
Noncentral Forces in Crystals of Charged Colloids

D. Reinke,1 H. Stark,2 H.-H. von Grünberg,3 Andrew B. Schofield,4 G. Maret,1 and U. Gasser5

1Physics Department, University of Konstanz, 78457 Konstanz, Germany
2Max-Planck-Institut für Dynamik und Selbstorganisation, Bunsenstrasse 10, D-37073 Göttingen, Germany

3Karl-Franzens-Universität, 8010 Graz, Austria
4School of Physics, University of Edinburgh, Edinburgh, Scotland EH9 3JZ, United Kingdom

5Laboratory for Neutron Scattering, ETH Zurich & Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
(Received 27 July 2006; published 19 January 2007)

The elastic properties of fcc crystals consisting of charge stabilized colloidal particles are determined
from real space imaging experiments using confocal microscopy. The normal modes and the force
constants of the crystal are obtained from the fluctuations of the particles around their lattice sites using
the equipartition theorem. We show that the Cauchy relation is not fulfilled and that only noncentral many-
body forces can account for the elastic properties.

DOI: 10.1103/PhysRevLett.98.038301 PACS numbers: 82.70.Dd, 05.40.�a, 62.20.Dc, 63.20.Dj

Understanding how an elastic material deforms under
external mechanical stresses is essential knowledge in
material science and of fundamental interest. While in
metals and other hard materials a great deal is known about
elasticity, its study currently receives a lot of attention in
soft materials because of their great potential for the devel-
opment of novel materials. The response to external
stresses is described by the elastic constants C����, which
are defined as the second derivatives of the elastic free
energy with respect to components of the strain tensor ���
[1]. In crystals with an fcc lattice, it follows from the cubic
point symmetry that the elastic properties are described by
only three independent constants: C11, C12, and C44, where
the indices are given in Voigt notation [1]. The number of
independent constants is further reduced by the Cauchy
relation C12 � C44 if the atoms interact through central
forces [2]. Whether central or noncentral forces act in a fcc
crystal can, therefore, be decided by measuring macro-
scopic elastic constants. E.g., the Cauchy relation is not
fulfilled in metals; the noncentral forces in metals are due
to the conduction electrons that screen the charges of the
ions and contribute to the bulk modulus but not to the shear
moduli [2]. In analogy to metals, crystals of charged col-
loidal particles consist of large macroions in suspension
that are surrounded by the much smaller microions [3].
Therefore, the question arises whether the elastic proper-
ties of colloidal crystals are comparable to metals and
whether noncentral forces are needed to characterize the
interactions between the macroions. In analogy to metals,
where effective potentials between the ions serve to elimi-
nate the degrees of freedom of the conduction electrons,
theories of effective macroion-macroion interactions have
been developed for colloids to eliminate the degrees of
freedom of the microions. The most important effective
interaction in colloids is the very successful Derjaguin-
Landau-Verwey-Overbeek interaction potential [4], which
has been a cornerstone for the understanding of colloidal
suspensions for the last 50 years. However, in suspensions
with high colloid density and a long screening length

many-body forces are expected to become important that
cannot be taken into account by a radially symmetric
effective pair-potential [5]. Indeed, such forces have been
observed in colloidal liquids [6–8] and they are expected
to be important for the elasticity of colloidal crystals [9].
But the internal forces and all elastic moduli of three-
dimensional (3D) colloidal single crystals have never
been measured before.

Here, we present 3D real space imaging data of colloidal
monocrystals with fcc symmetry that allow to extract the
force constants (FCs) of the crystal from the dispersion
relations of overdamped normal modes and, in the q! 0
limit, all elastic constants of the crystal. Moreover, our
results show clearly that the interaction between the col-
loidal particles in the crystal cannot be described in terms
of central forces. As a major advantage over dynamic light
scattering experiments [10] hydrodynamics does not play
any role for our analysis. Our methods only rely on ‘‘snap-
shots’’ of the particle positions that are used to calculate
ensemble averages and, therefore, the frictional forces
between the colloid particles and the solvent never enter
our analysis.

We used poly-methylmethacrylate spheres [11] with a
diameter � � 1:66 �m and a polydispersity of <5% that
were sterically stabilized, fluorescently labeled with rhod-
amine, and suspended in a mixture of decahydronaphtalene
and cycloheptylbromide that matches both the density and
the refractive index of the particles. Because of the careful
density matching with a precision of �10�3 g=cm3, sedi-
mentation of the particles was found to be negligible in all
measurements. At the same time, the refractive index of the
solvent was close to that of the particles, and it was
possible to take images at a depth of up to 70 �m from
the cover slip. The particles were observed with a fast
Nipkow-disk laser-scanning confocal microscope using a
CCD camera. The resolution in the image plane was
�220 nm and �770 nm in the direction of the optical
axis. A 100� objective lens (numerical aperture 1.45) was
used to observe a volume V � 58 �m� 55 �m� 20 �m

PRL 98, 038301 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 JANUARY 2007

0031-9007=07=98(3)=038301(4) 038301-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.038301


inside the much larger sample cell. The objective was
mounted on a piezo translation stage for the scanning in
z direction. The distance from the cover slip to the ob-
served volume was never smaller than 20 �m in order to
avoid wall effects of the cover slip. Typically, 5000 parti-
cles were observed in one 3D snapshot. The frame rate was
43 images=s, and the spacing between images was �z �
0:3�m. It took�1:5 s to observe the whole volume V and,
consequently, the measured particle coordinates are not
strictly snapshots of a particle configuration. Derjaguin-
Landau-Verwey-Overbeek interaction potential (DLVO).
The particles are detected by looking for local intensity
maxima and their positions can be determined with a
subpixel accuracy of �20 nm, since one particle com-
prises a large number of volumetric pixels [12]. Samples
with volume fractions 0:01<�< 0:41 were prepared in
order to map out the phase behavior; all measurements
were carried out at T � 295 K. Freezing was observed in
samples with volume fractions larger than �f � 0:31. The
phase behavior compares well with that of hard spheres
with Yukawa repulsion (HSY) with the interaction poten-
tial V�r� � VHS�r� �

B�
r exp���	r� �
� [13]. Here,

VHS�r� is the hard sphere potential, � is the inverse
Debye screening length, and B � kBT

�B
� �

Zeff

1���=2�
2 is the

contact value with the Bjerrum length �B and the charge
number Zeff . By comparing measured radial distribution
functions g�r� from liquid samples with those from
Monte Carlo (MC) simulations of HSY particles, we find
��1 � 221� 30 nm and Zeff � 245� 40. These values
are in reasonable agreement with a recent study of the
interactions in a similar colloidal dispersion [14].

For � � 0:31 large random hexagonal close packed
crystals [15] with hexagonal planes oriented parallel to
the cover slip formed within several days, and we chose
regions of three to ten hexagonal layers with fcc stacking
for our measurements. The lattice constant a of the Bravais
unit cell was measured, and the structure of these crystals
was compared with a perfect fcc lattice. The deviations of
the average particle positions from the fcc-lattice positions
are small. For the calculation of the deviation ui�t� �
ri�t� � Ri of particle i, the reference position Ri is deter-
mined by averaging its position over all snapshots taken
during the measurement. The duration of a measurement
was chosen such that it contains *100 statistically inde-
pendent particle configurations. As shown in Fig. 1(a), the
distributions of the components u� of the deviations are
Gaussian at all volume fractions, so we are always in the
harmonic regime of crystal elasticity. The component
parallel to the optical axis of the microscope (not shown)
has a broader distribution due to the lower resolution in
this direction. Since at all � the width of the distribution
is about 1=4 of the surface-to-surface distance of nearest
neighbor particles, the influence of the HS part of the
potential is small and the interactions are dominated by
electrostatic forces. Following essentially the same pro-
cedure as in Ref. [16], the dynamical matrix D���q�

[2] is determined using the equipartition theorem;
each q mode of the harmonic approximation U �
1
2

P
q;�;�u��q�D���q�u


��q� to the elastic energy of the crys-

tal contains the thermal energy kBT=2. Therefore, the
inverse of the dynamical matrix can be obtained from an
ensemble average of the measured particle deviations:

 D�1
���q� �

hu��q�u

��q�i

kBT
: (1)

We calculate the ensemble average h. . .i by taking a time
average over all measured configurations and we analyze
modes with wave vectors q / �1; 1; 0�, (1, 1, 1), and (1, 0,
0). Since these directions in reciprocal space correspond to
symmetry axes of two-, three-, or fourfold rotations, the
eigenmodes in these directions are a longitudinal mode l
and two transverse modes t1 and t2 with eigenvectors êl,
êt1 , and êt2 , respectively. To circumvent the problem of the
lower precision of the particle coordinates parallel to the
optical axis, we determine the properties of the crystal by
using only the components of u�q� that are perpendicular to
the optical axis, which coincides with the (1, 1, 1) direc-
tion. These are the components up�q� �

1���
N
p
P
Ru�R� �

p̂ exp�iR � q� with p̂ � 1��
2
p �1;�1; 0� or 1��

6
p ��1;�1; 2� and
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FIG. 1. (a) Distributions of the deviations u1 normalized to the
nearest neighbor distance dnn at several �. The distributions of
u2 coincide with the ones for u1. The lines represent Gaussian
fits to the data. (b) Measured dispersion relations are shown for
(top to bottom) � � 0:38, 0.34, and 0.31 together with fits to the
data. K, X, and L denote the edge of the first Brillouin zone in (1,
1, 0), (1, 0, 0), and (1, 1, 1) direction, respectively. For each
column, the modes are identified in the topmost panel. See text
for details. (c) FCs obtained from the fits in (b). A�1�11 (squares),
A�1�12 (down triangles), A�1�33 (open circles), A�2�11 (up triangles), and
A�2�22 (diamonds); errors are comparable to the size of the sym-
bols. The lines are guides to the eye.
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equivalent directions that are obtained by threefold rota-
tions around (1, 1, 1). As q enters only in combination with
the lattice points R that are known with high accuracy,
there is no limitation for the choice of q. If the polarization
p̂ is an eigenvector of the dynamical matrix D�q�, then
hjup�q�j2i yields the eigenvalue �p�q�: � kBT=hjup�q�j2i
of the dynamical matrix, e.g., if q̂ � p̂ � 1��

2
p �1;�1; 0�.

Otherwise, we express p̂ in terms of the eigenvectors and
hjup�q�j

2i is given by a mixture of eigenvalues. E.g., for
p̂ � 1��

6
p ��1;�1; 2� and q̂ � 1��

2
p �1;�1; 0� we obtain p̂ �

1��
3
p êt1 �

2��
6
p êt2 and the measured quantity �s�q� :�

kBT=hjup�q�j
2i can be expressed in terms of the eigenval-

ues of the dynamical matrix: �s � 3�t1�t2=�2�t1 � �t2�,
where �t1 and �t2 are the eigenvalues corresponding to
the eigenvectors êt1 �

1��
2
p �1; 1; 0� and êt2 � �0; 0; 1�. In

this way we can determine the modes l, t1, and s for
wave vector q / �1; 1; 0� and equivalent directions, t1 and
m for q / �1; 0; 0�, and t1 and m for q / �1; 1; 1�. Here, s
denotes the mixture of the modes t1 and t2 that is given in
the example above, and m indicates mixtures of longitudi-
nal and transverse modes [17]. Measurements of these
modes are shown for several volume fractions in
Fig. 1(b), where the lines represent a fit with general FCs
of an fcc lattice with interactions up to third nearest neigh-
bors. Three FCs (A�1�11 , A�1�12 , A�1�33 ) are needed for the forces
between nearest neighbors, while two (A�2�11 , A�2�22 ) and four
(A�3�11 , A�3�12 , A�3�13 , A�3�22 ) are needed for the 2nd and 3rd
neighbors, respectively [2]. In Fig. 1(c), the 1st and 2nd
neighbor FCs obtained from the fits are shown as a function
of �. The absolute values of the third order constants A�3���
are found to be �0:01jA�1�11 j and are not shown in the plot;
they are not essential for the quality of the fits. For central
forces, the FCs fulfill the condition � :� A�1�12 =�A

�1�
11 �

A�1�33 � � 1. However, from the measurements we find � <
0:25 at all �. This is clearly incompatible with a pairwise
additive, radially symmetric interaction. Furthermore, we
observe A�2�11 � �2=3A�1�11 , which means that a displace-
ment of the particle at (0, 0, 0) in the (1, 0, 0) direction
strongly attracts the 2nd neighbor at (a, 0, 0). This also
contradicts a HSY-like interaction.

To test the reliability of our data analysis and to exclude
potential error sources, we performed MC simulations in
the crystalline phase using the HSY-potential for the liquid
as given above. We find that our data analysis yields FCs in
perfect agreement with those calculated from the potential
according to their definition. This is illustrated in Fig. 2(a),
where crosses and lines represent the simulation and the
ab initio calculated band structure, respectively. The lower
resolution of the microscope parallel to its optical axis has
already been excluded as an error source by not using the
corresponding component of u�q�. However, there are
further potential sources of errors: the time-lag between
hexagonal layers due to the limited speed of the confocal
scanner, finite-size effects, the time average used to calcu-

late the ensemble average in Eq. (1), and random errors in
the particle coordinates. These are discussed below. The
deviations of the particles that are used for the calculation
of hju��q�j2i are not measured at strictly the same time.
The scanning speed in the direction of the optical axis is
limited by the exposure time � 0:023 s of the CCD cam-
era. It takes 0.12 s for the scanner to move from one
hexagonal layer to the next and, during this time lag, the
particles diffuse over a distance �r � 0:024� (� � 0:31).
This movement reduces the correlations between particles
in different layers and, therefore, reduces the precision
with which up�q�, the central quantity for determining
the dispersion relations, can be determined. We modeled
this effect by adding random errors of mean size �r to the
coordinates of one particle in all terms of hjup�q�j2i that
involve particles from different hexagonal layers. It turns
out that the effect of the time lag on the dispersion curves
can be neglected. That a sufficiently large volume is ob-
served, is illustrated in Fig. 2(b) where the measured
dispersion curves of a crystal with � � 0:31 containing
2090 particles in six hexagonal layers (crosses) are com-
pared with those obtained from a subset of the same
measurement containing only 592 particles in three layers
(circles). Although the noise in the curves increases due to
the reduced statistics, the curves overlap nicely. Therefore,
we conclude that finite-size effects do not limit the accu-
racy of our measurements. By comparing the dispersion
relations obtained from various numbers of particle con-
figurations, we checked that a number of � 70 configura-
tions is sufficient to obtain the dispersion curves. Since the
measurements contained between 100 and 500 snapshots,
the time average for approximating the ensemble average
in Eq. (1) does not limit the accuracy of the dispersion
relations. Random errors in the particle coordinates have
the strongest effect on the dispersion curves. Figure 2(a)
shows dispersion relations that are obtained from a MC
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FIG. 2 (color). (a) Simulation: Effect of random errors �u
added to the particle positions of a MC simulation with � �
0:33, B � 15kBT, and �� � 8. Circles: �u� 0:02�; crosses:
no errors added. The lines represent the calculation. See text for
details. (b) Experiment: Negligible finite-size effect in the mea-
surements. The dispersion curves obtained from all (crosses) and
from a subset (circles) of the particles in a measurement at � �
0:31 are shown for comparison. The lines represent the best fit to
the data. See text for details.
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simulation of 10 032 particles with � � 0:33, B � 15kBT,
and �� � 8 with random, normally distributed errors
added to the coordinates. When the width of the error
distribution is set to 0:02�, the correlations between the
particle coordinates are still accurate enough to obtain a
dispersion curve (circles) that is in good agreement with
the direct calculation of the modes from the potential
(lines) and the curve obtained without added errors
(crosses). The strongest effect of these errors is found at
q values close to the boundary of the Brillouin zone, where
the correlations between nearest neighbors are important.
The importance of the positional errors in the measure-
ments is least significant at low �, where the particles are
relatively far apart. The 20 nm errors in the measured
coordinates are below 0:02� � 30 nm, which would still
give a dispersion relation that is close to the true one.

We take the exclusion of the mentioned potential error
sources as strong evidence for the significance of the
determined FCs shown in Fig. 1(c). Therefore, we can
determine all elastic constants of a colloidal crystal from
a single measurement. From limq!0D�q�=q2 we obtain the
propagation coefficients for sound, which are directly re-
lated to the tensor B���� connecting stress and strain:
T�� � B����	�� [1,18]. For crystals under stress, B����
is not the same as the tensor of elastic constants C����,
which is defined via the elastic free energy [1]. For the
studied crystals T�� � �p
��, as they are under stress
due to the pressure p in the sample cell; for fcc symmetry
B���� and C���� are connected by the relations B11 �

C11 � p, B12 � C12 � p, and B44 � C44 � p with the in-
dices given in Voigt notation [1]. For central forces and
cubic lattices, the Cauchy relation takes the form B12 �
B44 � 2p for a crystal under pressure p. From the FCs at
� � 0:31 [Fig. 1(c)] we find b11 � 28, b12 � 9, and b44 �
28, where b�� � B���3=kBT. Since b44 > b12 and p > 0,
our measurements clearly contradict the Cauchy relation.
Further, we obtain the bulk modulus k :� �b11 �
2b12�=3 � 15 and the shear moduli g1 :� b11 � b12 �
19 and g2 :� b44 � 28. The elastic constants of HSY
crystals from MC simulations fulfill the Cauchy relation.
With the HSY potential given by B � 15kBT and �� � 8
we obtain the shear moduli gHSY

1 � 15 and gHSY
2 � 25 that

are comparable to those from experiment. The bulk modu-
lus kHSY � 53 is, however, more than 3 times larger; this is
reflected by the large difference between the longitudinal
(� , � , 0) modes obtained from experiment [Fig. 2(b)] and
simulation [Fig. 2(a)]. Thus, the noncentrality of the forces
affects mostly the bulk modulus, which is also the case in
metals.

Our main result is the clear demonstration of the incom-
patibility of the FCs with any effective radially symmetric
pair potential and the importance of many-body forces.
The distribution of the microions cannot be adequately
approximated by a linear superposition of distributions
around isolated colloids. As a consequence, also the forces
between the colloids cannot be obtained from a superpo-

sition of pairwise forces. Our results imply that the inter-
action between colloids at nearest neighbor distance is
rather central in nature, while many-body forces dominate
the interaction of a particle with its second nearest neigh-
bors. This is reflected by the signs of A�1�33 as well as A�2�11 and
A�2�22 , which have the same and the opposite sign as ex-
pected for central forces, respectively. In the liquid it is
hard to determine whether the forces are noncentral, since
information about interactions and structural correlations
is not easily separated [6]. However, as we have shown
here, much less ambiguous results are obtained with crys-
tals. In high symmetry directions, the eigenvectors of the
dynamical matrix are determined by the lattice, while
information about the interactions is contained exclusively
in the eigenvalues, which determine the FCs. We conclude
that the elastic properties and the behavior of the lattice
normal modes in the studied colloidal crystals are rather
metal- than HSY-like.
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[2] P. Brüesch, Phonons: Theory and Experiments I (Springer-
Verlag, Berlin, Heidelberg, New York, 1982).

[3] P. Pieranski, Contemp. Phys. 24, 25 (1983).
[4] B. Derjaguin and L. Landau, Acta Physicochim. URSS 14,

633 (1941).
[5] A.-P. Hynninen, M. Dijkstra, and R. van Roij, J. Phys.

Condens. Matter 15, S3549 (2003); C. Russ et al., Phys.
Rev. E 66, 011402 (2002); J. Dobnikar, R. Rzehak, and
H.-H. von Grünberg, Europhys. Lett. 61, 695 (2003).

[6] M. Brunner et al., Europhys. Lett. 58, 926 (2002).
[7] M. Brunner et al., Phys. Rev. Lett. 92, 078301 (2004).
[8] C. Russ et al., Europhys. Lett. 69, 468 (2005).
[9] J. A. Weiss, A. E. Larsen, and D. G. Grier, J. Chem. Phys.

109, 8659 (1998).
[10] A. J. Hurd et al., Phys. Rev. A 26, 2869 (1982); Z. D.

Cheng et al., Phys. Rev. Lett. 85, 1460 (2000).
[11] L. Antl et al., Colloids Surf. 17, 67 (1986).
[12] J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179,

298 (1996).
[13] A.-P. Hynninen and M. Dijkstra, Phys. Rev. E 68, 021407

(2003).
[14] C.-P. Royall, M.-E. Leunissen, and A. van Blaaderen,

J. Phys. Condens. Matter 15, S3581 (2003).
[15] P. N. Pusey et al., Phys. Rev. Lett. 63, 2753 (1989).
[16] P. Keim et al., Phys. Rev. Lett. 92, 215504 (2004).
[17] s-mode:, e.g., ês � 1=

���
6
p
��1;�1; 2� for q / �1;�1; 0�;

m-modes:, e.g., êm � 1=
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