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We relate, by simple analytical centrifugation experiments, the
density of colloidal fluids with the nature of their randomly packed
solid sediments. We demonstrate that the most dilute fluids of
colloidal hard spheres form loosely packed sediments, where the
volume fraction of the particles approaches in frictional systems the
random loose packing limit,φRLP= 0.55. Thedensefluids of the same
spheres form denser sediments, approaching the so-called random
close packing limit, φRCP = 0.64. Our experiments, where particle
sedimentation in a centrifuge is sufficiently rapid to avoid crystalli-
zation, demonstrate that the density of the sediments varies mono-
tonically with the volume fraction of the initial suspension. We
reproduce our experimental data by simple computer simulations,
where structural reorganizations are prohibited, such that the rate
of sedimentation is irrelevant. This suggests that in colloidal sys-
tems, where viscous forces dominate, the structure of randomly
close-packed and randomly loose-packed sediments is determined
by the well-known structure of the initial fluids of simple hard
spheres, provided that the crystallization is fully suppressed.

amorphous solids | colloids | microscopy | glass | granular matter

Physical mechanisms that determine structure and density of
noncrystalline solids remain controversial after several decades

of intense experimental (1–6) and theoretical (7–10) research. In
granular systems of hard spheres, for a wide range of experimental
and theoretical protocols, particle motion is arrested or “jammed”
when the volume fraction of the spheres reaches φRCP ≈ 0.64,
known as the random close packing (RCP) density. However, the
notion of random close packing is ill-defined; denser packings, up
to the limit of ∼0.7405, are readily achieved by increasing the
crystallinity of the structure, whereas the randomness of the RCP
state must still be quantified (11). Moreover, some experiments
(12–14) and simulations (15, 16) indicate that the system can be-
come solid-like at a much lower volume fraction, down to the so-
called random loose packing (RLP) limit of φRLP ≈ 0.55. In par-
ticular, experimental packings of macroscopic spheres, gently
sedimented in a buoyancy-matched fluid, closely approach the
RLP limit (13, 17, 18). The RLP limit, related to the friction be-
tween the constituent particles (14, 16), is even more controversial
than the RCP (11, 17). Thus, the notion of both the RLP and the
RCP states remains ill-defined (11, 19).
We form sediments out of a fluid suspension of hard micrometer-

sized spheres in a solvent, known as colloids, and demonstrate
that the structure of the initial fluid uniquely determines the
density of the sediments. This is the case for a wide range of sed-
imentation rates, which are sufficiently high to prohibit crystalli-
zation. In particular, the most disordered suspensions, where the
initial volume fraction φ0 tends to zero, form loosely packed
sediments; the volume fraction of these sediments φj approaches
φRLP. Denser suspensions form denser sediments, where φj ap-
proaches φRCP. The structure of fluids of simple hard spheres in
thermodynamic equilibrium, such as our initial colloidal suspen-
sions, is well established (20). Therefore, the observed relationship
between the structure of these simple fluids and the density of their
nonergodic sediments suggests that the thermodynamics of the
initial fluids may possibly be used to fully understand the physics of

the RLP and the RCP states in amorphous sediments. This deeper
understanding of sediments, in addition to its fundamental im-
portance, may contribute to abundant industrial processes, such as
the slip-casting (21) of ceramics, in which water is rapidly drawn
from a suspension of clay particles to form solid ceramic objects.

Materials and Methods
To form the sediments, we suspend poly(methyl methacrylate) (PMMA) col-
loidal spheres in mixed decahydronaphthalene (≥98%; Sigma-Aldrich). The
sediment is formed by centrifugation in a thermally regulated centrifuge
(Advanced LF-110 LUMiFuge), with the amplitude of the centrifugal acceler-
ation ~a set to a value between 130g and 2,080g, where g = 9.8 m/s2. We use
direct confocal microscopy, in three dimensions, to measure the radial distri-
bution function of the colloids (20) g(r) and the crystalline local bond-order
parameters (11); these metrics confirm absence of any significant crystalline
domains within the sediments. The particles are sterically stabilized by poly-
12-hydroxystearic acid (22), such that the interactions in a fluid suspension
are best described by a hard potential (23, 24). The dynamic viscosity of our
solvent at T = 22°C, obtained using a Cannon-Manning semimicro viscometer,
is ηs= 2.4± 0.05mPa·s. The average diameter of our particles is σ = 2.4± 0.05 μm
and their polydispersity is <5%, as detected by static and dynamic light scat-
tering, confocal microscopy, and scanning electron microscopy of dry particles
under vacuum; this very low polydispersity of our particles allows any variation
in thedensity of the sediments due to possible segregation of particle sizes to be
ruled out completely. The diameter of our particles is sufficiently small so that
theparticles undergoBrownianmotion. The time for a freeparticle in a solvent
to diffuse its own diameter is tD = (2kBT)

−1πσ3ηs = 12.8 s at a = 130g; this time
scale corresponds to a free particle displacement of ∼1mm along the effective
gravity, so thermal structural reorganization of solid sediments during the
centrifugation is unlikely.

All our samples are prepared by dilution (or removal of supernatant) from
the same initial batch of suspension; the volume fraction of colloids in this
batch φ00 was initially estimated as 0.3−0.4. The sample is homogenized and
randomized by vortex mixing after either dilution or removal of the super-
natant. With the gravimetric density of our solvent ρs = 0.868 g/cm3 measured
by pycnometry, the volume fractions of all our samples, as a function of φ00,
are known to a high precision. We use analytical centrifugation to obtain the
value of φ00, as detailed below. About 0.4 mL of the suspension is loaded into
an optically transparent polyamide cell, which has a rectangular cross-section
of 2 × 8 mm, so that the initial height of the sample is L0 ≈ 25 mm. The cell is
then vigorously shaken on a vortexer and placed into the centrifuge (Fig. 1
Inset). Our LUMiFuge analytical centrifuge measures light transmission
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α, where A = 0.53 and α = 1.53, which perfectly
matches the experimental data up to φ0 = 0.45.

†The Reynolds and Stokes numbers (14) in our experiments are very low, below 3 × 10−4

and 4 × 10−5, respectively. Thus, compaction mechanisms discussed by Farrell et al. (14)
are irrelevant in our case; in our range of parameters, particles entering the packing do
not have the ability to rearrange the structure of the packing. The Péclet number (5)
ranges in our studies from 10 to 103.
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profiles through the sample (Supporting Information) at a wavelength of 870
nm, in situ, during the centrifugation.

Results
To accurately calibrate the volume fraction of particles in the
suspensions, we measure the velocity of colloidal sedimentation
(25). As the particles sediment, a colloid-free region (superna-
tant) is formed in the topmost part of the sample, as shown in
Fig. 1 Inset. We track the position x of the boundary between the
supernatant at the top of the sample and the fluid colloidal sus-
pension below. First, x(t) is linear in time; then, it saturates when all
of the particles are fully arrested within the sediment, as shown in
Fig. 1. Interestingly, the linear regime survives even for the densest
suspensions, during most of the centrifugation process, indicating
that the densities and the structures of our fluid suspensions do not
significantly change during the centrifugation. Although significant
spatial fluctuations inmicroscopic sedimentation velocities of the
particles were previously observed in similar systems (26), these
fluctuations do not necessarily change the structure of the sus-
pensions. Indeed, the fluctuations were interpreted in the past in
terms of an effective temperature (26); in our system of hard
spheres the energy scale is missing, such that the average structure
of the fluid does not depend on the temperature. The slope of the
linear region of x(t) in Fig. 1 yields the velocity of the sedimen-
tation front v= dx/dt. For a very dilute suspension, v is determined
by the simple Stokes’ law. At high concentrations of colloids, front
velocities are slowed by interparticle interactions that increase the
fluid drag acting on each colloidal sphere.
To focus on the hydrodynamics of our fluids, we divide our

front velocities, obtained in the linear range of x(t), by the am-
plitude of the centripetal acceleration a = (2πf)2R, where R and f
are the radius and the frequency of rotation in the centrifuge,
respectively. For Stokesian sedimentation of a sphere in a fluid, its
velocity is v0 = Δρσ2a/(18ηs), where Δρ = ρp − ρs is the mismatch

between the density of the sphere ρp and that of the surrounding
fluid ρs, which has a dynamic viscosity ηs; thus, for a given sphere
in a given fluid, v0/a is constant. Similarly, all our front velocities
v(φ0) collapse together, when normalized by the corresponding
values of a, as shown in Fig. 2. The collapse of the data is quite
remarkable, given that the amplitudes of our~a vary by a factor of
16 and the average separation between the particles in the fluid at
φ0 ≈ 0.35 is only 1.5σ. With the v/a collapsed together, we can
describe our front velocity by the Stokes formula for the velocity
of an individual sphere, as above, where ηs and ρs are replaced by
the viscosity η and the density ρ of the suspension. Importantly,
these η and ρ now depend on the volume fraction of colloids φ0.
To match this effective medium approximation to our experi-
mental data, we use the experimental static η(φ0) and directly
measure the density of our suspensions ρ by pycnometry, so that
ρp =φ−1

0 ½ρsð1−φ0Þ− ρ�.* This allows our experimental v/a, for
a wide range of centrifugation rates and volume fractions, to be
matched, with the only free-fitting parameter being φ00. Note the
very nice fit to the experimental data, as shown by a dashed curve in
Fig. 2, with a fitted value of φ00 = 0.35. The fitted φ00 allows the ρp
value to be obtained as 1.045 g/cm3, which is smaller than the bulk
density of solid PMMA (27) (1.17–1.20 g/cm3), yet significantly
denser than ρs = 0.868 g/cm3 of the pure solvent, indicating that
some absorbtion of decahydronaphthalene into the particles may
have possibly occurred. Most importantly, the obtained value of
φ00 allows the absolute φ0 values to be known with a high accu-
racy, such that the volume fraction φj of colloids within the sedi-
ments is obtained as φj = φ0L0/x(t → ∞).
A very common, yet questionable (25), assumption in colloidal

physics is that the particle volume fraction in sediments prepared
by centrifugation is φj = φRCP ≈ 0.64. In particular, φj is typically
assumed to be independent of the colloidal volume fraction in the
initial suspension (25). This assumption was questioned in recent
experimental (28) and theoretical (29) studies, demonstrating
a decrease in φj with φ0 in packings of macroscopic objects.
However, in these studies the inertial forces were significant. Our
sediments are prepared at low Reynolds numbers, typical for
colloidal systems, where the inertial effects are negligible.†

Strikingly, the measured colloidal volume fractions of our sedi-
ments increase with the density of the initial fluid suspensions,
as shown in Fig. 3A (solid symbols). The measured φj are in-
dependent of the initial heightL0 of the suspension (Fig. 3B). This
indicates that the potential energy of our colloids with respect to
gravity is irrelevant. In addition, this demonstrates that φj are not
sensitive to the macroscopic shape of the top of the sediment, as
also to the density of particles in the topmost region of the sedi-
ment, which is formed in the nonlinear regime of x(t) (Fig. 1). The
measured φj are also independent of the centripetal acceleration,
in our range 130g < a < 2,080g, which corresponds to Péclet
numbers ranging from 10 to 103. The independence of φj on a and
L0 stays in contrast with the fluidized bed experiments (12, 30),
where a packing of granular spheres is fluidized by multiple water
flow pulses, followed by formation of a new solid packing. In the
fluidized bed experiments, the densities of solid packings decrease
monotonically with the flow rate, so that the most expanded flu-
idized beds form highly expanded solid packings. Unfortunately,
the volume fraction of the fluidized beds was not measured and
the homogeneity of the fluidized state was not tested; this and the
dependence of these results, obtained at Reynolds numbers of
order unity, on sample height and on the rate of sedimentation
(12, 30) complicates the comparison with our work, motivating
additional studies in both fields.
We confirm the increase of φj with φ0, observed in Fig. 3A,

independently, by measuring the mass of the supernatant in
some of these samples. The observed scaling of φj with φ0 in our
system allows the density of our packings to be tuned in a con-
trollable way. This is impossible with the classic granular pack-
ings (1, 18), where various, rather uncontrolled tapping protocols

Fig. 1. The front positions x separating the colloid-free solvent and the sed-
imenting suspension exhibit a linear dependence on time, at early centrifu-
gation times. This indicates that the sedimentation velocity is constant, as for
an individual sphere in a solvent; then, a sharp transition is observed, as all
colloids become fully arrested in the solid sediment. Here j~aj= 1; 170g and tD=
12.8 s is the Brownian self-diffusion time of our particles. Linearfits to the data
are shown in dashes. (Inset) A top view of our sample, rotated at a frequency
f in a centrifuge. The sediment is shown in a check pattern, the fluid colloidal
suspension in gray, and the supernatant in white. The interface between the
sedimenting colloidal suspension and the supernatant is at a distance x from
the bottom of the cell.
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were used to increase the packing density (17). Importantly, our
experimental φj tend to 0.55 for the most dilute suspensions,
where φ0 → 0. This value is very close to the well-known, yet
highly controversial, RLP limit of the granular packings (13, 14,
16–18). Moreover, a sediment can never be less dense than the
original suspension, φj > φ0; thus, all our data must fall above the
φj = φ0 dashed-and-dotted line in Fig. 3A. This obvious geo-
metrical argument implies that there must be an upper limit on
the density of amorphous colloidal sediments, set by the inter-
section between the experimental φj(φ0) scaling (fitted by a solid
line) and the φj = φ0 dashed-and-dotted line. This limiting vol-
ume fraction is obtained as φj = 0.64, which is very close to the
well-known, yet strongly debated, RCP limit (11). The observed
φj(φ0) in our system, where Péclet numbers are sufficiently high
so that structural thermal relaxation within the solid sediments is
prohibited, suggests that the states of our solid sediments may
possibly be related to the thermodynamics of the initial fluids.

Discussion
To test the relation between the density of the sediments and the
thermodynamic states of the initial fluids of hard spheres, we
carry out simple computer simulations, where we neglect the
hydrodynamic interactions and any possible structural reorgan-
izations within the sediments and within the fluid suspensions.
We choose these, somewhat oversimplified, conditions to focus
on the most basic physical mechanisms underlying the experi-
mental φj(φ0) scaling. We simulate a fluid of simple hard spheres,
thermodynamically equilibrated at an initial volume fraction φ0.
As mentioned earlier, the velocity fluctuations in experimental
sedimenting suspensions, while raising the effective tempera-
ture of the suspension (26), do not necessarily alter the sample-
averaged local structure in our fluids of hard spheres with respect
to the thermally equilibrated structure, which is dictated solely by
the entropy and therefore does not depend on the temperature.
Therefore, modeling the structure of our sedimenting fluid sus-
pensions by that of a thermodynamically equilibrated fluid is
a reasonable approximation. The simulated cell, where the num-
ber of particles was chosen to be between 4 × 103 and 4 × 105, is
subject to periodic boundary conditions in x and y directions. To

simulate the structure of the sediment, we make the particles fall,
one by one, along the −z direction, to the bottom of the cell (z = 0).
The particles that are the closest to the bottom are the first to
fall. To stop falling, the particle must either contact the bottom of
the cell or contact Zs particles that already belong to the sediment.
If Zs > 1, once a falling particle meets its first contact with a
sphere belonging to the sediment, it slides along the circumfer-
ence of that sphere; then it either meets another contact or falls
again (Supporting Information). Once it has stopped falling, the
particle is considered to belong to the sediment; its position is
then fixed during the rest of the simulation. Importantly, the
sedimentation process is nonrandom, such that for a given
structure of the initial fluid, the structure of the final sediment is
fully determined. Surprisingly for such a simplistic simulation, the
densities of our simulated sediments increase (roughly) linearly
with φ0 (Fig.4A), as in the experiments. The slope of the simulated
φj(φ0) varies with the number of supports Zs, which are necessary
to stabilize a particle under gravity. By symmetry, if a particle is
supported on average by Zs underlying particles, it must support
(on average) Zs overlying particles. The data in Fig. 4A are labeled
by the total number of contacts per particle Z = 2Zs in each of the
simulations. When the number of contacts is low Z = 2, the
sediments are very dilute. This is the case with the sediments of
cohesive particles (18) and packings prepared by random ballistic
deposition (31) of sticky spheres. In these systems (31), φj ’ 0.15
for φ0 = 0, in perfect agreement with our simulations. For fric-
tionless spheres at the isostatic conditions, the number of contacts
is Z = 6 and the slope of φj(φ0) is very low (15). We show the
slopes of the simulated φj(φ0) in Fig. 4B (open symbols), where
the values decay exponentially with Z. The slope of the experi-
mental data is consistent with the number of contacts being
(slightly smaller than) ∼4, as in an isostatic frictional system,
where the spheres are unable to slip past each other. Whereas our
colloids behave as perfect hard spheres in their fluid state, the
friction in colloidal systems is difficult to obtain by experimental
techniques (5). However, the arrested rotational diffusion in our

Fig. 2. To collapse together the data obtained at different centrifugation
rates (see legend), the experimental sedimentation front velocities v = dx/dt
are scaled by the amplitude of centripetal acceleration a (left y axis) or,
equivalently, by the velocity v0 of a free colloidal sphere at the corre-
sponding a (right y axis). Our φ0 are very accurately known as a function of
the volume fraction of the initial suspension φ00, which is then diluted.
However, our accuracy in determining the φ00 value itself is not so high; thus,
we set φ00 as a free-fitting parameter. Note the perfect match between the
effective medium theory (dashes) and the experimental data (symbols),
where φ00 is the only tunable parameter. The fitted value of φ00 allows the
absolute φ0 values (scale on the top) to be obtained.

A B

Fig. 3. (A) The experimental volume fraction of the spheres in the sediment
φj increases with their volume fraction within the initial suspension φ0. The
denser suspensions are less disordered, such that they pack to a higher
density. A linear fit (solid line) to our experimental data (symbols) tends to
φRLP ≈ 0.55 for the most disordered initial suspensions (φ0 → 0); it intersects
the (dashed-and-dotted) φj = φ0 line at φj = φRCP = 0.64, setting the limit on
the possible density of sediments in our simple system of hard spheres. The φj

do not vary within our range of j~aj; the solid symbols are the averages for
different j~aj. The estimated error bar is shown on the right. (B) The measured
φj(φ0 = 0.35) data are independent of the height L0 of the initial fluid
suspension.
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sediments (Supporting Information) suggests that the frictional
forces between the particles may be significant, in agreement with
the obtained value of Z. Although direct measurement of contacts
between the colloids is a very challenging task, the simulated
coordination numbers are in good agreement with the experi-
mental ones, for all φj (Supporting Information).
Our simulations, where structural relaxation is prohibited and

the sedimentation process is deterministic, link between the
structures of solid sediments and the fluid states of initial sus-
pensions: Each fluid state, specified by the position of all particles
in the simulation, forms a sediment with a certain predetermined
structure. When the initial fluid is very dilute (φ0 → 0) and the
correlations between particles are negligible, all mechanically
stable structures of sediments are equally probable. The number of
different mechanically stable structures varies with the sediment
density φj, peaking (11) for the frictional particles (32) at φj ≈ 0.55
(Fig. 4A Inset). However, by simple geometry, when φ0 is finite, the
only states of the sediment that can form are the ones that are
denser than the initial fluid, φj > φ0 (Fig. 4A Inset, hatched area).
This shifts the average density of the sediment to a higher value of
φj, as experimentally observed.
To test the physical mechanism for φj(φ0) dependence, we

measure the degree of structural order within the colloidal sedi-
ments formed from fluids of different φ0, using direct confocal
microscopy. The degree of structural order χ is quantified by the
deviation of the experimental radial distribution functions from
their value for an ideal gas g(r) = 1, where correlations are missing.
The value of χ increases for sediments prepared from denser fluids,
as demonstrated in Fig. 4C, indicating that sediments prepared
from denser fluids are more ordered (Supporting Information).
Whereas χ measures the positional order of the particles, which
has a complex dependence on φj, another measure of structural
order is provided by the orientations of geometrical bonds
between the particles. The excess of this bond-orientational
order with respect to an ideal gas is given by ψ6 = hqiji− hqIGij i,
where averaging is carried out over the whole sample and

qij = q′−1ii
P6

m=−6~qmðiÞ~q*mðjÞ is the correlation between bond ori-
entations of the i-th and the j-th particles, normalized by
q′ii =

P6
m=−6~qmðiÞ~q*mðiÞ to have the correlation of the i-th particle

with itself be identically equal to unity. The definition of qij makes
use of the sixfold-symmetric local bond-orientational parameter of
the i-th particle ~qmðiÞ=

P
k∈fNNgY

m
6 ði; kÞ, where Ym

6 ði; kÞ are the
spherical harmonics (of degree 6 and orderm) for the orientation of
the bond between the i-th particle and the k-th one; the k-index
summation is carried out over all nearest neighbors of the i-th
particle. With this definition of qij, which was widely used in many
previous studies (33, 34), the 〈qij〉 does not completely vanish even in
a fluid or in an ideal gas; therefore, we measure the excess orien-
tational correlation ψ6, where the ideal gas value hqIGij i is subtracted.
The resulting ψ6 values increase for those sediments that were
formed from high-density fluids, as shown in circles in Fig. 4C; thus,
both the bond-orientational order and the positional order indicate
that sediments formed by denser fluids are more ordered, suggesting
that microscopic low-density states are excluded in these sediments.
In our range of Péclet numbers, crystallization is prohibited and

the sediment structure is amorphous. The number of amorphous
sediment states drops at very high φj, as for the uniformly com-
pressed systems at the jamming transition (7, 35); this possibly sets
the highest limit for the density of fluids and amorphous sedi-
ments in colloidal suspensions, denoted above by φRCP. Clearly,
a more elaborate theoretical model is necessary to fully account
for the details of our experimental and simulated observations.
In addition to structural measurements, we demonstrate that

sediments prepared from dense colloidal fluids exhibit higher
mechanical stability.We prepare three sediments from three initial
suspensions, which are identical except for having different φ0. We
choose the amounts of the initial suspensions such that the heights
of these three sediments are identical; supernatant is added, where
needed, after the formation of the sediment, to equalize the total
height of the three samples. We compare the mechanical stability
of these three sediments by placing them horizontally on a vortex
mixer. After a couple of minutes, the sediment that was prepared
from a low-φ0 fluid is almost completely molten, whereas the
sediment that was prepared from a high-φ0 fluid is almost in-
tact (see the relative heights of the sediments in Fig. 5). Similar
observations were previously reported for the macroscopic fluid-
ized bed packings (36), which suggests that these results may have
an important impact on abundant processes based on sedimenta-
tion, in nature (37) and industry.

A

B

C

Fig. 4. (A) The densities of simulated sediments (symbols) depend linearly on
the volume fraction of the spheres in the initial suspension, reproducing the
experimental dependence (solid line). Both x axis and y axis are normalized to
have all datasets pass through (1, 1). The average number of contacts per
particle Z is indicated for each of the simulated data sets. (Inset) Schematic
behavior of Ωs(φj). Only those states that belong to the hatched region of
Ωs(φj) can form from a fluid at φ0. (B) The slopes of the data from A exhibit
a linear dependence on the number of contacts per particle Z. The slope of
the experimental φj(φ0) is plotted by a horizontal dashed line, suggesting that
the experimental particles have on average Z ≈ 3.5 contacts per particle. (C)
Positional correlations χ =

R 7σ
0 ðgðrÞ− 1Þ2r2dr between experimental colloids

(triangles) are stronger for sediments formed from denser initial fluids. Sim-
ilarly, the excess bond-orientational order with respect to that in an ideal gas
ψ6, shown in circles, increases with φ0 of the initial fluid.

Fig. 5. Three cuvettes, with colloidal sediments inside, on top of the vortex
mixer. The image was taken a couple of minutes after the beginning of
mixing. The initial sediments were prepared to have the same height, such
that the height difference between the sediments in the image measures
the mechanical stability of these sediments under vortexing. The sample on
the left, which was prepared from a low-φ0 fluid, is almost completely
molten. The sample on the right, which was prepared from a high-φ0 fluid, is
almost intact. This indicates that the denser colloidal fluids form sediments
that are not only denser but also mechanically more stable.
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Preliminary results (22) suggest that the observed φj(φ0)
scaling is not unique for systems of sterically stabilized colloids.
The same type of behavior takes place for other types of colloids,
for example for 400-nm, charge-stabilized silica particles, pro-
vided that the sedimentation is sufficiently fast to avoid any
possible crystallization. Future studies in which sedimentation is
slowed down by many orders of magnitude by fine-tuning the
density of the solvent to approximate that of the colloids should
allow the influence of crystallization on density and mechanical
properties of the sediments to be detected.
In conclusion, our observations suggest that the structure of

noncrystalline sediments may possibly be fully understood, based

on the well-known microscopic structure of thermodynamically
equilibrated fluids. This should possibly allow the jammed states
formed in nonequilibrium particle systems, such as sand, to be
characterized by comparison with our sediments, leading to a
deeper understanding of noncrystalline solids.
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Confocal Measurements
Confocal studies were carried out using a laser-scanning Nikon
A1R setup in galvanometric scanning mode. The imaging was
done with a 100× oil-immersion objective, with the voxel size set
to 0.124 × 0.124 × 0.3 μm. For confocal imaging, the solvent was
replaced by a (18:82, by volume) mixture of tetrahydronaph-
thalene (99%; Sigma-Aldrich) and cis-decahydronaphthalene
(≥98%; Fluka) to match the refractive index of our colloids; this
minimizes light scattering, to allow confocal imaging deep in the
bulk of the sample. The fluid samples were then loaded into
squared Vitrocom capillaries (0.6 × 0.6 × 50 mm) and centri-
fuged (with the capillaries supported by thick glass slides) to
form solid sediments. Particle positions in three dimensions were
extracted by a common particle tracking algorithm, corrected so
as to avoid any rotationally-anisotropic convolution masks (1).
To confirm that the size of the particles does not change with

the addition of tetrahydronaphthalene (THN), we performed
a series of dynamic light scattering (DLS)measurements. The size
of the particles, initially in decahydronaphthalene (DHN), was
measured. Then the particles were transferred to pure THN and
their size was tracked for a period of 1 wk. We note that the
particles used for confocal measurements did not spend longer
than several days within the THN-containing mixture, where the
concentration of THN was also only 18% (by volume) rather than
100%, which we used for the DLS particle size tests.
The DLS measurements are carried out with the com-

mercial goniometer-based Photocor dynamic light scattering
setup. The normalized intensity autocorrelation function
g(2)(τ) = 〈I(τ)I(t + τ)〉/〈I(t)〉2 is measured as a function of the
delay time τ, with I(t) being the intensity of light scattered to an
angle θ with respect to the incoming laser beam of wavelength
λ = 633 nm. We show the representative g(2)(τ) − 1 data in Fig.
S1A, fitted by the theoretical expression g(2)(τ) = B + βexp(−2Γτ),
where Γ(θ) is the decay rate of the DLS correlations, β is the
contrast, and B is the background; notice the perfect fit with
the experimental data. The polydispersity of our particles is
very small, so no corrections for polydispersity are needed in
fitting the g(2)(τ) data (2). The fitted values of Γ(θ) are shown
in Fig. S1B as a function of the wave-vector transfer squared
q2 = (4πnλ−1sin(θ/2))2, where n is the refractive index of the
solvent. We obtain the diffusion constant as D = Γ/q2, which is the
slope of the dashed line passing through the experimental data in
Fig. S1B. Finally, the particle diameter σ = 2r at a given time t is
obtained from the Stokes–Einstein relation D = kBT/(6πrηs),
where r is the radius of the particles and ηs is the viscosity of the
solvent. Note that the diameter of the particles is the same, within
error, in both pure DHN and THN (see Fig. S1C); moreover, the
size of the particles does not change in pure THN over a course of
1 wk, at least. This indicates that the addition of THN to the
samples, needed to improve the matching of refractive indices
between the solvent and the colloids for confocal microscopy, does
not induce other significant changes in these samples.

Transmission Profiles
To follow the position of the sedimentation front in real motion, as
in Fig. 1, we collect light transmission profiles I(x′) along the
sample, at different times t during the centrifugation process.
Several typical profiles are shown in Fig. S2, where x′ is the dis-
tance from the bottom of the sample. The data are normalized by
the transmission I0, which is measured with the same setup, with
the sample being removed. A drop in transmission, clearly visible
in all of the profiles, is associated with the front position, sepa-

rating the highly transparent supernatant (at high x′) from the
colloidal suspension (at low x′), which is almost completely opa-
que at our wavelength of 870 nm. Note the very sharp boundary
in the transmission profiles, separating the pure solvent and the
dense suspension; such sharp boundaries, which do not broaden
in time, are typical for highly monodisperse colloidal samples (3).
Initially, front position changes linearly in time, with the front
velocity being related to φ0, as discussed in the main text. Later,
when the sediment is fully formed and no particles remain in the
fluid suspension, the front position is constant in time.
The corresponding full set of I(x′, t) data is shown in Fig. S3 for

φ = 0.35. At early centrifugation times t/tD < 5 the suspension is
still homogeneous for x′ < 0.9L0. Thus, the light transmission
profiles through this sample are flat (for x′ < 0.9L0) and the
transmission is very low everywhere, about 10%. Later, as the
particles move along~a, no particles are left in the high-x′ part of
the sample; the light transmission through this part of the sample
is that of the pure solvent, ∼90%. The thickness of the colloid-
free region at low x increases with the centrifugation time for
t/tD < 20, in this sample where φ0 = 0.35. By t/tD ≈ 20, all particles
have already found their way from the fluid suspension into the
solid sediment. Thus, the particle concentration profile stays
constant, as indicated by the light transmission profiles in Fig. S3,
which are time-independent for t/tD > 20.

Frictional Arrest of Rotational Diffusion
We confirm the presence of significant friction in our sediments by
means of a direct experiment, reminiscent of the well-known
fluorescence recovery after photobleaching technique (4). We
bleach a line through our sample, using the 488-nm laser line of
our Nikon A1R confocal microscopy setup. The width of the
bleached line is smaller than the diameter of our particles; thus,
most particles in the immediate vicinity of this bleached line have
part of their perimeter appearing dark (invisible for confocal
microscopy), as shown in Fig. S4. In our fluid suspensions, the
particles rapidly rotate, such that their dark part moves in all
directions. This, as also the translational motion of the particles,
makes the dark bleached line disappear within seconds. The
typical time for Brownian rotation of our particles in a pure
solvent is τθ = (2Dθ)

−1 = 12.8 s, where Dθ = kBT/(πηsσ
3) is the

rotational diffusion constant of our spheres. In colloidal sedi-
ments, the bleached region does not change and the particles do
not rotate over a time scale of 100τθ (20 min), at least. This
indicates that tangential friction forces between the particles are
significant, arresting all Brownian rotation of the colloids. This
conclusion is further supported by the comparison of our φj(φ0)
data with computer simulations (discussed in the main text),
where the number of contacts per particle within the sediment is
obtained as Z ≈ 4, corresponding to the isostatic conditions in
systems of nonslipping particles.

Computer Simulations of Sedimentation
In our computer simulations, we first prepare a fluid of simple hard
spheres at different volume fractions. To confirm that the system
has reached thermodynamic equilibrium, we compare the g(r) of
the simulated system to the theoretical predictions, using the
Percus–Yevick approximation (5); a perfect match between these
two datasets is obtained for all φ0. Initially, the boundary con-
ditions are chosen to be periodic, in all of the three dimensions.
The number of particles N was chosen to be between 4 × 103 and
4 × 105. The xy dimensions of the cell (L × L) were either 10 × 10
or 30 × 30 (in σ units), whereas the size of the simulation cell in
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z-direction was larger, determined by φ0 and N; the results do not
significantly depend on either N or L in our range of these values.
To prepare a sediment out of this simulated fluid, we let the

particles fall, one by one, in the −z direction. The particles that
have lower z values fall first. A particle stops falling when it ei-
ther has a sufficient number of supports Zs from particles that
already belong to the sediment or when it reaches z = 0. A
contact between particles is established when the separation
between their centers is below 1.005 (in σ units). We have carried
out simulations with the number of supports per particle Zs being
chosen as either 1, 2, or 3; thus, the total number of contacts per
particle Z was ∼2, 4, or 6 (Fig. 4).
For Zs > 1, when a falling particle forms its first contact with

a particle from the sediment, it slides down along the circum-
ference of this particle. Then it either falls further down or es-
tablishes a contact with an additional particle. For Zs = 2, once
this additional contact is established, the particle stops; this
particle is then considered to belong to the sediment (Movie S1).
For Zs = 3, when the second contact is established, the particle
continues to move along the surface of both of its supporting
particles. Then it either falls further down or establishes its third
contact with the sediment.
Toobtain thevolume fractionof the sphereswithin thesimulated

sediments, we measure the height of the sediment z0 by fitting the
density profile ρ(z) with 0.5ρ0[1 − erf(z − z0)], where the bulk
density ρ0 and z0 are tunable parameters. Then, the total volume of
the N spheres is divided by z0L

2 to obtain φj. The density profiles
along the sediments ρ(z) are typically perfectly flat, except for
a couple of particle monolayers at the bottom (z = 0). The ex-
clusion of the bottom monolayers from this calculation does not
significantly change the result.
To confirm the validity of our φj, we carry out Voronoi tes-

selation of the sample (6). The hard volume of a sphere, divided

by the volume of the corresponding Voronoi cell, yields the local
volume fraction φloc. The probability to obtain a certain value of
a local volume fraction P(φloc) is then calculated. The peak po-
sitions of these distributions coincide, within statistical error,
with the φj values obtained from the heights of the sediments;
this further proves the validity of our simulated φj values.
To further investigate the structure of the simulated sediments,

we plot the distribution of the number of contacts per particle Z in
a simulated sample (Fig. S5A). The distribution is described very
well by a Gaussian function peaking at Z = 4, which is the average
number of contacts per particle; some particles support fewer (or
more) than two particles, depending on the local structure of the
sediment, which results into a rather wide distribution of Z about
its average value.
Theexperimental determinationof contactswithin the sediment

is a highly challenging task (7). Therefore, to further test the
validity of our simulations, we measure the number of nearest
neighbors ZNN, both in the simulated and in the experimental
solid sediments. Nearest neighbors are defined by their spatial
separation’s being lower than the cutoff length rc = 1.3σ, which
roughly corresponds to the first minimum of the g(r). To remove
the explicit dependence of ZNN on the particle density, we nor-
malize these values by the coordination number ZIG

NN in the ideal
gas, at the same number density. The resulting distribution of
ζ=ZNN=ZIG

NN for sediments prepared from a fluid suspension at
φ0 = 0.27 is shown in Fig. S5B; note the excellent agreement be-
tween the simulated and the experimental distributions. Further,
we follow the variation in the peak position of P(ζ) for sediments
prepared from fluids of different φ0 (Fig. S5C). Again, a very good
agreement between simulation and experiment is observed, sug-
gesting that our simplified simulations catch the most important
physical aspects of the sedimentation process.
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Fig. S1. (A) DLS autocorrelation data (symbols), taken at a constant scattering angle θ = 35°, 1 d after the transfer of our particles to a pure THN. The solid
curve is the theoretical fit. (B) The decay rates Γ, as a function of the wave-vector transfer squared q2, taken 1 d after the transfer to THN. The dashed line is the
fit to experimental data (squares). (C) The size of the particles in pure DHN (triangle) and in THN (circles). Note that no swelling or contraction of our particles is
observed in pure THN over the course of 1 wk, at least.
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Fig. S2. Typical optical transmission profiles along the sample, obtained at different centrifugation times. Time difference between subsequent profiles is 10 s.
The volume fraction of the particles in the fluid suspension is φ0 = 0.35, the centrifugal acceleration is 1,170g, and L0 is the initial height of the sample (Fig. 1
Inset). The front position, which is clearly visible, moves roughly linearly in time, such that the profiles are equally spaced. A slight slowdown of the front
velocity is observed at late centrifugation times. Then the front velocity decays abruptly to zero (Fig. S3 and Fig. 1), as the sediment is fully formed. The optical
transmission through the fluid suspension is below the background level of our setup. Thus, these very low transmission levels do not allow the fluid sus-
pensions to be distinguished from the solid sediments.

Fig. S3. The transmission profiles through a typical sample (φ0 = 0.35, a = 1,170g). The projection of the color map onto the x′ − t plane is shown at the
bottom. ~a is the centrifugal acceleration. tD = 12.8 s is the self-diffusion time of an individual colloid in a pure solvent. The position of the sharp boundary
between the colloid-free solvent and the sediment changes linearly in time for t/tD < 20; then, the position is unchanged as the sediment is fully formed. For
a given time t, the position at which the transmission is 50% (intermediate between that of the pure solvent and that of the suspension) is denoted by x,
yielding the x(t) dependencies in Fig. 1.
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Fig. S4. We bleach a black line through one of our sediments. Most particles in the center of the image have one of their sides bleached, such that only half of
the particle is visible by fluorescent microscopy. One such particle is circled in blue. In absence of friction, the black side of the particle would move as the
particle undergoes Brownian rotational motion. The fact that no rotations are observed on a time scale of 100τθ indicates that the friction between our colloids
is significant.

Fig. S5. (A) Distribution of contacts per particle in a simulated sediment, prepared from a fluid at φ0 = 0.27. Note the significant width of the distribution. (B)
The distribution of coordination numbers per particle in the sediments, as obtained in experiment (solid circles) and in the simulation (open squares). The
coordination numbers are normalized by the average ones in the ideal gas at the same number density. Note the good agreement between experiment and
simulation for these sediments, prepared from a fluid at φ0 = 0.27. (C) The variation in the peak position of P(ζ) as a function of the φ0 of the initial fluid
suspension, from which the solid sediment is prepared. Again, a very good agreement between simulation and experiment is observed. The error bars are due
to the variation between different samples.
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Movie S1. The simulated sedimentation of colloidal spheres. In this animation, each particle is arrested once it meets two supports, as described in Supporting
Information and in the main text. Periodic boundary conditions are applied.

Movie S1
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