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Abstract

The transient response of model hard sphere glasses is examined during the application of steady rate start-up shear using Brownian dynam-

ics simulations, experimental rheology and confocal microscopy. With increasing strain, the glass initially exhibits an almost linear elastic

stress increase, a stress peak at the yield point and then reaches a constant steady state. The stress overshoot has a nonmonotonic dependence

with Peclet number, Pe, and volume fraction, u, determined by the available free volume and a competition between structural relaxation

and shear advection. Examination of the structural properties under shear revealed an increasing anisotropic radial distribution function, g(r),

mostly in the velocity-gradient (xy) plane, which decreases after the stress peak with considerable anisotropy remaining in the steady-state.

Low rates minimally distort the structure, while high rates show distortion with signatures of transient elongation. As a mechanism of storing

energy, particles are trapped within a cage distorted more than Brownian relaxation allows, while at larger strains, stresses are relaxed as par-

ticles are forced out of the cage due to advection. Even in the steady state, intermediate super diffusion is observed at high rates and is a sig-

nature of the continuous breaking and reformation of cages under shear. VC 2016 The Society of Rheology.
[http://dx.doi.org/10.1122/1.4949340]
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I. INTRODUCTION

Colloidal hard spheres [1,2] have been attracting much

scientific attention as model systems for the experimental

study of the glass transition [1,3–5]. The phase diagram of

this system is not affected by temperature but by particle vol-

ume fraction, u. Intermediate volume fractions show crystal-

lization, but at higher volume fractions (u> 0.59) they are

kinetically trapped in a glassy metastable state where indi-

vidual particles are spatially trapped by their neighbors and

longtime diffusion is suppressed [2,6,7]. However, even in

the glass regime some cooperative hopping processes may

allow particles to escape, especially for samples near (but

nominally above) the glass transition volume fraction lead-

ing to long-time restructuring and ageing [3,8]. The linear

rheological properties reflect the microscopic motions of the

particles, and dynamical arrest leads to a solidlike response

which to a great extent can be described by mode coupling

theory (MCT)-based theories [9–14] although the low fre-

quency relaxation mode detected in experiments at moderate

volume fraction glasses is absent in ideal MCT [10].

With the application of shear above the yield stress or

strain, irreversible changes and plastic deformation set in

[15] leading to a nonlinear rheological response. The linear

viscoelasticity and the steady rate response have been exam-

ined experimentally [9,15–19], through theory and simula-

tions [11,20–23]. For concentrated glasses under steady

shear, shear banding can occur mainly at low rates [24–26]

with the shear banding instability for highly concentrated

suspensions and glasses related to shear concentration cou-

pling [25].

During a steady start-up shear experiment a transient

response, featuring a linear increase of stress, in some cases a

stress overshoot and finally, a steady state plateau is observed.

The stress overshoot in a steady rate experiment contains

information on the yield strain and stress of the system. Peaks

such as these have been seen experimentally in a variety of

soft matter systems such as polymers [27–29], worm-like

micelles [30], nanocomposites [31,32], colloidal gels, and col-

loidal glasses [33–38]. Theoretical work exists based on soft

glassy rheology (SGR) [23] and MCT [11,12,39,40] and con-

trasted with experimental data on hard sphere particles

[41–43] and thermosensitive microgels [44], while overshoots

have also been probed by simulations [30,45,46]. Although

the precise explanations vary, the overshoot is a phenomenon

stemming from an elastic energy storage mechanism and a

dissipative energy release mechanism after the peak which

fluidizes the system.

In order to link the mechanical response to changes in

structure and dynamics, we examine the microscopic motions

of dense systems under shear. While initially arrested, the

onset of flow for strains above the yield strain allows for

increase of microscopic particle motions due to out-of-cage

diffusion. The use of confocal microscopy coupled with

steady shear in colloidal glasses showed long time diffusive

behavior of the nonaffine motions, while additionally exhibit-

ing a sublinear power law dependence for the shear induced

diffusion coefficient as a function of increasing shear rate

[47]. However, the microscopic motions under shear have

also been coupled to a modified Stokes–Einstein relation to

replace thermal energy with shear energy [48].

In a range of strains similar to the stress overshoot,

the transient dynamics have shown super-diffusive motion

[42,46,49,50]. While the stress peak has been associated

with the appearance of the transient super diffusive behavior,

recent work has found a strong correlation of the peak to

local structural properties [49].

Concerning heterogeneities during flow, localized irre-

versible shear transformation zones have been identified [51]

and plastic events under steady shear have also been rigor-

ously analyzed [52] as well as regions of enhanced mobility

in the transient regime [53]. A shear-induced heterogeneity

length scale depending on the applied shear rate has been

described [54], while a connection between diffusivity and

heterogeneities [55] has been found in a two dimensional

system. Still, however, the detailed physical mechanisms re-

sponsible for yielding in colloidal systems and the way this

is affected by interparticle interactions and microscopic

properties are not fully understood. A recent review [56]

examines colloids under shear with respect to their rheology,

structure, and microscopic rearrangements.

In this paper, we extend our earlier work [49], by studying

the transient response of hard sphere glasses in a start-up

shear experiment using Brownian dynamics (BD) simulations,

experimental rheology, and confocal microscopy over an

extended range of parameters and implementing new analyses

of the results. The combination of these three techniques

allows the rheological characterization of the system under

shear, while directly providing information on the microstruc-

ture and dynamics. The paper focuses on the correlation of

shear stress to microstructural changes, while additionally put-

ting mean dynamic properties into perspective.

II. EXPERIMENTAL SYSTEMS AND TECHNIQUES

A. Samples

The hard-sphere-like particles used here consist of poly-

methylmethacrylate (PMMA) spheres sterically stabilized

by a thin (�10 nm) chemically grafted layer of poly-12-

hydroxystearic acid (PHSA) chains [32,57]. For confocal

measurements only, particles were fluorescently labeled with

nitrobenzoxadiazole (NBD). For the rheological measure-

ments, we used particles with a radius of R¼ 267 nm and

a polydispersity of 6% suspended in decalin (cis-trans mix-

ture), while the particles used in ageing studies had a

radius of R¼ 183 nm, a polydispersity r� 12% and were

suspended in an octadecene/bromonapthalene mixture to

avoid evaporation and minimize van der Waals attractions.

The particles used for confocal microscopy with RC

¼ 770 nm and polydispersity of 6% were suspended in a sol-

vent mixture of cis-decalin and cyclo-Bromoheptane (with

the addition of 4 mM tetrabutylammonumchloride) closely

matching density and refractive index. The size characteriza-

tion was carried out with static light scattering measure-

ments. The bare Brownian time, referring to the dilute limit,

t0
B ¼ R2=D0, with D0 ¼ KBT=6pgR being the free diffusion

coefficient, KBT being the thermal energy, and g being the
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solvent viscosity, for the small (R¼ 183 nm), medium

(R¼ 267 nm), and large (R¼ 770 nm) particles are t0
B

¼ 0:13 s, t0
B ¼ 0:3 s, and t0

B ¼ 4:7 s, respectively.

The volume fraction for the hard sphere samples used in

rheology was determined in two ways. For the relatively

monodisperse sample (R¼ 267 nm), a sample in the coexis-

tence regime was prepared and the value of the volume frac-

tion was extracted from the liquid to crystal ratio of the sample

[1]. For the more polydisperse sample (R¼ 183 nm), u was

determined from random close packing [58], (which was

assumed to be 0.67), which, however, carries a larger error due

to the uncertainty in the polydispersity. Additionally, the pack-

ing fraction for a specific sample batch fluctuates with each

packing/centrifugation around an average volume fraction,

having a standard deviation of approximately ru¼60.006, as

determined in this work by using sequential centrifugations on

the same batch. The volume fractions in confocal microscopy

were measured through imaging [42,59]. After calibrating a

sample batch from coexistence, rcp or through imaging, the

rest of the sample concentrations were determined by succes-

sive dilutions of the same stock.

B. Rheology

The rheometer used for mechanical measurements was a

stress controlled Anton-Paar MCR-501 with a Peltier tem-

perature stabilization at T¼ 20 6 0.01 �C. The area around

the sample was sealed with a homemade vapor saturation

trap. The smallest acquisition time used for this rheometer in

the transient tests was 0.1 s to minimize error. Hence for the

step rate tests low strain information was lost when the

inverse rate was comparable or lower than the acquisition

time. Two cone and plate geometries of different diameter

were used to allow accurate measurements of low stress sam-

ples (large cone) and avoid thickening when loading for high

volume fraction samples (small cone). The large cone was

50 mm in diameter with an angle of 0.0175 rad, while the

small cone was 25 mm in diameter with an angle of

0.035 rad.

Before each measurement, a rejuvenation protocol was

followed consisting of a series of tests starting with a high

shear rate (10 s�1) for 50 s, a small waiting time (30 s), the

same shear rate but in the opposite direction for another 50 s

and, usually, a waiting time of 200 s, unless otherwise stated.

C. Confocal microscopy

Confocal microscopy measurements were conducted in

conjunction with a home-made parallel-plate shear-cell simi-

lar to those used previously [46,60,61]. In order to prevent

wall slip, the cover slips were coated with a layer of polydis-

perse colloidal particles [47,62]. The rejuvenation protocol

typically consisted of applying ten large amplitude oscilla-

tions (c> 100%) at a frequency below 0.1 Hz and a waiting

time of 600 s before each experiment.

Confocal microscopy experiments were performed using

a fast-scanning VT-Eye confocal microscope (Visitech

International) mounted on a Nikon TE2000-U inverted

microscope. A Nikon Plan Apo VC 100� oil immersion

objective was used for all experiments. Two-dimensional

images of the samples were recorded at a depth of 30 lm

inside the sample in order to avoid boundary effects and to

retain good quality images. The image size was chosen to be

512� 512 pixels, corresponding to an area of 57� 57 lm2.

In addition to slices, also volumes were imaged that con-

sisted of 68 slices with a separation of 0.15 lm.

In a typical experiment, a series of images was recorded

at fixed frame rate (typically much shorter than the inverse

of the applied shear rate) starting simultaneously with the

application of shear and ending when the maximum strain

was reached.

Particle coordinates and particle trajectories were

extracted from images using standard routines [63] and sub-

sequently refined according to the procedure described in

[64]. The refinement procedure allows us to estimate an

upper boundary for the uncertainty on particle locations of

about 180 nm in the lateral direction and about 300 nm in

axial direction [64].

Since particles do not move far between consecutive

frames, particle tracking was possible without the need to

first remove the displacement due to affine motions [65].

Moreover, here we compare particle motions from confocal

experiments and BD simulations in the vorticity direction

where affine motion is not contributing to the displacements.

We typically averaged the results from ten repetitions with

about 1200 particles per measurement.

D. Computer simulations

BD simulations were conducted on hard sphere systems.

The size of colloidal particles is such that there is a clear sep-

aration of time and length scales between the particles and

the fluid molecules, therefore, the fluid can be treated as a

continuum, but the particles are still small enough to be

affected by collisions with the fluid molecules and are thus

still Brownian. Here, we choose to use BD simulations,

where hydrodynamic interactions (HI) between particles are

ignored [66]. This allows simulations of larger and more

concentrated systems, in comparison to the more accurate

but computationally demanding Stokesian dynamics (SD)

simulation [66] where the full HI is computed.

For N rigid particles of radius R and density q in a medium

of viscosity g moving with velocity U, we examine states

where the Reynolds number (the dimensionless ratio of iner-

tial forces qU2/R to viscous forces gU/R2) is Re� 1. The

motion of the particles is described by the N-body Langevin

equation: mðdU=dtÞ ¼ FH þ FB þ FP, where m is the gener-

alized mass/moment tensor, U is the particle translational/rota-

tional velocity vector, F
H is the hydrodynamic force vector,

F
B is the stochastic force vector that gives rise to Brownian

motion, and F
P is the deterministic nonhydrodynamic force

vector. Since inertia is not important in colloidal dispersions

(Re� 1), the equation reduces to 0 ¼ FH þ FB þ FP. For BD

where HI between particles are neglected, the hydrodynamic

force reduces to Stokes drag FH ¼ �6pgRU. The nonhydro-

dynamic force vector for a simple hard sphere system

becomes the hard sphere interaction occurring at contact

FP ¼ FHS.

605START-UP SHEAR OF HS GLASSES
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The hard-sphere interactions are calculated through the

“potential-free” algorithm of [66,67], in which the overlap

between pairs of particles is corrected by moving the particles

with equal force along the line of centers, back to contact. In

order to calculate the stress, the algorithm directly calculates

the pairwise interparticle forces that would have resulted in

the hard sphere displacements during the course of a time step

[68]. Therefore, we have FP ¼ 6pgRðDxHS=DtÞ, the average

Stokes drag on the particle during the course of the hard-

sphere displacement. Once the interparticle forces from each

collision are known, they can be used to calculate the stress

tensor, hRi ¼ �nhxFPi [68], where n is the number density of

particles and the angle brackets denote an average over all

particles in the simulation cell. We should note that at rest and

for relatively low Pe, BD simulations should be able to quali-

tatively capture experimental stresses and particle motions,

although hydrodynamics are neglected [66,69]. However,

stresses cannot be quantitatively compared.

By using BD simulations, we attempt to elucidate the micro-

scopic changes, both structural and dynamic, that occur during

start-up shear. Various volume fractions, 0.54�u� 0.62, with

N¼ 5405 particles were examined using multiple runs (typi-

cally eight runs) by averaging with initial configurations, both

in the glassy regime and below. We use a time step of 10�4 tB
for Pe< 1 (and rest), which scales to 10�4 per unit strain for

Pe> 1 [66]. Initial configurations were constructed by quench-

ing from a dilute liquid state by appropriately increasing the

particle size. The system was then properly equilibrated at rest

allowing for a steady state to be reached by following the os-

motic pressure and particle mean square displacements until

both remained stable (typically after about 50 tB).

This work mainly focuses and examines details on vol-

ume fractions, near the glass transition (u¼ 0.58) and well

within the glass (u¼ 0.62) at rates of Pe¼ 0.1, 1, and 10. In

order to have greater clarity of the structural information,

polydispersity was added in the simulations by a discrete

Gaussian distribution of radii with a root mean squared devi-

ation of 10%. The effect of the added polydispersity on

stresses and displacements was found to be minimal.

Moreover, due to the finite polydispersity crystallization

under shear (or at rest) was not detected in experiments or in

BD simulations.

E. Analysis of confocal microscopy and
simulation data

Using the positions and trajectories of the particles, taken

from simulations or microscopy, we calculate various struc-

tural and dynamical properties. The pair distribution function

(PDF) describes the distribution of distances between pairs

of particles contained within a given volume. We quantify

structural anisotropy under shear by taking the projection of

the radial-distribution function, g(r), in different planes rela-

tive to shear flow.

The mean squared displacement (MSD) is a statistical

measure of the distance a particle has moved in a specific

time. If xi is the position of a particle i in x direction and N is

the total number of particles then the MSD is calculated as

hDx2 sð ÞiN;t ¼
1

N

XN

i¼1

xi tþ sð Þ � xi tð Þ
� �2* +

t

; (1)

where xi may be substituted with yi or zi for the other axes. In

the case of the BD simulations, xi is the position of the parti-

cle calculated after the subtraction of the affine motion due

to shear. It is important to note that by subtracting the affine

motion at every time step, the effect of Taylor dispersion

[70] is eliminated. Note that in the case of confocal micros-

copy the MSD is calculated in vorticity direction and thus no

correction for the affine motion is required.

If the system is not in the steady state, the conventional

time averaged MSD cannot provide information on the tran-

sient dynamics and the related microstructural changes.

Thus, we calculate two-time particle displacements using the

equation

hDx2 s; twð ÞiN ¼
1

N

XN

i¼1

xi tw þ sð Þ � xi twð Þ
� �� �2

; (2)

which gives the average displacement between two times,

with the time tw (>0) elapsed from the beginning of shear to

the beginning of the measurement and t is the time elapsed

since the beginning of shear with s¼ t� tw hence the time

delay of the displacement. In this case, there is no averaging

over time but only over the number of particles N and multi-

ple measurements. Instead of tw and t, cw and c may equiva-

lently be used, denoting the acquired strain instead of

elapsed time. Note that here the waiting time, tw, has a differ-

ent meaning from what is usually described in ageing experi-

ments, namely, the elapsed time after rejuvenation.

Moreover, we calculate the non-Gaussian parameter in

the z direction

a2zðsÞ ¼ ðhDz4ðsÞiN;t=3hDz2ðsÞi2N;tÞ � 1; (3)

which is the lowest order deviation of the Van Hove function

from Gaussian behavior (averaged over particles and time).

Nonzero values of the a2 parameter correspond to non-

Gaussian behavior and have been associated with dynamic

heterogeneities [5], although, as discussed below, non-

Gaussian behavior may not always be related with dynamic

heterogeneities.

F. Time-scale in experiment and simulations

Both in experiments and simulations, the dimensionless

Peclet number, Pe ¼ _c � tB, was used to indicate the relative

importance of shear convection relative to the diffusive

Brownian motion. In the case of dense hard sphere suspen-

sions, the short time self-diffusion, Ds
sð/Þ is reduced due to

HIs [71] compared to D0. Since the actual Brownian time of

the sample scales all other resulting times, when examining

the effects of shear, the hydrodynamic effect on time scales

should be taken into account. In the present work, we use the

scaled Peclet number (Pesc) calculated with the volume frac-

tion dependent short-time self-diffusion coefficient, Ds
sð/Þ.

606 KOUMAKIS et al.
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The BD simulations do not incorporate HIs, therefore, in

order to compare the rheological experiments and the BD

simulations at rest and under shear, a normalization of time

scales is needed. While in experiments Ds
sð/Þ decreases with

volume fraction, in BD simulations the in-cage short-time

diffusivity is constant in the absence of HIs. Therefore, in

order to properly compare experiments, for which Pesc is the

relevant parameter, with BD we used values for Ds
sð/Þ=Do

from SD simulations where HI were fully incorporated [71].

In Table I, we show the Ds
sð/Þ=Do used to scale BD to exper-

imental data where Peo ¼ ðDs
sð/Þ=DoÞPesc. Note however

that these values are approximate as there might be some dis-

crepancy in volume fraction and particle polydispersity

between experiments and simulations. We provide the bare

Pe0 and scaled Pesc for experiments, while the Pe in BD sim-

ulations should be compared with Pesc in experiments as dis-

cussed above.

III. RESULTS

A. Rheological response

1. Linear viscoelasticity

Figure 1(a) plots the elastic and viscous moduli, G0 and

G00, in the linear regime for different volume fractions normal-

ized with particle size and thermal energy, against frequency,

x, or equivalently Pex
0 ¼ xt0

B. All samples shown here exhibit

a solidlike, elastic response with G0>G00 in the frequency

window examined. G0 exhibits a weak (stronger) increase

with Pex
0 , especially for the higher (lower) u’s, while G00

shows a characteristic minimum, which moves to smaller

times as u increases, in agreement with previous findings

[13,38]. For the smallest u¼ 0.542, G0 approaches G00 at the

low frequencies indicating an approach to a terminal flow re-

gime where liquidlike response (G00>G0) at lower frequencies

is expected. According to the volume fraction dependence

and the occurring regimes of G0 and the minimum of G00, pre-

sented recently [38], the current system shows rheological

indications of a glass transition (solid like response of the

viscoelastic spectra with no indication of terminal flow)

around u¼ 0.59. As recently discussed [59], the absolute vol-

ume fraction may entail an error of about 1%, however, the

relative volume fractions should be quite accurate.

2. Steady state stresses

In Fig. 1(b), we show flow curves, measured from high to

low shear rates, for the different u’s. Each shear rate was

averaged over 10 s to minimize the overall time of the test;

accordingly, the smallest rates (Pe0< 0.01) may not show

the steady state response as the accumulated strain for each

point is comparable to the yield strain. Therefore, an error

bar has been included at the lowest shear rate data corre-

sponding to the difference with the steady state deduced

from start-up tests (such as those of Fig. 2 below). Shear

banding (or slip) is not expected to be present in these meas-

urements as we probe shear rates and u that are in a stable

flow regime [25].

At high u, there is Bingham like behavior with a yield

stress plateau emerging at low rates [16,25]. According to

simulations [72], for shear rates higher than in the experi-

mental window, a slope of unity may be reached if shear

thickening does not set in [73]. The lowest u sample (0.542)

shows some indication of the existence of a flow regime

(power law slope approaching 1) both at high and low rates.

The latter is related with the long time flow of the sample

seen in linear oscillatory data where a G0/G00 crossover is

expected for Pex
0 < 0.03 and terminal flow at even lower

frequencies.

3. Transient stresses

Figure 2 shows the measured stress versus strain in step-

rate experiments for various u at a fixed rate corresponding to

Pe0¼ 0.0019. Since we examine various volume fractions,

this corresponds to 0.013<Pesc< 0.025. The experiments

show an initial increase starting from a finite value, a peak in

TABLE I. The volume fraction dependent self-diffusion Ds
sð/Þ=Do that

links the experimental results to the simulation results with Peo

¼ ðDs
sð/Þ=DoÞPesc.

/ 0.542 0.560 0.587 0.595 0.600 0.614

Ds
sð/Þ=Do 0.148 0.131 0.105 0.097 0.092 0.077

FIG. 1. (a) Dynamic frequency sweeps at different u’s as indicated for the

R¼ 267 nm PMMA particles in decalin. Solid symbols represent the elastic

moduli, G0, and open symbols the viscous moduli, G00. (b) Corresponding ex-

perimental flow curves of various examined u depicted in the legend. Line

shows a power law slope of one. Horizontal axes are shown in the dimen-

sionless Pex
0 ¼ xt0B and Pe0 (bottom) as well as the applied frequency, x,

and shear rate, _c (top).

607START-UP SHEAR OF HS GLASSES

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:  129.215.74.151 On: Wed, 18 May 2016

16:00:02



most cases and a steady state plateau for larger strains

(c> 50%). It appears that the overshoot decreases with

increasing u. As mentioned above, the initial stress increase

reflects an energy storage mechanism related to the entropic

elasticity of the cage, while the peak is caused by a subse-

quent energy dissipation mechanism that leads to plastic flow

and the plateau stress. Assuming a simple elastic response, the

initial increase should show a linear increase with time (or

strain), or equivalently a power slope of unity. For the data in

Fig. 2, this only holds for small strains with the slope becom-

ing smaller than one for larger strains. Furthermore, the stress

curves have finite values of r for c going to zero, as shown in

the inset of Fig. 2 for one volume fraction (u¼ 0.62). This

behavior indicates that the viscous component in the HS sus-

pensions and glasses is significant for the corresponding time

scales.

The initial stress increase, up to about c¼ 1%–2%, is given

by linear response theory, although technically this is not

straightforward to measure. In order to visualize the extent of

linearity and the linear viscous contribution to the start-up

experiments, we can utilize a simple equation for the viscoelas-

ticity in the linear regime, r ¼ relast þ rvisc ¼ Gcþ g _c, under

the assumption that during the examined experimental time

window, the viscoelasticity (G, g) is constant. In a log-lin plot,

the viscous contribution is apparent due to a nonzero stress at

the start of the step rate experiments. Equivalently in a log-log

plot, if _c remains constant then d logðrÞ=d logðcÞ ¼ Gc=r,

which means that the power law slope in each point of the step

rate, together with the total stress r, can be used to decompose

the total stress r into elastic, relas, and viscous, rvisc, compo-

nents. Thus, any step-rate experiment with an initial power law

slope of less than one infers a finite viscous contribution to

stresses. Figure 2 shows such fits to the data up to 1%, with

extension of the curves up to 3%, thus additionally showing

the deviation from linearity. The strongest deviation from line-

arity is seen for the highest u, indicative of a smaller linear

regime. Fit parameters G and g return values close to G0 and

G00/x (with the elasticity within 15%) as measured in the fre-

quency sweeps at time scales corresponding to an accumulated

strain of 1% for each rate.

Figure 3 shows step rates tests at u¼ 0.587 for different

shear rates. The values of the peak and the plateau stresses,

as well as the strain at which the stress overshoot takes place

are defined as rpk, rpl, and cpk, respectively. An increase of

the shear-rate causes a rise of the stress, both at the peak,

rpk, and at the plateau, rpl, while cpk moves to higher values.

The detailed shear rate and volume fraction dependence of

the strength and position of the stress overshoot and the

mechanisms relating it with the microscopic structure and

particle dynamics will be discussed below.

The characteristic strain at the overshoot and their corre-

sponding strength from experiments with constant ageing

time of 200 s (t=t0B � 667) are shown in Fig. 4. In Fig. 4(a),

we see an increase of cpk with shear rate as found previously

[49] due to a stronger elongation of the cage before yielding,

while cpk is almost u independent. Figure 4(b) depicts the

stress overshoot magnitude, rpl=rpk � 1, which exhibits an

almost linear decrease with increasing u at least for high vol-

ume fractions approaching random close packing. Note that

at the highest volume fraction, we do not detect a stress over-

shoot at some of the rates measured. The continuous

decrease of the magnitude of the stress overshoot may be

attributed to the diminishing free volume as the volume frac-

tion is increased toward random close packing [49], which

FIG. 2. Scaled stress, rR3=kBT, versus strain, c, in a lin-log plot from step

rate start-up experiments of multiple u for the R¼ 267 nm PMMA particles

in decalin, at a fixed rate resulting in Pe0¼ 0.0019 (or _c¼ 0.0064 s�1) corre-

sponding to 0.013<Pesc< 0.025. Lines are simple linear fits up to c¼ 1%

as discussed in the text, extended to c¼ 3% to show the deviation from line-

arity. Inset of top-left shows the low strain data in lin-lin plot to indicate a

nonzero intercept. Measurements were taken at a waiting time of 200 s

(t=t0
B � 667).

FIG. 3. Scaled stress, rR3=kBT, vs strain, c, in a lin-log plot from step rate

start-up experiments of u¼ 0.587 for the R¼ 267 nm PMMA particles in dec-

alin, at different rates as indicated, ranging between 0.0019<Pe0< 0.038 or

equivalently 0.018<Pesc< 0.366. The values of rpk, rpl, and cpk are also

defined in the figure, respectively, as the peak and plateau stresses, as well as

the peak strain. Measurements were taken at a waiting time of 200 s

(t=t0B � 667).
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prohibits significant structural distortion and therefore stress

storage and relaxation [49].

IV. WAITING TIME DEPENDENCE (AGEING)

Before we proceed further, we briefly discuss the waiting

time dependence (ageing) of the stress overshoot. The data

presented in Figs. 2–4 as well as those in the main body of

this paper were taken following a strict experimental proto-

col with a constant waiting of tage¼ 200 s (corresponding to

t=t0B � 667) after shear rejuvenation. This has proved suffi-

cient to ensure relaxation to a reproducible steady state after

rejuvenation, either using a protocol of zero shear rate or

zero stress for the relaxation process, leading to invariant

transient step rate data. It should be noted however that for

longer waiting times, tage, the strength, but not the position,

of the overshoot is changing. Therefore, we have performed

a detailed study of the effects of ageing on the stress over-

shoot using similar PMMA particles (with R¼ 183 nm and

r� 12%) in an octadecene/bromonapthalene mixture to

avoid evaporation and suppress van der Waals attractions.

Although the full details of this study are beyond the scope

of the present paper, here we show in Fig. 5 the resulting

Pe dependence for different ageing times. As shown in

Figs. 5(a) and 5(b), the stress overshoot becomes stronger

with waiting time, mainly at low Pe, until it reaches a steady

state at long times, often larger than 5000 s (corresponding to

t=t0
B � 3:89� 104). At high Pe however [Fig. 5(c)], the stress

response is almost independent of the waiting time. The

increase of the stress overshoot with waiting time, at low Pe,

is qualitatively similar to previous findings in Lennard-Jones

glasses [74].

Figure 5 reveals the two Pe regimes. At low Pe, as the

shear rate is increased, the magnitude of the stress over-

shoot becomes stronger with waiting time. At long waiting

times (here we reached beyond t=t0B � 104) when the steady

state is approached, the increase of the strength of the over-

shoot with shear rate is weaker. At high Pe however, Fig. 5

indicates a clear drop of the magnitude of the stress over-

shoot with the values affected much less by waiting time

than at low Pe, if at all. Hence, the magnitude of the stress

overshoot exhibits a maximum at some characteristic Pe.

This maximum in the response is more pronounced at

shorter waiting times, while at long ones the increase at

low rates tends to level-off. The characteristic Pe beyond

which the stress overshoot starts to become weaker is

slightly u dependent. The same nonmonotonic trend of the

height of the overshoot as a function of Pe is seen for binary

mixtures [74].

In Fig. 6, the magnitude of the stress overshoot is shown

as a function of volume fraction for different Pe0. For an in-

termediate Pe0 (¼ 0.009) data are shown both for short and

long waiting times for comparison. Ageing causes a change

in the response at low rates. At short times (tage� 100 s,

corresponding to t=t0B � 778), the stress overshoot drops

continuously with volume fraction both below and above

the glass transition volume fraction. At longer times

FIG. 4. Data from step rate experiments for the R¼ 267 nm PMMA par-

ticles in decalin at an ageing time of 200 s (t=t0
B � 667): (a) Strain values of

the peaks rpk as seen in Figs. 2 and 3 plotted against Pe0 for different u. (b)

The normalized magnitude of the stress peak, rpk/rpl� 1, plotted against u
for various rates indicating the loss of the peak at high u.

FIG. 5. Waiting time dependence of the stress overshoot for HS PMMA par-

ticles with R¼ 183 nm at u¼ 0.575 in octadecene/bromonapthalene for dif-

ferent shear rates (Pe0). (a)–(c) Normalized stress r=rpl versus strain c for

start-up tests at three different shear rates (_c ¼ 1:5� 10�4; 9� 10�3

and 0:15), indicated by arrows in (d), and different waiting times as indicated

by different symbols. (d) Strength of the stress overshoot rpk/rpl� 1 as a

function of Pe0 for three different age times, tage¼ 100 s (blue open square),

2000 s (red open circle) and the limit of long time with tage¼ 5000 s (black

solid square) or tage¼ 17 000 s (black solid circle) (corresponding to t=t0
B

� 3:89� 104 or 13:2� 104, respectively).
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approaching steady state, a nonmonotonic behavior is

detected with a strengthening of the overshoot at low vol-

ume fractions and a weakening at higher ones. While this

behavior is typically observed at low rates, at high ones

(here Pe0> 0.1) the magnitude of the overshoot decreases

monotonically as u is increased at all regimes both in the

liquid and glassy state as found earlier and attributed to the

decrease of free volume as the volume fraction is increased

toward close packing [49].

V. BD SIMULATIONS

To complement the experimental rheological findings, we

performed extensive BD simulations at different volume

fractions and shear rates probing the stress, structure and par-

ticle dynamics during start-up of shear. We first present the

stress response (Fig. 7) for a start-up shear with Pe¼ 0.1 and

1 at various volume fractions below and above the glass tran-

sition. The simulations reproduce stress overshoots similar to

the experimental both in terms of the shear rate and the vol-

ume fraction dependence. Both cpk and rpk increase with Pe

while the magnitude of the peak decreases as u is increased

at high Pe. In order to quantitatively compare experiments

and simulations, the former were plotted as a function of

Pesc. It should be pointed out that although this is possible at

a single u, the volume fraction dependences at a single shear

rate involves comparison at different values of Pesc as tB is u
dependent.

Figure 8(a) shows the characteristic strain cpk of the stress

overshoot from BD simulations as a function of Pe together

with the corresponding experimental data plotted as a func-

tion of Pesc. The qualitative findings are similar in both cases

showing an increase of cpk with increasing Pe.

Figure 8(b) depicts the u dependent magnitude of the

stress overshoot from BD simulations and experiments. The

trends observed in the latter at long waiting times are in

accordance with findings in BD simulations. They reveal a

complex volume fraction dependence that further depends

on the Pe regime studied. At low Pe’s, the most notable fea-

ture of the u dependence is the existence of a maximum

in the strength of the stress overshoot at a characteristic u.

The strength of the overshoot first increases with volume

fraction with a slope that depends on Pe, being higher at low

Pe (¼0.1 in BD) and weaker at intermediate (¼1 in BD).

Increasing u in the liquid and approaching the glass regime

the neighbor cell (cage) becomes more well-defined, as man-

ifested by the increase of the first structure factor peak. As

the cage becomes more well-defined, it can be more deform-

able under shear and therefore store more entropic energy in

the linear regime, which is then released upon yielding, giv-

ing a stress overshoot. This qualitative picture may rational-

ize the increase of the overshoot at low and intermediate Pe,

up to a critical u. A weak increase of the stress overshoot is

also predicted within the MCT framework at low Pe and

approaching the glass transition [75].

Above a critical u, the stress overshoot starts to drop

again and tends to diminish as the volume fraction is

increased further in the glassy state as seen and discussed

above for shorter waiting times. The critical volume fraction

where this maximum of the stress overshoot takes place

appears around u	 0.6 [Fig. 8(b)]. At high Pe (¼ 10 in BD),

the magnitude of the overshoot decreases constantly with u
below and above the glass transition in agreement with

FIG. 6. Magnitude of the stress overshoot rpk/rpl� 1 as a function of vol-

ume fraction u (for the PMMA particles with R¼ 183 nm in octadecene/bro-

monapthalene) at different shear rates quantified by the Peclet number Pe0

(as indicated) in the limit of long ageing time (here for t=t0B 
 104). In addi-

tion for an intermediate Pe0 (¼ 0.009) data sets are shown for two age times

as indicated.

FIG. 7. Scaled stress, rR3=kBT, versus strain, c, in a lin-log plot from step

rate start-up BD simulations for two different rates (a) Pe¼ 1 and (b) Pe

¼ 0.1 at various u as indicated in the legend.
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previous findings [49] and the long time, steady state experi-

ments at high Pe0 presented in Fig. 6. As discussed before

[49], approaching random close packing the free volume and

therefore the deformability of the cage decreases, precluding

strong structural distortion and stress storage. The volume

fraction, where this effect takes over, signifies the critical u
where the maximum strength of stress overshoot is found as

observed in both experiments and BD simulations. This is Pe

dependent. This means that the critical u, where the stress

overshoot is stronger, is determined by an interplay between

the distance between first neighbors (size of the cage) and Pe

which dictates if a particle can reach its cage limits due to

shear before Brownian relaxation takes over. We therefore

can reasonably expect that even for the higher Pe, where in

the range of volume fractions measured currently, only a

monotonic decrease of the strength of the overshoot is

observed, eventually the overshoot will weaken and disap-

pear at lower u, in the liquid regime.

Some quantitative differences between BD and experi-

ments observed in Fig. 8(b) in the characteristic volume frac-

tion, where the maximum of the stress overshoot occurs,

could be due to the lack of HIs, which may cause the simula-

tions to underestimate the steady state stresses at lower u.

Otherwise, an absolute shift of u and Pe between the two

data sets may also be the reason.

A. Structural properties and rheological response

1. Transient structure

In order to elucidate the origin of the stress peak in a hard

sphere system, the transient and steady state structural infor-

mation of the particles under shear [69,73] is of great inter-

est. The average radial particle distribution function, g(r), is

unable to capture the anisotropy under shear, showing rela-

tive invariance from the state at rest. By examining what

occurs at the three different planes xy (velocity-gradient),

xz (velocity-vorticity), and zy (vorticity-gradient), a much

clearer picture emerges. Since our interest lies in the local

structure (cage), rather than the whole projection, g(r) data

are gathered at a maximum distance of 0.7 radii from the

plane. The resulting g(r) are 2D projections of the radial dis-

tribution function in the respective planes of slices with finite

width (1.4 radii) and an area of 10� 10 particle radii. The xy

plane shows the most interesting features, and its analysis

gives an accurate description of the startup stresses. The val-

ues of the 2D g(r) are arbitrarily normalized to avoid clip-

ping, although g(r) shown in the same figures have been

normalized by the same factor. To achieve greater clarity for

structural changes, from some g(r) the grest(r) describing the

state at rest was subtracted. g(r) are shown in false blue-

green-yellow colors, from low to high intensities, while

g(r)� grest(r) are in false blue-red colors, showing both nega-

tive and positive values.

Figures 9(a) and 9(b) show 2D g(r) in the xy plane for

u¼ 0.58 at rest and under shear (Pe¼ 1), respectively. The

g(r) corresponds to a time average in the steady state. The xy

plane anisotropy under shear presents itself as a higher inten-

sity along the compression axis, indicated by a red line, and

a reduction of intensity along the compression axis, indicated

by a green line. The intensities are shown in more detail in

Fig. 9(c), where the g(r) along the compression and exten-

sional axes are compared to the isotropic condition at rest.

Along the compression axis g(r) exhibits a first peak that is

higher than that at rest, whereas it is weaker in the extension

direction. At larger distances, the state at rest has the most

well defined minima and maxima, followed by the compres-

sion and finally the extension axis. In contrast to the shifts of

the positions of the first maxima, which are hardly discerni-

ble, the minima and higher order maxima do show a clear

shift to smaller r/R in the compression axis and to larger r/R

in the extension axis.

The steady state g(r) shows that along the compression

axis a large number of collisions occur, indicated by the

increased height of the first peak and the positional shift of

the subsequent minima and maxima. In the extension axis,

however, there are fewer collisions. Furthermore as the drop

in the first maximum and the small positional shift to larger

FIG. 8. (a) Strain values cpk of the stress peaks as a function of Pe for vari-

ous u. Symbols connected by solid lines show the BD simulation results.

Broken lines show experimental data for comparable values of Pesc from

Fig. 4 color coded to the nearest u with BD simulations. (b) Magnitude of

the stress overshoot, rpk/rpl� 1, plotted against u for a selection of rates

indicating the loss of the peak at high Pe. Symbols connected by solid lines

show the BD simulation results. Broken lines show experimental data from

Fig. 6 at long ageing times for Pesc¼ 1.5 (broken red line) and for

Pesc¼ 0.09 (broken black line).
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distances indicate there is a larger flow of particles that are

in transit along the extension axis, “smearing” out g(r) in the

extension axis.

The transient structural properties in the xy plane as well

as the stress response for a startup shear simulation are shown

in Figs. 10 and 11. Specifically, u¼ 0.58 and Pe¼ 1 are cho-

sen as a representative conditions due to the relatively large

stress peak and clarity of the structural changes. Various

points within the transient are examined, following the stress

response in the linear regime at c¼ 1% (A), during the onset

of nonlinear behavior at c¼ 10% (B), at the height of the

peak, c¼ 20% (C), and at the steady state, c¼ 60% (D).

Figure 10 shows 2D g(r) from u¼ 0.58 and 0.62 with the

grest(r) of the state at rest subtracted. As strain is increased,

the anisotropy becomes more pronounced, starting from a

small increase of the first maximum of g(r) in the compres-

sion axis at c¼ 1% (A). At c¼ 10% (B), the increase widens

and anisotropy appears at the second peak, while the first

maximum in the extension axis decreases and particle den-

sity increases at the first minimum. Increasing strain to 20%

(C), the compression axis shows an even wider increase,

with the extension axis showing a spread of particles reach-

ing close to the secondary peak, while the intensity in the

whole axis becomes more diffuse. In comparison to the peak

stress at c¼ 20%, the steady state (c¼ 60%, D) reveals a g(r)

FIG. 9. PDF g(r) in the velocity-gradient (xy) plane as obtained by BD

simulations for u¼ 0.58 (a) at rest and (b) at the steady state under

shear at Pe¼ 1 with the compression axis shown as a red line and the

extension axis as a green line. The color scale along with the direction

of the shear field is shown on the top. (c) Projection of g(r) for the

same conditions along the compression axis, the extension axis and at

rest. Arrows show the position of the first minimum of g(r) for the vari-

ous directions.

FIG. 10. PDF g(r) in the velocity-gradient (xy) plane after subtraction of the

state at rest for u¼ 0.58 (left) and u¼ 0.62 (right) for Pe¼ 1 at strains of

1%, 10%, 20%, and 60%, from top to bottom, corresponding to the A, B, C,

and D positions in Fig. 11. The g(r) have been normalized with the same fac-

tor for all strains and u.

FIG. 11. Maximum value of g(r) for the compression (�) and extension (o)

axes (xy plane) as a function of strain for u¼ 0.58 and Pe¼ 1 with the stand-

ard error of the average (eight runs). Inset depicts the transient stress rxy ver-

sus strain c. Positions A, B, C, and D are marked at strains of 1%, 10%, 20%,

and 60% for both the main figure and the inset as indicated in Fig. 10.
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with stronger intensity “lobes” in the x-axis of the first and

second maxima, while the intensities of the first minima in

the extension axis are reduced.

The observations from the g(r) of Fig. 10 are quantified in

Fig. 11 which shows the first maximum values of g(r) as

taken from the compression and extension axes, with the cor-

responding stress shown in the inset. The maximum of g(r)

in the compression axis does not show much change with the

application of shear. There is a clear increase due to an accu-

mulation of particles in the compression axis but the result-

ing effect is small, since the state at rest is already at high

particle density. However, the extension axis shows substan-

tial differences from the state at rest, with the maximum of

g(r) decreasing in amplitude with the application of shear

and exhibiting a minimum at or slightly after the strain

where the stress shows the peak. As shown in Figs. 9(c) and

10, the decrease of the g(r) maximum corresponds to the

increase in probability of finding particles further away, to-

ward the first minimum of g(r).

Due to hard sphere interactions, the maximum of g(r)

directly reflects the stress response of the system. In gen-

eral, the maximum of g(r) along the compression axis,

gcomp(rmax) has a positive contribution to the rxy stress com-

ponent, while that in the extension axis, gext(rmax), a nega-

tive (Fig. 10). This results in a null stress response for an

isotropic structure and a nonzero stress for the anisotropy as

caused by shear. Although it is not supposed to reproduce

exactly the stress, the difference gcomp(rmax)� gext(rmax)

provides a qualitative measure of the additional stress built

in the system due to shear induced structural anisotropy. In

the case of these highly concentrated suspensions, the

changes in gcomp(rmax), as shown above, are minimal and

thus the contribution to stress is mostly due to changes on

the extension axis.

By increasing u and decreasing Pe toward Pe¼ 0, the

magnitude of the stress peak weakens, both in experiments

[Fig. 4(b)] and simulations [Fig. 8(b)]. Similar behavior is

seen in the structural properties, gcomp� gext, as can be seen

in Fig. 12, where the transient stresses for two u (0.58, 0.62)

and two Pe (0.1, 1) are plotted in tandem with the difference

of the first maximum of g(r) in the compression and exten-

sion axes, [gcomp(rmax)� gext(rmax)]. The resulting maximum

qualitatively shows similar behavior to the stress. Since the

changes in the compression axis are minimal, the appearance

and dependence of the stress peak are mostly correlated with

structural changes in the extension axis.

The structural information during the transients and their

correlation to the stresses provide strong insight on the origin

of the stress peak in concentrated hard sphere systems.

Interestingly, although counter-intuitive, both the increase of

the maximum of g(r) on the compression axis and the

decrease on the extension axis contribute positively to the

shear stress. This is understood by recalling that the depar-

ture from rest of the relevant deviatoric stress is

FIG. 12. Transient stress rR3=kBT versus strain c from simulations (bottom) shown in relation to the difference of the maxima in the PDFs in compression

and extension direction, gcomp(rmax)� gext(rmax) as a function of strain (top) for u¼ 0.58, 0.62 and Pe¼ 0.1, 1. Error bars in (a) and (b) indicate the standard

error for the average of 8 runs, while vertical arrows in (d) specify the position of the stress peaks.
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rxy ¼ �n2kBTRð2RÞ2g0ð2RÞ
ð ð

nxnyfdX; (4)

with n being as mentioned above is the particle number den-

sity, g(2R)¼ g0(2R)(1þ f), g0 (2R) being the value at rest, dX
being the solid angle, and nx, ny being the components of the

separation vector between two particles at contact in the x and

y direction. Hence, rxy is positive both in the compression

axis where f is positive and nxny negative and in the extension

axis where the signs of f and nxny are reversed [49].

Consequently, as the stress is related with the number of

particle collisions both those along the compression axis and

those along the extension axis are additive. Since the first

maximum of g(r) is proportional to the number of occurring

collisions (higher particle density is tied to more frequent

particle interactions), Fig. 12 indicates that the structural ori-

gin of the transient and steady stresses lies in the disturbance

of the isotropic pressure balance, more specifically the reduc-

tion of collisions in the extension axis, rather than the

increase of collisions in the compression axis.

As mentioned already in Fig. 11, we see that the peak

stress takes place at or very close to the minimum of gext

(rmax). More details on the peak can be acquired by examin-

ing the differences in the extension axis between the (C) and

(D) points of Fig. 11. At 20% strain, (C), the extension axis

shows a high concentration of particles in the first minimum

of gext(r), particles which are on their way to escape their

cage, but are still trapped. Well beyond the stress overshoot,

at 60% strain, (D), and onward at steady state, this clustering

of particles has decreased and is spread out, as particles are

escaping the cage and flow takes place. Thus, the minimum

in gext(rmax) is a manifestation of the escape of particles ini-

tially trapped within the cage thereby reducing the stress.

Further understanding of the stress peak lies in the vol-

ume fraction and Pe dependence. As the shear rate is

decreased toward Pe¼ 0, both the strain and amplitude

of the peak decrease (Figs. 3–5 and 12). At the lowest

shear rates, Brownian motion dominates and particles

which would be trapped at higher rates have time to escape

through thermally activated diffusive motion, reducing the

height and the strain of the peak. On the other hand, at

higher rates, particle escape is activated by shear induced

collisions, while the trapping of particles in an anisotropic

structure at intermediate strains around the yield strain

causes a stress overshoot.

Therefore, with the application of high shear, the cages

are able to store energy in the form of cage elongation or dis-

tortion, which is then released when the cage finally breaks.

In the case of increasing u, there is less space available for

cage elongation, leading to weaker stress overshoots.

However, we also have seen in Fig. 5 that when the shear

rate exceeds a certain value, at high Pe, the strength of the

overshoot starts decreasing again. This indicates that we

have passed to the regime where Brownian motion is not

significant any more (approaching the non-Brownian re-

gime) where entropic elasticity becomes progressively less

efficient in recoiling cage deformation after the yield point.

Therefore, in this regime, beyond a critical Pe that is vol-

ume fraction dependent the stress overshoot progressively

weakens. This dependence is also seen in BD simulations at

high volume fractions and maybe is related microscopically

with collision induced cage escape of particles in a wider

strain range around the yield point, a mechanism that is pro-

moted at high rates and volume fractions. The latter is also

supported by the fact that the critical Pe beyond which the

stress overshoot decreases again shifts to lower values with

increasing volume fractions as seen indirectly in Fig. 8(b)

by comparing the curves at different Pe, and in agreement

with findings in binary hard spheres [74].

The lobes occurring in the steady state under shear

(c> 60%, Fig. 10) are due to the geometry of simple shear

flow. Simple shear occurs through the addition of an exten-

sional flow (in the extension axis), coupled with a rotational

flow. The combination of the two leads to a higher probabil-

ity for particle collisions along the shear direction, as well as

in the compression axis.

2. Steady state structure

Next we turn our attention to the structure deduced from

BD simulation at steady state in all three different planes

relative to shear. Figure 13 shows the steady state g(r) (after

subtracting that at rest) in the xy, xz, and zy planes at

Pe¼ 0.01, 0.1, 1, and 10 for u¼ 0.58. Different rates show

similar features when looking at the same plane, although

with less intensity as Pe and thus shear induced cage defor-

mation is decreased. Besides the features in the xy (velocity-

gradient) plane discussed above, we observed that g(r) in the

xz (velocity-vorticity) shows an increase of the first and

second maxima with a higher localized intensity along the

x axis. The zy (vorticity-gradient) plane mirrors the features

of the xy plane, with the localized intensity increasing in the

y axis. The intensity variations found for Pe¼ 0.01 are due

to statistical errors in the structural differences.

3. Confocal microscopy stress extraction

Confocal microscopy experiments with the nearly hard-

sphere PMMA particles have produced similar transient

structures as can be seen in Fig. 14 for u¼ 0.56 and

Pesc¼ 0.594. From the structural information, we can esti-

mate the stress tensor using the hydrodynamic pair particle

approach [66,69,76], through equation

hRi 	 �n2kBT

ð
r>2R

75

2

R

r

� �6
rr

r2
� 1

3
I

� �
g rð Þdr; (5)

where r is the particle separation vector and I is the isotropic

tensor. Since the equation is modeled on dilute HIs, it can

only qualitatively capture the stress response of the concen-

trated hard sphere suspension, in a similar fashion to the BD

simulations.

Figure 14 shows the stress calculated according to Eq. (5)

from the structural information and particle coordinates

measured in confocal microscopy experiments. Although

measurements do not extend beyond a strain of 25%, the

stress response captures the main features measured in rheol-

ogy showing an increase which then reaches a rough plateau.
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The noise in the calculated stress arises mainly from the lim-

ited statistics of the measurements and to a smaller extent

from uncertainties in particle locations and polydispersity.

Since the volume fraction and shear rates are low in confocal

microscopy, the stress peak is not strongly apparent, in

agreement with rheological experiments and simulations

[Fig. 8(b)]. Nonetheless, confocal microscopy experiments

verify the main structural findings from BD simulations and

may be further used to quantitatively extract the stresses

measured in macrorheological measurements.

4. Transient normal stress measurements

As a final note with regard to the structure-rheology rela-

tion, we present the behavior of the normal stresses as deter-

mined from BD simulations and confocal microscopy data

during a start-up test. The first and second normal stress differ-

ences are given by N1¼rxx� ryy and N2¼ ryy�rzz, respec-

tively, where rxx, ryy, and rzz are the diagonal components of

the stress tensor with their average being the suspension os-

motic pressure P¼�(rxxþ ryyþrzz)/3. In concentrated hard

sphere suspensions, normal stresses have nonzero values which

are both negative at high shear rates where Brownian motion

is not important, while N1 acquires positive values at low Pe

where Brownian motion dominates [73].

Figure 15(a) shows the transient N1 and N2 as a function

of strain for Pe¼ 0.1 and u¼ 0.56 from BD simulations,

FIG. 13. PDF g(r) for u¼ 0.58 with Pe¼ 0.01, 0.1, 1, and 10 (from left to right) in the velocity-gradient (xy), velocity-vorticity (xz), and vorticity-gradient

(zy) planes (from top to bottom) averaged at the steady state and shown after subtraction of the g(r) at rest. The contributions of the various g(r) planes to nor-

mal stresses, N1 and N2, are selectively shown. All g(r) in the figure have been normalized by the same factor.

FIG. 14. Above: PDF g(r) in the velocity-gradient (xy) plane after subtrac-

tion of the state at rest for confocal measurements at u¼ 0.56 for

Pesc¼ 0.594 at strains of 5%, 9%, and 17% corresponding to the A, B, and

C positions as shown in the below. Below: The stress calculated based on

confocal micrographs as described in the text.
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while Fig. 15(b) shows the same quantities extracted from

confocal measurements for Pesc¼ 0.594 and u¼ 0.56 (same

data as Fig. 14). Although the general behavior observed is

reminiscent of the shear stresses, rxy, we find that N1 has

positive values, while N2 has negative values. The sign of

the normal stress differences can be understood by examin-

ing the structure under shear. Figure 13 schematically shows

the relation of the g(r) intensity to N1 and N2 in the xy and

zy planes (velocity-gradient and vorticity-gradient) as pre-

sented in [73]. In general, the increase of intensity at contact

along a certain direction represents a larger pressure giving

rise to an increase in the corresponding diagonal stress ele-

ment in absolute values. Consequently, N1 is positive and N2

is negative as the g(r) at contact shows higher intensity along

the y axis in the corresponding g(r) (xy and zy planes,

respectively). We should note that since these values are

quite small the error is much higher than that involved in the

determination of rxy. Nevertheless, for the simulations, a

clear peak in N1 and �N2 is seen around the position of the

stress overshoot. The nature of the normal stress transient

peaks is of similar origin to that of the shear stress, i.e., the

elongation of the cage before breakage. Similar findings

have been presented recently by computer simulations [77].

We should also note in comparison to BD simulations the

normal forces deduced from confocal experiments, although

are in qualitative agreement, quantitatively are one order of

magnitude smaller. This is in contrast to shear stress values,

which due to the absence of HI, are systematically lower in

absolute values in BD compared to rheological experiments

and confocal data (see Figs. 2, 7, and 14). However, the

shear stress determined from confocal data (Fig. 14) also

exhibits a weaker, and with stronger fluctuations, stress over-

shoot compared to BD simulations. Although the reason

behind such discrepancy is yet not fully understood, it could

partly be due differences between the experimental system,

in terms of volume fraction, polydispersity and possible also

interaction potential as in confocal experiments particles

may have some residual charges.

B. Microscopic dynamics

1. Direction and rates

The physical description of yielding in a concentrated

hard sphere system can be completed by examining micro-

scopic particle motions under shear. Although this has been

the focus of previous work [42], here we present a short

overview of the relevant phenomenology and its physical

interpretation in relation to the stresses and structure.

Moreover, we extend this study in presenting additional data

providing information on the volume fraction dependence. In

Fig. 16, we examine the transient and steady state displace-

ments at high u, along the compression and extension axes

which was shown to be the most influential on the stress

peak.

Figure 16 shows particle mean square displacements

under shear for BD in the compression [Fig. 16(a)] and

extension [Fig. 16(b)] axes for u¼ 0.62 and three different

Pe (0.01, 0.1, and 1) in comparison with the corresponding

particle displacements at rest. For the lowest Pe¼ 0.01, only

a single run was examined due to long simulation times. In

Figs. 16(c) and 16(d), we also show the corresponding effec-

tive diffusivity, Deff¼hDxi
2i/[2(t� tw)], while in Figs. 16(e)

and 16(f) the local slope of the MSD is represented by

a¼ dlog (Dxi
2)/dlog(t). As mentioned earlier, the data under

shear represent an average over all particles, N, during a

time window of Dt¼ t� tw, or equivalently an elapsed strain

of Dc¼ c� cw. Two states are chosen: (a) A transient state

with cw¼ 0, revealing the evolution of the particle displace-

ments during the start-up test and (b) a steady state with

cw> 0.5 where the displacements are monitored during well-

developed shear flow. Note that corresponding stresses for

these tests are shown in Fig. 12.

For the transient state, hDxi
2i generally shows an initial

increase which follows the response at rest, with a subse-

quent transient super-diffusive behavior [42,46,49,50] which

eventually becomes diffusive (slope of unity) at longer t� tw.

At large tw (or cw> 0.5), corresponding to the steady state of

well-developed shear flow, hDxi
2i matches the diffusive

behavior for long t� tw, whereas at short t� tw, it shows

lower values compared to the displacements at rest due to in-

cage constriction of particles [Figs. 16(a) and 16(b)]. The lat-

ter is better seen at high Pe, whereas at the lowest Pe, is

essentially absent; moreover, particle dynamics (hDxi
2i or

Deff) for the transient and the steady state are almost identi-

cal, thus not well discerned in Fig. 16. The transient super-

diffusion and constriction effects can be seen in Figs. 16(c)

and 16(d) which show the effective diffusivity, Deff. A

decreasing effective diffusivity represents subdiffusive

FIG. 15. The transient normal force components N1 and N2 from (a) BD

simulations on Pe¼ 0.1 for u¼ 0.56 and (b) stresses from confocal micros-

copy at u¼ 0.56 for Pesc¼ 0.594, extracted as discussed in the text. Error

bars in (a) show the standard error of the average from multiple runs (eight

runs), while (b) shows a single experimental measurement.
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motion, a constant value shows simple diffusion, while a

positive slope reflects super-diffusive motion. These

responses are manifested more clearly through a(t) [shown in

Figs. 16(e) and 16(f)], where values smaller than 1 represent

subdiffusive, equal to 1 diffusive and larger than 1 super-

diffusive regimes. As Pe is decreased, long-time diffusivity

decreases, while both the constriction and super-diffusive

regimes becoming less pronounced and eventually fading

out at the lowest Pe¼ 0.01. In Fig. 17(a), we show that these

effects also diminish with decreasing volume fraction. By

comparison of the dynamics on the compression [Figs. 16(a)

and 16(c)] and extension [Figs. 16(b) and 16(d)] axes, we

additionally observe that the effects of constriction at short

times, the transient super-diffusion and steady state super-

diffusion are all enhanced in the direction of the compression

axis. Although not obvious by a first look, a careful inspec-

tion of the long-time diffusivity depicted in Figs. 16 and 17

reveals that at steady state these are slightly, but clearly, dif-

ferent in various directions: The highest being in the exten-

sion axis, followed by that in the compression axis and

finally the lowest measured in the vorticity axis.

The super-diffusive response, particularly for tw¼ 0, is

possibly a reflection of the elastic, entropic recoil of a dis-

torted cage. This however is manifested as a ballistic like

motion at the very short times corresponding to length scales

within the cage, as it takes place around (hDxi
2i/R2)1/2	 0.1.

This corroborates another important finding, namely, that the

position (strain) of the stress overshoot does not coincide

with the minimum in the effective diffusivity representing

the super-diffusive behavior. Instead, the relevant strains

of super diffusivity are smaller than those where the stress

overshoot is observed, ranging from about the beginning of

nonlinearity up to the stress peak. Therefore, the transient

super-diffusion can be interpreted as a ballistic-like, coopera-

tive motion of the particles during yielding, as they are being

pushed toward the limit of the cage due to shear, prior to

yielding. Interestingly, the transient displacements along the

extension axis deviate earlier from those at rest than the dis-

placements along the compression axis. This suggests that

yielding is initiated in the extension axis as also seen in the

structural data of Figs. 10 and 11. Along these lines the

super-diffusive motion may more specifically reflect a con-

certed particle transition from the compression to the exten-

sion axis as the structure is continuously deformed with

more particles brought together along the compression axis

and then escape out of the cage mainly on the extension axis.

An analogous mechanism for shear induced particle rear-

rangements has been suggested to relate with structural

FIG. 16. Two time MSDs for u¼ 0.62 in comparison to the state at rest, examined in the (a) compression and (b) extension directions from start-up shear sim-

ulations at Pe¼ 0.01, 0.1, and 1, using waiting strains of cw¼ 0 (transient) and cw> 0.5 (steady state). The corresponding effective diffusivity, Deff¼hDxi
2i/

[2(t� tw)], is shown for the (c) compression and (d) extension directions, with arrows showing the corresponding positions of the stress peaks. The slope of the

two time mean square displacement calculated as a¼ dlog (Dxi
2)/dlog(t) along the (e) compression and (f) extension directions.
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distortions during similar start-up tests and a change of sym-

metry due to yielding [41].

The constriction of in-cage motion at short time scales

during steady state is found to be correlated to the distortion

of the cage at high rates (Fig. 13). Such cage deformation

leads to a smaller free volume per particle, and a subsequent

decreased mobility. Thus, the effects of constriction and

transient super-diffusion are more pronounced in glassy sam-

ples in the compression axis, as a consequence of the smaller

cage dimension. A similar drop of short-time, or instantane-

ous, diffusivity with increasing shear rate has also been seen

at lower volume fractions in the liquid regime by SD simula-

tions [73], in confocal microscopy experiments on binary

colloidal glasses [74] as well as in orthogonal superposition

rheometry of colloidal glasses at high frequencies during

shear [78].

A relevant interesting effect of steady state super-

diffusion occurs at higher shear rates and u as can be clearly

seen in the corresponding Figs. 16(c) and 16(d) of the effec-

tive diffusivity for Pe¼ 1. This phenomenon may be related

to the enhancement of spatial constriction under these

conditions, through a transition from highly constrained in-

cage motions to an out-of-cage shear-induced diffusion.

Although it takes place continuously beyond the stress over-

shoot, the origin of the steady state super-diffusion should be

similar to that of the transient super diffusion. In the latter

case, as discussed above, particles transition from in-cage

motion at rest to sheared out-of-cage diffusion through a

mechanism that involves a concerted motion from the com-

pression to the extension axis that gives rise to a transient

effect which advances the stress overshoot (Fig. 16). In

steady state super-diffusion, the cage constriction effect is

constantly renewed especially at high shear rates where

strongly deformed cages (or a large structural anisotropy) are

established under flow. Therefore, in the transition from in-

cage to out-of-cage motion particles exhibit a concerted

motion from the compression to the extension axis. Such

localized ballistic-like motion causing the steady state super-

diffusion together with the out-of-cage (long-time) diffusiv-

ity are the dynamic signatures of a sequence of structural

events involving cage breaking and reformation in a colloi-

dal glass under shear.

FIG. 17. Two time mean effective diffusivity in the vorticity direction, Deff[z]¼hDz2i/[2(t� tw)], for various u in comparison to the state at rest,

examined for (a) simulations at Pe¼ 0.1 and (b) experiments Pesc¼ 0.594 (u¼ 0.56) and Pesc¼ 0.652 (u¼ 0.57), using waiting strains of cw¼ 0

(transient) and cw> 0.5 (steady state). The corresponding non-Gaussian parameter a2z for the same data is shown for (c) simulations and (d)

experiments. Arrows in (a) for c� 0.15 and (b) c� 0.22 show the approximate stress peak positions for all u. Time scales for confocal are

scaled.
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2. Volume fraction dependence

Of additional interest is the volume fraction dependence

of shear-induced dynamics and their comparison to the dy-

namics at rest. Figure 17 shows the u dependence of the

transient and steady state effective diffusivity and the non-

Gaussian steady state behavior for an intermediate shear rate

from BD simulations and confocal experiments in the vortic-

ity direction. Simulations at Pe¼ 0.1 [Fig. 17(a)] for a range

of u from below (0.56) to above (0.62) the glass transition

show that the long-time diffusivities under shear decrease

with u. Confocal experimental data of Fig. 17(b) at u¼ 0.56

and 0.57 for Pesc� 0.5 indicate a consistent trend, although

volume fraction values may be too close to discern a differ-

ence. The transient diffusivity minimum becomes more

apparent and changes time scales for various u, even though

the strain of the peak remains approximately the same.

Moreover, at short times, a pronounced constriction effect is

detected at higher u in BD simulations.

The change of the minimum of the effective diffusivity,

coupled with the invariance of the stress peak position with u,

as before, points to a complex correlation between transient

super-diffusion and the stress overshoot. To this end, we also

note that while the transient super-diffusion becomes more

apparent with increasing u, Fig. 8(b) shows that the strength

of the stress overshoot deduced from BD simulations and rhe-

ometry experiments at low and intermediate Pe (0.1 and 1)

exhibits a nonmonotonic dependence on volume fraction. The

strength of the stress overshoot reduces with volume fraction

at high Pe in agreement with previous findings [49]. However

at low Pe (0.1 and 1), the strength of the stress overshoot

increases up to a critical u around u¼ 0.61 for BD and 0.59

in experiments and then decreases well in the glassy regime

as random close packing is approached. As Fig. 8(b) shows,

the increase is more evident for the lower Pe (0.1) suggesting

that Brownian motion plays an important role.

In Figs. 17(c) and 17(d), the non-Gaussian parameter, a2z,

is shown for the conditions and data sets of Figs. 17(a) and

17(b), respectively. For the state at rest, a2z shows a general

increase with time and with a peak detected in lower volume

fraction liquid samples. The latter is detected around the a-

relaxation time, therefore within the glass it shifts to much

longer times well outside the time window shown here. On

the other hand at short times, a2z increases with u, while at

longer times it first increases approaching the glass transition

and then decreases at the higher u’s well inside the glass, in

agreement with previous studies [5,79].

Under shear a2z shows a peak value and a reduction to

zero at long times when the system flows and particle dis-

placements become diffusive. The u dependence is simpler

than that at rest with the peak value shifted to lower strains/

times, deviating from the state at rest at short times and

becoming stronger as u is increased. Hence, at short times,

the non-Gaussian behavior is more pronounced due to con-

striction effects [Fig. 17(a)] which hinders in-cage motion,

an effect that becomes more important with increasing u and

similarly (although not shown) increasing rate.

The a2 parameter is generally associated with dynamical

heterogeneities which under shear are detected to be large at

intermediate time scales and diminish at long times where

shear-induced diffusion sets in. However, this parameter

does not fully represent dynamical heterogeneities at all time

scales. In the case of large values of a2 at short times, it

rather reflects the deviation of particle motion from Gaussian

statistics, but simple spatial analysis of dynamic properties

[5,79] shows that it does not indicate the existence of

dynamic heterogeneities. In the case of short-time constric-

tions, deviations occur due to the shear-induced cage distor-

tion and refer only to in-cage motions. Thus care should be

taken when using the non-Gaussian parameter in relation

with dynamic heterogeneity, especially shown for systems

under external fields, as previously pointed out in another sit-

uation where an external light field was imposed [80,81].

VI. OVERALL PICTURE AND DISCUSSION

Correlating the transient microstructural information with

the stress and particle displacements a comprehensive picture

of the transient start-up shear flow emerges. At small strains

(�1%), the stress increases steadily and the structure shows a

small distortion, while the displacements following those at

rest, an indication of a linear deformation regime. At higher

strains (�10%), within the nonlinear stress response (Fig. 2),

particle displacements indicate a transition from in-cage to out-

of-cage motion and transient super diffusivity (Fig. 16). g(r)

reflects this through stronger intensity of the first maximum in

the compression axis (constriction) and a corresponding

decrease in the extension axis (Figs. 10 and 11). At even higher

strains (�20%), corresponding to the stress overshoot, the

long-time displacements are already almost diffusive. The xy

plane g(r) is consistent with this behavior, with the compression

axis of the first maximum showing higher values, while indicat-

ing diffuse particle locations along the extension axis due to a

large contribution from out-of-cage motion (Figs. 10 and 11).

At the steady state regime (>60%), the measured stress relaxes

from its peak value (�20%), while particle displacements are

diffusive over long distances and structures have reached a final

steady state which still is distorted.

While the stronger constriction detected in the compres-

sion axis corresponds to a higher stress with increasing strain

due to cage elasticity, the out-of-cage motion should reflect

viscous losses. Thus in the linear regime and up to 10%

where there is little or no out of cage diffusion, the elastic

behavior dominates with a strong increase of stress with

strain. As out-of-cage rearrangements become more domi-

nant, the stress peak is reached with cages almost reaching

maximum distortion. When shear is comparable to the

Brownian motion (Pe¼ 1), some particles remain trapped

within cages even though maximum distortion has been

attained. Consequently, a stress drop occurs as the strain

increases further, associated with the release of particles that

were still trapped within the cages at the peak stress, allow-

ing a relaxation of stored stress.

Therefore, the mechanism behind the stress peaks lies in

the persistence of structural cage elasticity, since the maxi-

mum cage distortion occurs before all particles are able to

undergo out of cage relaxation. This intuitively denotes that
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high shear leads to more elongated cages during the stress

overshoot, which are partly or even totally destroyed at the

steady state. This argument is strengthened by the experi-

mental and simulations finding that smaller rates and higher

u’s produce smaller stress peaks. The former is a matter of

particles having more time to diffuse out of their cage with

Brownian motion thus allowing the system to relax with less

structural distortion, while the latter occurs because as u is

increased, less available space makes any cage distortion

more difficult. This picture holds mainly at lower volume

fractions and Pe whereas well in the glass regime the

overshoot initially shows a nonmonotonic behavior with

Pe and as u approaches rcp shows a decay with increasing

Pe. In this regime, shear induced collisions dominate over

Brownian motion (the system is approaching the non-

Brownian regime) and entropic elasticity is no longer an effi-

cient mechanism for cage relaxation.

Through the use of MCT, the work of [46] connects the

appearance of the stress peak to the local transient super diffu-

sion and a negative value of a generalized dynamical shear mod-

ulus G(t). In their formalization of G(t), they connect the

decrease of stress after the peak to an approximate time depend-

ent isotropic structure factor. Although we found the connection

of the stress peak to the transient super diffusion to be quite

complex, our structural data during and after the peak do show

strong correlation to the transient stress response. Unlike the the-

oretical approximation, the structural information extracted

from the simulations is highly anisotropic (Fig. 12). Some of the

details of the stress-strain dependence and the related underlying

microstructural and dynamic behavior seen in experiments and

BD simulation are not captured by MCT models. For example,

MCT clearly overestimates the values of the strain where the

stress overshoot takes place, although the increase with Pe is

qualitatively captured [44], and MCT cannot account for the

diminishing stress overshoot approaching random close packing

or with increasing Pe in the high Pe regime. Similarly, the differ-

ence in the position of the stress overshoot and the onset of

super-diffusive behavior is not considered by the theory.

Therefore, among other possible origins for such discrepancies

that would be interesting to explore is the use of an anisotropic

structure as an input to MCT models in order to compare the

predictions with data from experiments and simulations.

The stress, structure, and microscopic dynamics under

shear presented here might provide insights on the connec-

tion between thermal and shear activated cage melting and

therefore the comparison between shear rejuvenation and

thermally activated equilibration as suggested in literature

[82,83]. However, from another perspective, the introduction

of thermal and shear energy to a system may not be equiva-

lent. Whereas as it was shown by [47], shear-induced diffu-

sivity measured by confocal microscopy under shear may

not increase linearly with shear rate as it does with tempera-

ture, recent experiments show that the relaxation time meas-

ured by orthogonal superposition rheometry follows a linear

dependence on shear rate [78].

Note that shear induced diffusivities here depend on the

direction (although not significantly), with higher mobility

occurring in the extension axis than the compression axis.

However, long-time shear-induced and thermal motions are

found to be diffusive showing Gaussian displacements

[46,47]. Furthermore, one might expect that even if anisot-

ropy in shear-induced particle displacements is present, ther-

mal and shear energy input may lead to similar effects after

shear cessation and may therefore be equivalent in terms of

erasing material memory [82]. Nevertheless, experiments

and simulations suggest that shear induces structural anisot-

ropy which might not relax (at least within reasonable exper-

imental time) to isotropic ones in metastable glassy states

and therefore are causing residual stress remaining in the

system for a long time after the shear is switched off [84].

VII. CONCLUSIONS

We have presented transient stresses, structures, and

particle displacements during a start-up shear experiment

in concentrated hard sphere colloids with experimental

rheology, BD simulations, and confocal microscopy. We

find that the strength of the stress overshoot in experiments

and simulations increases with increasing Pe up to a char-

acteristic Pe that is decreasing with u. The yield strain

related with the stress peak increases with Pe and remains

generally unchanged with u, in both experiments and sim-

ulations. The relative height of the stress peak as well as

the strain is associated with the structural elongation of the

cage during shear, as evidenced by the anisotropy of the

pair correlation function at contact. The transient g(r) in

the xy plane at low strains is isotropic, turning into a dis-

torted structure as strain increases and showing flow lines

along the extension axis when strains increase above yield

signifying out of cage diffusion. While cage distortion is

more significant at high rates, low rates still distort the

structure, although do not elongate the cage enough to give

rise to a stress peak.

Analysis of particle displacements additionally shows that

yielding is initiated along the extension axis, verifying the

structural results. Moreover, we find that long-time diffusiv-

ities at steady state are slightly different in various directions,

with the highest in the extension axis, followed by the com-

pression and last the vorticity axis (as deduced from Figs. 16

and 17). Simulations also show that short-time displacements

under shear decrease, an effect which is more pronounced

with increasing u and Pe. These constrictions can be associ-

ated with the shear induced out-of-cage motion, as the hard-

sphere hindrance due to a progressively deformed cage

actively forces particles to move from the compressional to

the extensional direction leading to particle rearrangements

and cage breaking with a shear-induced long-time diffusivity

that increases with shear rate.

A transient super-diffusive regime occurs at intermediate

time scales, probing particles escaping their cages during

start-up flow, an effect that is more pronounced with increas-

ing u as cages become tighter. Although the stress overshoot

and the super diffusivity occur through the yielding process,

they are not qualitatively correlated. High Pe interestingly

shows a steady state super diffusive regime, which relates to

the short-time shear-induced cage constriction. Steady state

super-diffusion in conjunction with simple long-time
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diffusivity point to a state under shear where particle cages

are constantly broken and reformed.
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