line
tension T [21], where

T ¼ πKs2ln
L

rc
þ πσcr

2
c : (1)

The energy density, σc, of the disclination is often approxi-
mated as σc � K=r2c , where rc is the core radius [21].
The linear dimension, L, describes the region of director
deformation around the disclination and typically L � 10 μm
while rc ¼ 5 nm. For a typical thermotropic liquid crystal,
T � 100 pN for an s ¼ � 1

2 disclination [21]. Above a critical
volume fraction fc, Saturn-ring disclinations connect and
percolate throughout a composite, thus providing rigidity, as
revealed through computer simulation (fc ¼ 15%) and mea-
sured through rheology measurements (fc ¼ 18%) [3].
The storage modulus G0 � ndT=A, where nd is the number of
disclinations spanning a slab of the composite of area A.
Equivalently, G0 � T=d2net where dnet is the average distance
between disclinations spanning the composite [27]. Spaces
within the colloidal network are filled with a pure nematic
solvent of typical lengthscale a, as illustrated in Fig. 1(e) and
by Kumar et al. [28]. We present experimental data from
microscopy and SAOS and LAOS rheology measurements to
probe the structure and dynamic response of dispersions in a
nematic solvent at f . 20%. A new theoretical description
combines existing physical principles, including the total line
tension from disclinations and the enhanced viscosity of
nematic phases in confinement, to describe the flow behavior
of this unusual class of composite.
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II. MATERIALS AND METHODS

A. Materials

Poly(methyl methacrylate) (PMMA) particles sterically sta-
bilized by chemically grafted poly(12-hydroxy-stearic acid)
(PHSA) molecules were prepared and dispersed in dodecane
[30]. Particles were labeled using a fluorescent monomer
(7-nitrobenzo-2-oxa-1,3-diazol-methyl-methacrylate), which
was chemically attached to the PMMA [31]. The particle
diameter, D ¼ 1:17+ 0:12 μm, was determined on dilution
using dynamic light scattering. The solvent was replaced
through 10 cycles of centrifuging, discarding the solvent
and redispersing in hexane. Finally, the sediment was dried
thoroughly at 50 �C for .3 days under vacuum to create a
dry powder of particles of density ρ p ¼ 1:18 g/cm3, litera-
ture value.

The thermotropic nematic liquid crystal, 4-cyano-4’
pentylbiphenyl (5CB), was purchased from Kingston
Chemicals (UK) and used as received. It is reported to
change from a crystalline to nematic state at 22:8 �C and to
an isotropic state at 35:4 �C [32]. At 25 �C, the splay, twist,
and bend elastic constants are 5:5, 4:5, and 9:9 pN, respec-
tively [33]. The Miesowicz viscosities for 5CB are reported
as η1 ¼ 88 mPa s, η2 ¼ 94 mPa s, and η3 ¼ 15 mPa s at
31 �C [34] and the rotational viscosity γr ¼ 81 mPa s at
24 �C [35].

To prepare dispersions, the dry PMMA-PHSA powder
was added to 5CB (density ρlc � 1 g/cm3) at appropriate
weight fraction and sonicated for 30 min at �37 �C before

being stirred vigorously by hand using a spatula at room
temperature for 5 min before use. A range of volume frac-
tions, 20% � f � 45%, were prepared. It is known that
micrometer-scale PMMA-PHSA colloids generate weak
homeotropic anchoring of nematogens at the surface leading
to a quadrupolar director field, necessary for Saturn-ring dis-
clinations to form [3].

Experiments were not performed above f ¼ 45% since
samples with a higher volume fraction had a crumbly
texture and were difficult to handle. The entangled
“figure of eight” structure surrounding two colloids has
been predicted to hold colloids at an interparticle separation
of d0 ¼ 1:1D [26]. Presuming that particles could be
arranged into a random close packing structure with
fmax ¼ 64%, we might expect that the limiting volume frac-
tion to be flimit � 0:64=1:13 ¼ 48%. The theoretical limit
of flimit ¼ 48% is very close to the limit discovered for a
practical experiment.

B. Methods

1. Microscopy

In order to image the director field surrounding a single
colloid dispersed in 5CB, two glass cover slides were spin-
coated with 1 wt. % poly(vinyl alcohol) solution dissolved in
ethanol, allowed to dry overnight at 45 �C, and rubbed with
velvet in one direction to achieve uniform and planar align-
ments of the director on the glass. Spacers were created using

FIG. 1. (a) The director field, as seen in two dimensions, around a particle generating weak homeotropic anchoring [reprinted Fig. 1(b) with permission from
Alama, S., L. Bronsard, and X. Lamy, Phys. Rev. E 93, 012705 (2016). Copyright 2016, American Physical Society], labelled to indicate the colloid diameter
D and disclination radius rc. (b) In three dimensions, a “Saturn-ring” disclination encircles the waist of each colloid [reprinted Fig. 1(a) with permission from
Araki, T., and H. Tanaka, Phys. Rev. Lett. 97, 127801 (2006). Copyright 2006, American Physical Society], and (c) neighboring Saturn-ring disclinations can
entangle to form a quasi-stable configuration, here shown in the “figure of eight” configuration [reprinted Fig. 1(b) with permission from Araki, T., and
H. Tanaka, Phys. Rev. Lett. 97, 127801 (2006). Copyright 2006, American Physical Society], with colloid centers separated by a distance d0. (d) For high
volume fractions f . 18%, disclinations wrap around particles forming a network to generate continuous disclination routes across the sample [reprinted with
permission from Wood et al., Science 334, 79–83 (2011). Copyright 2011, AAAS] to leave (e) pure nematic regions of lengthscale a within the network.
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10 μm diameter glass spheres dispersed in ultraviolet curing
glue to secure two opposing glass slides. A dilute dispersion
(f ¼ 0:1%) of PMMA-PHSA particles in 5CB was drawn
into the home-made cell through capillary action. To perform
microscopy on concentrated dispersions (f . 20%), a
sample was loaded onto an untreated glass slide and enclosed
by a second untreated coverslide. An inverted microscope
(Axio Observer, Carl Zeiss Microimaging, Inc.) equipped
with an oil-immersion �63 magnification objective lens was
used to image the sample. In the confocal mode, a Zeiss
LSM 700 laser scanning microscope was used with the
488 nm laser line selected to excite the fluorescent signal
from the particles, collected in reflection. In the polarized
optical microscopy (POM) mode, a polarizer orthogonal to
laser light polarization was used to image the transmission of
light through a birefringent sample.

2. Rheology

Dispersions were stirred by hand prior to measurement in
the rheometer. For ease of use, the majority of rheology mea-
surements were performed between sand-blasted steel surfa-
ces of a 40 mm parallel-plate geometry at a gap of
h ¼ 500+ 1 μm on a strain-controlled rheometer, ARES
G-2 (TA Instruments). Molecular dynamics simulations indi-
cate that 5CB prefers a random planar alignment on atomi-
cally smooth iron surfaces [36]. Random alignment will
generate discontinuities between regions of uniform align-
ment, some of which will nucleate s ¼ � 1

2 disclinations.
Confocal imaging (not shown) reveals that a sandblasted
steel surface has asperities of the order of 10 μm that is suffi-
cient for the gel to fill the valleys to prevent surface slip and
allow s ¼ � 1

2 disclinations generated by particles to connect
with those generated by the sand-blasted steel surface. The
geometry was preheated and maintained at 25 �C for all mea-
surements. A preshear of 0:1=s was applied for up to 30 s
before a measurement protocol proceeded. For comparison,
some measurements were performed using a 60 mm 2�

colloid-coated cone-plate geometry, with a truncation gap of
52 μm, on a stress-controlled rheometer, AR2000 (TA
Instruments). In this case, the smooth steel surfaces of the
geometry were pretreated by spin-coating f ¼ 30%
PMMA-PHSA dispersion in hexane onto the geometry surfa-
ces, sintering, and then cooling to create a rough surface pro-
moting a homeotropic alignment from each colloid sintered
onto the geometry. The following rheological protocols were
applied.

3. Small amplitude oscillatory shear

Strain sweep tests were performed for all volume fractions
20% , f , 45% for strain amplitudes ranging from
0:01% , γ0 , 10% at a fixed frequency of ω ¼ 2π rad/s.
Measurements were performed on the ARES G-2 strain-
controlled and the AR2000 stress-controlled rheometer. At
least six cycles were measured for each data point. Frequency
sweep tests were performed in the frequency range of
2� 10�3 , ω , 300 rad/s on the ARES G-2 rheometer for
each volume fraction and for 0:1% , γ0 , 4%. A single

f ¼ 30% sample was tested to very low frequencies within
the range of 4� 10�4 to 4� 10�3 rad/s.

4. Large amplitude oscillatory shear

Only the strain-controlled ARES G-2 rheometer was used
for LAOS measurements. Using the correlation data acquisi-
tion mode in TRIOSv5 software (TA Instruments), the raw
strain and stress was collected during six full cycles at 2π
rad/s. The stress response can be represented by Fourier
series in elastic and viscous forms [9],

σ(t, ω, γ0) ¼ γ0
X
n¼odd

[G0
n(ω, γ0)sin(nωt)

þ G00
n(ω, γ0)cos(nωt)], (2)

σ(t, ω, γ0) ¼ _γ0
X
n¼odd

[η0n(ω, γ0)sin(nωt)

þ η00n(ω, γ0)cos(nωt)]: (3)

Cho et al. generalized the linear viscoelastic theory for
LAOS proposing that the general stress could be decomposed
into an elastic stress response, σ 0(t), and a viscous stress
response σ 00(t), such that σ(t) ¼ σ 0(t)þ σ 00(t) [37]. Using
these definitions, Ewoldt et al. proposed a new framework
with Eqs. (2) and (3) rewritten as

σ 0 ¼ γ0
X
n¼odd

G0
n(ω, γ0)sin(nωt), (4)

σ 00 ¼ _γ0
X
n¼odd

G00
n(ω, γ0)cos(nωt), (5)

where the nth order Chebyshev polynomials of the first kind,

Tn γ
γ0

� �
and Tn _γ

_γ0

� �
, can be fitted to plots of the elastic and

viscous stresses as a function of strain (γ) and strain rate ( _γ),

σ 0 ¼ γ0
X
n¼odd

en(ω, γ0)Tn
γ

γ0

� �
, (6)

σ 00 ¼ _γ0
X
n¼odd

νn(ω, _γ0)Tn
_γ
_γ0

� �
: (7)

For odd values of n, the elastic Chebyshev coefficient is
given by en ¼ G0

n(�1)(n�1)=2 and the viscous Chebyshev
coefficient is given by νn ¼ G00

n
ω . Six categories of material vis-

coelastic behavior have been classified: strain-softening
(e3 , 0), linear elastic (e3 ¼ 0), and strain-stiffening
(e3 . 0), while the viscous behavior is described as shear-
thinning (ν3 , 0), linear viscous (ν3 ¼ 0) and shear thicken-
ing (ν3 . 0). The FT-rheology package within TRIOS
enabled direct extraction of Chebyshev polynomial coeffi-
cients (en, νn) for the selected harmonic number n. To create
elastic and viscous Lissajous–Bowditch curves, data were
acquired in the transient mode for fixed angular frequencies
of ω ¼ 0:1, 1, and 10 rad/s and the amplitude of strain
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γ0 ¼ 0:1%, 1%, 10%, 100%, and 1000% for a sample of
f ¼ 30%. These Pipkin maps provide a useful way to orga-
nize and classify the behavior of viscoelastic and thixotropic
materials. Prior to measurements on colloid-nematic disper-
sions, a 0:48wt. % solution of xanthan gum in water was
studied to verify the methodology reproducing the behavior
observed by Carmona et al. [9] and Ewoldt et al. [10].

III. RESULTS AND DISCUSSION

A. Optical microscopy

A confocal microscopy image of dense (f � 50%) disper-
sion in dodecane shows that particles do not aggregate in an
isotropic solvent, as shown in Fig. 2(a). In Fig. 2(b), a single
particle imaged using polarized optical microsopy reveals
quadrupolar distortion of the director field, indicating weak
homeotropic anchoring of the director at the surface of the
PMMA-PHSA particles [38]. A dispersion of f ¼ 33% in
5CB, imaged through confocal microscopy reveals colloid
aggregation and nematic (dark) domains of irregular shape
and size of a � 10 μm, as shown in Fig. 2(c). A composite
of f ¼ 30%, flattened between two untreated glass cover
slips with a gap of �5 μm and imaged between crossed
polarizers, is shown in Fig. 2(d). The nematic liquid crystal

medium is birefringent appearing in various shades of gray,
brightest (white) when the director is at 45�, and darkest
(black) at 0� to the polarizers. Isotropic particles appear as
black circles and disclinations (having an isotropic core)
appear as black lines connecting neighboring particles. This
provides the first direct experimental evidence of the network
of disclinations that bind colloids, previously predicted
through computer simulation, Fig. 1(b) [3], formed when a
concentrated colloid is mixed within the nematic phase [39].

Typical oscillatory strain sweep measurements, as shown
in Fig. 3(a), indicate that a f ¼ 28% composite is highly
elastic with G0 . G00 in the linear viscoelastic region (LVR).
The magnitude of the moduli are both � 103 Pa, remarkably,
five orders higher than that for the pure liquid crystal,
G00 � 10�2Pa and a concentrated (f ¼ 39%) dispersion in
the isotropic solvent dodecane G00 � 10�2 Pa, also shown
in Fig. 3(a).

Both cone-plate and plate-plate geometries generate the
same values of γd and γc, as shown in Fig. 3(a). The magni-
tude of the moduli appear different, G0 � 400 Pa for
2r ¼ 60 mm cone-plate and G0 � 2000 Pa for 2r ¼ 40 mm.
Recalling that G0 ¼ T=d2net, we find that dnet is around twice
as large for the cone-plate geometry compared to the plate-
plate geometry. The similarity of disclination density

FIG. 2. (a) A confocal microscopy image of the monodisperse PMMA-PHSA in dodecane. (b) A polarized optical microscopy (POM) photograph of a single
colloid dispersed in 5CB with the far-field director aligned with the analyzer indicating quadrupolar distortion of the director at the particle surface. (c) A confo-
cal microscopy image of f ¼ 33% dispersion in 5CB. (d) A POM image of dispersion of f ¼ 30% particles dispersed in 5CB, compressed to a sample thick-
ness of �5 μm. Black lines connecting black circles provide direct evidence of disclinations linking neighboring particles (both are isotropic within the
birefringent background). All scale bars equal 6 μm in length. For POM images, orientation of the orthogonal polarizer (P) and the analyzer (A) are shown.
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indicates that the disclinations bind well to both sand-blasted
steel parallel plates and colloid-coated cone-plate geometries.
Subsequent measurements for frequency sweep and LAOS
measurements were performed with sand-blasted plates since
they are more convenient to prepare and clean.

The LVR extends until a critical strain γd � 0:1%, which
is likely to be associated with the longer lengths of disclina-
tion within the composite, having a lengthscale of
rc=γd � 5 μm. Shorter “figure of eight” disclinations of
length d0 are likely to yield at slightly larger strain ampli-
tudes γ0 � rc=d0 � 0:4%. Within the LVR, there is evi-
dence of strain-hardening since the storage modulus,
normalized by its maximum value, G0=G0

0 increases before
reaching the maximum at γd , as shown in the inset of
Fig. 3(b) for f ¼ 25% and f ¼ 30%. This suggests a resist-
ance to deformation within the disclination bound structure.
Since G0

LVR � ndT=A, we deduce that the number of discli-
nations nd spanning the composite decreases as the strain is
increased beyond the LVR.

The direction of the amplitude sweep, as shown in
Fig. 3(b), collected for f ¼ 25% composites on a cone-plate
geometry for “up” and “down” sweeps, does not appear to
affect the value of γc that has a wide range of values between
0:2% , γc , 5% and does not appear dependent on volume

fraction, as indicated in Fig. 3(c). Visual observations under
confocal microscopy, as shown in Fig. 2(c), reveal that
the microstructure is highly heterogeneous. Measurements
of γc are highly scattered since the structure yields first
in the weakest regions of the network and then flows as
clusters until the clusters break-up at high shear rates.
The magnitude of the moduli takes around 1 min to recover
[3], which is beyond the timescale of this experiment
(�10s per measurement) and therefore the measured
G0

LVR(up) . G0
LVR(down).

As observed by Wood et al. [3], there is a rapid increase
in the value of G0 for f 	 18%, consistent with the func-
tional form of G0

(LVR)(f) � fm, with m � 2, see Fig. 3(d).
Here, G0

LVR and G00
LVR values were calculated by averaging

the value of the modulus for γ0 , γd. Our measurements
reveal that the loss modulus shows similar dependence,
G00 � f2, indicating that G00 and G0 are intimately linked.
If the number density of disclinations was determined
solely by the particle diameter, we would expect
G0 � T=d2net � 100 pN=1μm2 � 100 Pa, but our experimen-
tal data show G0 ! 4000 Pa, which suggests that the discli-
nation density dnet � is close to one-sixth of the particle
diameter. It is known that complex knots and braids can be
formed by disclinations weaving through a colloid in a

FIG. 3. (a) The storage, G’, and loss, G”, moduli for oscillatory strain sweep measurements, at ω ¼ 2π rad/s, for f ¼ 25% in nematic 5CB using 40 mm diam-
eter parallel plate geometry (gray triangles) and f ¼ 28% in 5CB using a 2�, 60 mm diameter cone-plate geometry (black circles), compared with the loss
moduli for pure nematic 5CB and a f ¼ 39% dispersion in the isotropic solvent dodecane. γd marks the end of the LVR for dispersions in nematic solvent, γc,
where G0 ¼ G00. (b) “Up” and “down” sweeps for f ¼ 25% on a cone-plate geometry indicate that the strain γc � 0:5% for both sweeps although G0 and G00 in
LVR do not recover completely within the timescale of this experiment for the “down” sweep. The inset shows that the normalized value of G0=G0

0 increases up
to γd indicating strain hardening for both f ¼ 25% and f ¼ 30%. (c) γd is presented alongside γc for up and down sweeps for various samples across the
range of f and (d) G0

LVR and G00
LVR measured for f . 20%.
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nematic solvent in three dimensions [40]. Furthermore, a
single Saturn-ring disclination could participate in multiple
disclination pathways between the substrates in thus
increasing the effective value for nd. How these complex
disclination structures contribute to the measured storage
modulus is not known.

B. Frequency dependence

Within the plateau of the LVR, where the applied
amplitude of strain γ0 , 0:1%, the oscillatory frequency
sweep measurements indicate that G0 . G00 with
tanδ ¼ G00=G0 ¼ 0:86 across all measurable frequencies
down to 0:0004 rad/s, as shown in Fig. 4(a). Samples stored
in the laboratory for over a decade have remained stable,
without phase separation, suggesting that G0 . G00 for
ω ! 10�8 rad/s. From rheology measurements, it appears
that G0 . G00 for over seven orders of magnitude in the
angular frequency. Within the LVR, the amplitude of
the applied strain is insufficient to break disclinations and
G0 � G00 � ω1=2 is observed at very low frequencies
(ω , 1 rad/s) satisfying the Kramers–Kronig relations [41].
The associated timescale of �6:28 s is commensurate with
the time taken for a disclination to relax to its equilibrium
position [21]. The gradient flattens at higher frequencies
(�ω0:1) where the time for relaxation is insufficient. There is
a gap in measured frequencies, as seen in Fig. 4(a), because
each data point took over a day to collect at the lowest fre-
quencies, and it was impractical to measure the entire range.

To explore the yielding behavior of this composite, we
performed frequency sweep measurements just beyond the
LVR where γd , γ0 , γc and discovered that G0 and G00 are
almost independent of frequency G � ω0:1 until a critical
frequency ωc (ωc � 10 rad/s for γ0 ¼ 0:6%) beyond which
G00 � ω1=2, as shown in Fig. 4(b). Violation of the
Kramers–Kronig relations has been observed in other
driven and glassy systems [41]. This is unlike the frequency
dependence of the pure liquid crystal (shown in gray), for
which G00 � ω [17].

To compare multiple samples, it is more convenient
to present the frequency response through tanδ(ω)

¼ G00(ω)=G0(ω). Unexpectedly, the frequency response is
independent of colloid volume fraction, as shown in
Fig. 5(a), showing no shift in the frequency at which tanδ
reaches a minimum (equivalent to d tan δ

dω ¼ 0) on increasing
the filler concentration. This is very different to “active” and
“passive” colloid-polymer systems [8] for which the fre-
quency behavior depends on volume fraction. In Fig. 5(b),
we have plotted the LVR value of tanδLVR ¼ G00

LVR=G
0
LVR as

a function of volume fraction, f. For all concentrations,
0:6 , tanδLVR , 0:8 and the standard deviation between
repeat measurements are relatively large, approximately
+0:07. However, aside from the lowest volume fraction
measurement at f ¼ 20%, the data suggest that tanδLVR may
increase gradually with the volume fraction from a minimum
at f ¼ 25%.

To explore the strain-dependent yielding behavior further,
we repeated oscillatory frequency sweeps at ω ¼ 2π rad/s at
strain amplitudes beyond the LVR using a sample of
f ¼ 30%. It was evident that the critical frequency ωc at
which G00 transitioned to � ω1=2 dependence reduced to
lower frequencies when the strain amplitude was increased.
Meanwhile G0 remained almost independent of frequency
(similar to the result in Fig. 4(b), and therefore, tanδ ! ω1=2

for ω . ωc, as shown in Fig. 6(a). The critical frequency ωc,
at which tanδ is at a minimum, i.e., where d tan δ

dω ¼ 0, is
plotted in Fig. 6(b) to reveal that ωc � 1=γ0.

C. Large-amplitude oscillatory shear

To improve our understanding of how the structure yields
beyond the LVR, LAOS data were acquired, and the results
are presented in Fig. 7. In plots of Figs. 7(b)–7(e), the
imposed strain and measured stress are plotted as a function
of time during oscillation at ω ¼ 2π rad/s. For γ0 � γd
(γ0 ¼ 0:1%), the measured stress, σ, is sinusoidal and close
to being in phase with the strain indicating elastic behavior.
For γd , γ0 , γc (as represented by γ0 ¼ 1%), the stress, σ
is close to sinusoidal on increasing the strain but returns to
zero from the maximum strain amplitude γ0, with a gradient
that is steep and linear indicating the emergence of viscous
behavior. At γ0 ¼ 10% (close to γc), the phase difference

FIG. 4. Oscillatory frequency sweep measurement of (a) f ¼ 30% dispersion within the LVR at a strain of γ ¼ 0:1%. The frequency dependence is nonlinear
with G0 and G00 � ω1=2 dependence at low frequencies and � ω0:1 at high frequencies, but always G0 . G00. (b) A f ¼ 30% dispersion in 5CB at a strain of
γ ¼ 0:6% shows G0 � ω0:1 below a critical frequency ωc, above which G00 � ω1=2 while for 5CB G00 ! ω (shown in gray).
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between the stress and strain signal becomes large on the
return journey from maximum strain γ0, indicating viscous
behavior after yielding. At γ0 ¼ 100% (. γc), the phase
difference between stress and strain is large at all times
during the oscillation indicating that the flow behavior is
almost entirely viscous and has insufficient time to recover
elasticity.

In Fig. 7(f ), it is evident that the higher order harmonics
appear soon after γ0 ¼ γd with the third-order elastic
Chebyshev coefficient e3 increasing, indicating strain-
stiffening, until it reaches a maximum around γc beyond
which it decreases to negative values consistent with strain-
softening. The third-order viscous Chebyshev coefficient
becomes negative beyond γ0 ¼ γd indicating shear-thinning
behavior and reaches a minimum value at γc after which it
returns toward zero, as shown in Fig. 7(g).

Elastic and viscous Lissajous–Bowditch curves, as pre-
sented in Fig. 8, provide another way to present LAOS
results and compare the “rheological fingerprint” with
systems studied previously. Within the LVR, a viscoelastic
material is expected to have an elliptical shape as observed
for γ0 ¼ 0:1% at all frequencies in both the elastic [Fig. 8(a)]
and viscous [Fig. 8(b)] curves. Ewoldt et al. decomposed the

elastic modulus into the minimum strain modulus G0
M , the

tangent modulus measured at γ ¼ 0, and the large strain
modulus, G0

L, the secant modulus measured at maximum
strain that includes the signal from all odd Chebyshev har-
monics [42]. Analogously, η0L and η0M indicate the instanta-
neous viscosity at the smallest and largest strain-rates,
respectively.

A strain-hardening ratio, S ¼ G0
L�G0

M
G0

L
, and a shear thicken-

ing ratio, T ¼ η0L�η0M
η0L

, were defined by Ewoldt et al. [42].

Within the LVR, G0
M ¼ G0

L so that S ¼ 0 and η0M ¼ η0L so
that T ¼ 0. At the maximum applied strain of γ0 ¼ 1000%,
G0

L . G0
M , such that S . 0, confirming intracycle strain stiff-

ening and η0L , η0M such that T , 0 confirming intracycle
shear thinning. The elastic and viscous Lissajous–Bowditch
curves presented in Fig. 8 are similar to a drilling fluid,
reported by Ewoldt et al. in which a predominately elastic
regime was observed at sufficiently small strain amplitude
and an increasingly plastic regime at high strain magnitudes.
Similarly, we deduce that a concentrated dispersion in a
nematic solvent can be classed as an elastoplastic fluid.
Small deformations allow the composite to maintain elastic-
ity and larger deformations over long timescales (low fre-
quencies) allow elasticity to be recovered, while large

FIG. 5. (a) An oscillatory frequency sweep of tanδ ¼ G00=G0 at a strain of γ ¼ 0:6% for the range in volume fraction of 20% , f , 45%. (b) The tanδ value
measured in the LVR across the range of volume fractions.

FIG. 6. (a) Tanδ as a function of angular frequency for 0:1% , γ0 , 4% revealing that the frequency at which d tan δ
dω ¼ 0 is dependent on the strain amplitude

γ0. (b) The critical frequency, ωc, beyond which G00 � ω1=2 is dependent on the strain amplitude following ωc � 1=γ0.
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deformations and high shear rates (high frequencies) disrupt
the structure irreversibly causing plastic deformation. More
unusually, our measurements indicate a loss of symmetry
about the stress axis at an intermediate strain of γ0 ¼ 1%,
occurring between the critical strains of γd and γc and higher
angular frequencies ω . 0:1 rad/s, which can be attributed to
hysteresis in the recovery of gel strength due to the time
taken for disclinations to “heal.”

In summary, the rheology experiments on the yielding
behavior of colloidal dispersions in a nematic phase have
revealed important and unusual phenomena:

• Dispersing a colloid within a nematic liquid crystal
enhances the storage and loss moduli by over five orders

of magnitude. This is remarkable in the context of other
soft materials, for example, an active filler in a polymer
network increases the modulus by less than two orders of
magnitude [8].

• For strain amplitudes within the LVR, G0 . G00 for all
measurable angular frequencies, which is unusual since
soft solids, in general, have experimentally accessible
relaxation modes.

• For strain amplitudes beyond the LVR, the critical fre-
quency ωc for the onset of viscous behavior is not
affected by an increase in the colloid volume fraction f.
This is unusual since ωc shifts for the majority of other
soft composites, including dispersions in polymers [4]
and emulsion systems [8] when the colloid concentration
is increased.

• The end of the LVR occurs at unusually low strain ampli-
tudes, γd � 0:1%, much lower than the typical yield strain
for a colloidal gel γy � 10% [7]. We attribute this yielding
to reorientation of nematogens in the core of disclination
of radius rc with γd � rc=d, where d is the distance
between neighboring colloid centers bound by entangled
disclinations, limited by d ! d0.

• For sufficient strain beyond the LVR and at frequencies
above a critical frequency ω . ωc, G0 � ω0 and
G00 ! ω1=2. This is a novel behavior for a nematic liquid
crystal, very different from the G00 ! ω dependence
observed for a pure nematic phase.

• A colloid dispersion in a nematic solvent can be classed
as an elastoplastic that exhibits both strain-hardening and
shear-thinning behaviour beyond the LVR.

D. Theoretical description of the yielding behavior
of defect-dominated gels in a nematic phase

To understand the experimental results, we now consider
the underpinning physics. As discussed in the Introduction,
the presence of a colloid with weak homeotropic anchoring
gives rise to a Saturn-ring defect line of topological charge
of s ¼ � 1

2 that, at sufficient colloid concentration, entangles
with neighboring Saturn ring disclinations, each providing a
line tension T �100 pN to create numerous paths of contin-
uous disclinations that extend throughout the sample, as
illustrated in Fig. 9(a), to generate elasticity on a macro-
scopic scale.

The colloidal network is filled with a pure nematic
solvent, self-organizing to have an average domain size a, as
illustrated in Fig. 9(b) and observed experimentally in
Fig. 2(c). Since each colloid surface and each disclination
provide homeotropic anchoring, we expect each nematic
domain to have radial alignment, although distorted due to
the irregular shape of each domain. If the domain were circu-
lar, it would have a single central defect with topological
charge, S ¼ 1, as described by Terentjev et al. [23].
As the size of the domain reduces, it reaches a limiting size
a � K=W beyond which it is energetically unfavorable for
the domain to reduce in size any further. This limit will drive
structural rearrangements elsewhere in the system before a
reduces further (e.g., at high colloid concentrations). We
presume W ¼ 1:5� 10�7 J/m2, consistent with earlier

FIG. 7. (a) The large amplitude oscillatory sweep for f ¼ 30% showing the
measured first order G0 and G00 as a function of applied strain, critical strains
γd (left arrow) and γc (right arrow), and fixed strain amplitudes (dotted blue
lines) at which for (b)–(e), the imposed strain (black) and measured stress
(blue) are plotted as a function of time at ω ¼ 2π rad/s. The maximum ampli-
tudes γ0 are 0:1% (� γd), 1% (γd , γ0 , γc), 10% (� γc), and 100%
(. γc), respectively. In (f ) the elastic en and in (g) the viscous νn
Chebyshev coefficients of the third, fifth, and seventh order are plotted as a
function of strain.
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estimations [23]. Using K ¼ 5:5 pN, we expect the magni-
tude of a � 10 μm, which is consistent with our experimental
observations Fig. 2(c).

Existing equations describing the flow of liquid crystals
have been derived for small amplitude oscillatory shear and
we build upon this work. The storage modulus describes the
elasticity of the material, and we presume it is the sum of
two contributions G0 ¼ G0

f þ G0
d for colloids dispersed in a

nematic solvent. G0
f was described by Rey [17] and is the

storage modulus arising from a nematic liquid crystal flowing
between parallel plates. At frequencies greater than resonance
frequency ωr, it is given by

G0
f ¼ 2ωηbendK

α2

γr

� �2
 !1=2

, (8)

where ηbend ¼ γr � α2
2

η2
and α2 ¼ �0:085 Pa s for 5CB [44].

We calculate G0
f � 10�5Pa that is negligible compared with

the storage modulus measured through the experiment; there-
fore, we assume G0 ¼ G0

d.
The storage modulus of a liquid crystal, caused by

the presence of disclinations, at an average separation of dnet,
was described by Weitz et al. [27] and Colby [45] as

G0
d ¼

T

d2net
: (9)

In colloid-rich regions, we presume disclinations are sepa-
rated by d0 ¼ 1:1D, where D is the diameter of the particles
entangled by “figure of eight” type disclinations. We assert
that disclinations yield at a critical strain of γd ¼ rc

d0
, where rc

FIG. 8. (a) Elastic Lissajous–Bowditch curves created from stress (y axis) versus strain (x axis) plots and (b) viscous Lissajous–Bowditch curves created from
stress (y axis) versus strain rate (x axis) plots for fixed angular frequencies of ω ¼ 0:1, 1, and 10 rad/s and strain amplitudes γ0 ¼ 0:1%, 1%, 10%, 100%, and
1000% for f ¼ 30%.

FIG. 9. Illustrations of (a) disclinations (blue solid lines), encircling colloids (red circles) and connecting to create continuous disclinations extending across
the sample, dominating the rheology for γ , γd ; (b) confined nematic regions (gray), with internal alignment (black lines) determined by the anchoring of
nematogens normal to colloid surfaces, dominate the rheology for γd , γ , γc and (c) at high shear γ . γc nematogens will align with the direction of flow
for the liquid crystal 5CB [43].
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is the radius of the disclination core. Above this strain, discli-
nations yield such that the number density of disclinations
decreases and the separation between disclinations increases

as dnet ¼ d0
p(f)

γdþγ
γd

� �
following the empirical expression used

by Colby et al. to describe the yielding behavior of defect-
mediated rheology for smectic liquid crystals [46]. This
expression ensures dnet ! d0 for very small strain ampli-
tudes. A factor p(f) has been introduced to match the model
with experimental observations, likely to account for multiple
entanglements within a three-dimensional network that
increases with the volume fraction of colloids. We adopt the

form p(f) ¼ pmax
(f�fc)

(flimit�fc)

� �
. The resulting expression for G0

is consistent with our observation that G0
LVR � f2 and the

correct magnitude of G0
LVR(f) is obtained when pmax ¼ 12,

flimit ¼ 48%, and fc ¼ 15%.
We presume that the viscous behavior of the composite is

determined by two contributions G00 ¼ G00
f þ G00

a . We assume
the term, G00

f ¼ η2ω, describes the nematic flow behavior at
high shear, where η2 is the Miesovicz viscosity associated
with the director aligning with the shear direction. G00

a
describes the loss modulus enhanced within confined regions
of nematic of size a.

The Ericksen number describes the competition between
flow-induced and boundary-induced orientation within a
nematic monodomain Er ¼ L2γr _γ

K , where γr is the rotational
viscosity, _γ is the shear rate, and L is the relevant lengthscale.
Reorientation of the director can occur when Er . 1.
For polydomains in liquid crystal polymers, it has been
argued that disclinations can act as an internal wall, similar
to colloid surfaces and together these structures provide
boundaries with fixed homeotropic orientation [47].
Larson described the enhanced viscosity close to boundaries
as ηa � γrEr

�1=2 [48]. Although there will be large nematic
domains (without colloids) within the composite, as illus-
trated in Fig. 9(b), more confined nematic regions will con-
tribute more significantly to G00 at low strain. In our model,
we assume a ¼ K=p(f)W to account for the enhanced con-
finement of the nematic liquid crystal due to disclination
density in colloid-rich regions. This ensures G00

LVR � f2, as
observed through the experiment, and maintains the ratio
between G0

LVR and G00
LVR.

In the oscillatory flow, the maximum shear rate _γ ¼ γ0ω
so that we can define the maximum Ericksen number during
the oscillatory flow as

Er ¼ a2γrγ0ω

2πK
, (10)

where a is the average size of nematic monodomains within
the composite and is the appropriate lengthscale for confined
regions of nematic fluid within the composite. The loss
modulus can be described as G00

a ¼ ηaω.
This expands to

G00
a ¼

2πKγrω
a2γ0

� �1=2

: (11)

This reveals that G00 � ω1=2 as observed experimentally at
high frequencies. However, we have observed a critical fre-
quency ωc that must be overcome to allow the flow to occur,
and therefore, we replace ω ! ωc þ ω so that

G00
a ¼

2πKγr(ωc þ ω)
a2γ0

� �1=2

, (12)

where ωc ¼ 2πK
a2γrγ0

is the critical frequency at which the flow

occurs, as defined by the Ericksen number. This results in
two components within the expression for G00

a , which we sim-
plify to G00

a ¼ G00
d þ G00

c . G
00
d ¼ 2πK

a2γ0
describes the plateau loss

modulus at low frequencies ω , ωc, while G00
c ¼ (G00

dγrω)
1=2

becomes dominant at high frequencies ω . ωc. To prevent
G00 from becoming unphysically large at very low strain, we
modelled the strain amplitude as γ0 ! (γ0 þ γd)

2=γd.
The parameters, K ¼ 5:5 pN, W ¼ 1:5� 10�7 J/m2,

D ¼ 2 μm, γr ¼ 81 mPa s, rc ¼ 5 nm, and a ¼ K=p(f)W
with pmax ¼ 12, flimit ¼ 48% and fc ¼ 15%, were used in
the model. In Fig. 10(a), the calculated G0 and G00 as a func-
tion of strain amplitude and Fig. 10(b) in terms of angular
frequency ω are presented. G0 and G00 show strong similarities
to the experimental results [Fig. 3(a)] for increasing strain
amplitude and frequency dependence [Fig. 4(b)] with
G0 . G00 at low frequencies and G00 � ω1=2 above a critical
frequency. The magnitude of the individual components of
G00

d , G
00
c , and G00

f are compared in Fig. 10(c). It is clear that for
confined regions, G00

d � G00
f so that G00 � ω1=2 although there

is an underlying G00
f � ω dependence that would dominate if

a were sufficiently large [27].
In Fig. 10(d), the theoretical contribution of

tanδ ¼ G00=G0 is shown for a range of applied strain ampli-
tudes (0:1% , γ0 , 10%) as a function of angular frequency
and reveals similar behavior to experimental measurements
presented in Fig. 6(b). At low frequencies (ω , ωc),
tanδ ¼ G00=G0 takes the following equation form:

tan δ(ω , ωc) ¼ 2πK
T

1
γ0

d2net
a2

: (13)

This indicates that tanδ(ω , ωc) is dependent on the square
of the ratio of the size of disclination spacing to the nematic
domain size dnet=a. If we substitute a � K=p(f)W and
dnet ¼ d0=p(f) within the LVR, the expression can be simpli-

fied further to tanδ � 2π
γ0

W2d20
TK . This reveals that the anchoring

strength W of nematogens at the surface of the colloid,
having a homeotropic alignment, has a significant influence
on the flow properties of the composite. This expression for
tanδ is independent of the volume fraction f although there
may be more complexity since tanδ increased slightly with
volume fraction, as revealed in Fig. 5(b), potentially due to
crowding.

Despite the progress made through matching the experi-
mental measurements with a simple theoretical model, there
are opportunities to refine the model, perhaps best tackled
through computer simulation:
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• Following the work of Muševic [40], it may be possible
for theoreticians to determine the average separation
between disclinations dnet binding a dense suspension of
colloids within a nematic solvent in three dimensions to
improve our understanding of p(f).

• Experiments indicate that at high shear G00 ! 102 Pa, not
G00 ! η2ω � 10�1 Pa as assumed in the simple theory
presented here. Interparticle interactions must persist
within the nematic phase under flow to enhance the vis-
cosity of the filled nematic at high shear, and this is a
complex problem to solve.

• 4-Cyano-4’pentylbiphenyl (5CB) is a flow-aligning
nematic liquid crystal, but others, e.g., 4-Cyano-4’
heptylbiphenyl (7CB), tumble at high shear [43]. The
effect of potential tumbling behavior on the rheology of
colloid-nematic composites is unknown.

• This model describes the yielding behavior of the compos-
ite at intermediate strain amplitudes for which rheology
measurements indicate that G0(ω) � ω0 and G0(ω) � ω1=2,
as revealed in Fig. 4(b). It does not explain the
G0(ω) � G00(ω) � ω1=2 behavior observed at very low
strain amplitudes, well within the LVR, as shown in
Fig. 4(b), which requires an expression for G0 that captures
the dynamics of disclination relaxation.

Interestingly, through performing oscillatory rheology on
colloidal dispersions in small-molecule nematic liquid
crystalline materials, we have observed two regimes that are

analogous to defect-dominated flow behavior observed in
nematic liquid crystal polymer (LCP) systems for which
various regimes have been reported [45,49]. Regime 0 is
associated with viscosity dependence η � _γ�1 and is attrib-
uted to the solidlike response at very low shear rates.
Regime 1 is associated with viscosity behavior η/ _γ�1=2

and is attributed to the movement of disclinations within the
LCP [45]. Similar to our colloidal network interpenetrated
by multiple nematic domains of size a, these LCPs have a
polydomain texture [50–52]. A complex viscosity, η*,
can be determined from oscillatory measurements using

η* ¼ (G02þG002)1=2

ω . For our confined nematic solvent, made of
small-molecule nematogens, experimental measurements
show that G0 � ω0 for all frequencies. At very low shear
rates, G00 � ω0 such that η* � ω�1. Above the critical fre-
quency, associated with higher shear rates, G00 � ω1=2 and
thereafter G00 . G0 so that η* ! ω�1=2. The similarity to our
experimental results is intriguing because it suggests that the
low shear behaviour of a LCP could be attributed to the
behavior of nematogens in confinement.

Furthermore, the G00 � ω1=2 behavior explained through
our experiments has been observed in a myriad of defect-
dominated liquid crystalline systems aside from LCPs includ-
ing a thermotropic smectic [46], a lamellar lyotropic liquid
crystal [53], and dispersions of colloids in a thermotropic
smectic [54], in a nematic [28], and in a cholesteric [55] for
which the principles explained in this article are applicable.
However, it is important to bear in mind that this behaviour

FIG. 10. (a) Theoretical prediction of G0(γ) and G0(γ) for ω ¼ 2π rad=s and (b) G0(ω) and G0(ω) for γ ¼ 0:6%. (c) Components G00
f , G

00
d , and G00

c contributing to
the total loss modulus G00 shown in (b). (d) Plot of the theoretical tanδ(ω) for 0:1%–10%. The parameters, K ¼ 5:5 pN, W ¼ 1:5� 10�7 J/m2, D ¼ 2 μm,
γr ¼ 81 mPa s, rc ¼ 5 nm, and a ¼ K=p(f)W , with f ¼ 0:3, pmax ¼ 12, flimit ¼ 48%, and fc ¼ 15%, were used in this model.
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will only occur in systems that support a sufficiently high
density of disclinations, and therefore, G00 � ω1=2 depen-
dence has not been observed in pure cholesteric phases [27],
liquid crystal polymers that retain good nematic alignment
[50] or for dispersions in the nematic phase that do not give
rise to weak quadrupolar anchoring at the colloid surface
[56] since this is an essential condition for generating net-
works bound by entangled disclinations.

IV. CONCLUSION

In conclusion, we bring SAOS and LAOS experiments
together with a simple theory to explore the dynamic
behavior of an extraordinarily stable soft-solid formed upon
dispersing colloids, of volume fractions 18% , f , 45%, in
a nematic phase where nematogens are weakly oriented per-
pendicular to the colloid surface. LAOS reveals that the
shear-thinning behavior associated with the breakage of
disclinations is accompanied by strain-hardening due to the
resistance of nematic domains to deformation. Although the
storage G’ and loss G00 moduli both increase with the square
of the volume fraction f, the critical frequency ωc at which
the composite yields (where G00=G0) is independent of the
volume fraction. Instead, the critical frequency ωc is sensitive
to the disclination density dnet, the size of entrapped nematic
domains a, the generalized Frank elastic constant K, and,
most importantly, the anchoring strength W through which
nematogens are associated with the surface of the colloid.
Reorientation of the director is only permitted if Er . 1, and
in a defect-mediated structure, Er � γra

2 _γ0
K , where γr is the

rotational viscosity of the nematic phase and _γ0 is the
maximum shear rate, equivalent to γ0ω=2π. Beyond ωc, the
viscous behavior G00 � ω1=2 due to the enhanced viscosity of
a nematic liquid crystal in regions is confined by the colloi-
dal network, behavior that has also been observed for other
defect-mediated liquid crystalline structures [45,49,51].
Experimental observation of this behavior within a small-
molecule nematic liquid crystalline phase has allowed us to
develop a simple theory for both elastic and viscous contri-
butions and extends our understanding of the flow behavior
of defect-mediated liquid crystalline materials. This fascinat-
ing class of glassy soft-solid [57] has received scant attention
to date, and our work could provide guidelines for develop-
ing new composites with superior physical stability.
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