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Cluster formation in many-body systems is very common, yet still not fully understood. We employ

direct confocal microscopy to measure the size distribution and reconstruct the shapes of permanent gel

clusters formed by sticky colloidal spheres in a two-dimensional (2D) suspension; the linear dimensions

of the clusters are then measured by their radii of gyration Rg. We compare these non-ergodic clusters

with the short-lived clusters, which reversibly form and deform, in a thermodynamically-equilibrated

system of spherical colloids which interact solely by repulsions. Surprisingly, a similar behavior is

observed for both types of clusters. In both cases, the average Rg of large clusters consisting of M

particles scales as hRgi �M1/2, which indicates that these clusters are solid, while the smaller clusters are

much more ramified. A simple lattice model with a single free parameter quantitatively describes this

complex behavior of hRg(M)i. The experimental size distribution P(M) of our clusters is a (truncated)

power law M�a, where the index a scales with colloid density and depends on the interparticle

interactions. Strikingly, the observed behavior cannot be described by the common theoretical models

which predict shorter correlation lengths and a density-independent value of a; thus, further theoretical

efforts are necessary to fully understand the physics of clustering in this simple and fundamental

system.
1. Introduction

During the previous decades, the collective behavior in many-

body systems was among the most intensively studied areas of

physics.1 Yet even in the most trivial systems, such as the

simple, non-interpenetrating disks on a plane, the collective

behavior is still poorly understood. In particular, our under-

standing of particle self-organization into finite-sized clusters is

still unsatisfactory.2,3 In gels, these clusters are long-lived,

determining the mechanical properties of the system.4,5 In

liquids, the self-organized clusters are short-lived, playing

a dominant role in the physics of phase transitions1 and glass

formation.6 The conventional experimental techniques are

typically limited to yielding only two-body correlation func-

tions;7 thus, the size distribution of the n-particle clusters,

determined by the n-body correlation functions, is usually

experimentally inaccessible. Intermediate and long range

correlations, which are abundant in many-body systems,

increase the sensitivity to finite-size effects1 which is a significant

obstacle for computer simulations and dramatically limits the

amount of information on clustering attainable by theoretical
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studies. As a result, the size and shape of particle clusters, which

are among the most important characteristics of gels and fluids,

are still unknown, even for the simplest and most fundamental

systems.4

We employ confocal microscopy of colloids, micron-sized

spherical particles in a solvent, to study the size distribution and

the shape of microscopic clusters in a truly macroscopic, two-

dimensional system.8,9 Colloids are sufficiently small, such that

they undergo Brownian motion; thus, their free energy tends to

be minimized, and they exhibit crystallization8 and melting,9

mimicking atoms and molecules. The interactions between our

colloids are tunable, from sticky to repulsive.10–12 For sufficiently

strong interparticle attractions, the colloids stick irreversibly,

such that a gel5 is formed. To quantify the shape of our clusters,

we measure their radius of gyration Rg, which is the root mean

square of the separation between the center of mass of a cluster

and each of the particles belonging to the same cluster. We

demonstrate that the variation of hRgi with the cluster mass M,

measured in particle mass units, is fully described by a simple

theoretical model with only one free parameter. This parameter,

the probability p for two particles to be next to each other,

accounts for both the density of the particles and the interparticle

interactions. Further, we demonstrate that the size distribution

P(M), which is the probability to find a cluster of mass M,

follows a power law for both sticky and repulsive particles.

Strikingly, the common theoretical models are unable to
This journal is ª The Royal Society of Chemistry 2012
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reproduce this behavior of P(M). Thus, even for this very simple

and fundamental system, the full understanding of collective

behavior is still missing.
Fig. 1 (a) A raw confocal image of repulsive particles at h ¼ 0.49, with

one of the detected clusters overlaid in red. (b) The same for the sticky

particles (h ¼ 0.3, c ¼ 10 ppm); the detected cluster is overlaid in blue.

The bar lengths are 10 mm and 5 mm, in (a) and (b), respectively.
2. Experimental details

To form our two-dimensional samples, we suspend PMMA

[poly-(methylmethacrylate)] spheres, fluorescently-labelled for

confocal imaging by the Nile Red dye, in dodecane (C12, Sigma-

Aldrich, $99%). The solution is then loaded into a rectangular

Vitrocom capillary (0.1 � 2 � 50 mm) and sealed with epoxy

glue. We pre-coat the capillary with PHSA [poly-(hydroxy-

stearic) acid], which minimizes sticking of particles to the capil-

lary walls. The particles sediment onto the bottom of the sample,

forming a two-dimensional layer. The number density n of the

particles in this layer is tunable, determined by the particles’

concentration in the initial suspension. We determine the diam-

eter of our particles by dynamic and static light scattering as s ¼
2.4 mm; the size polydispersity of our particles is #5%. The

density mismatch between PMMA and C12 is �0.3 g cm�3, such

that the particles are effectively confined to move in two

dimensions. The initial particles are sterically stabilized by

PHSA, such that the van der Waals attractions are minimized5

and the interparticle interactions are purely repulsive. When

sticky interactions are to be introduced, we partially remove the

PHSA monolayer from the surface of the particles by chemical

etching in a mixture of sodium methoxide (Sigma-Aldrich,

$99%). For a constant etching time of 30 min, the fraction of the

PHSA monolayer removed13 is determined by the concentration

of sodium methoxide (4 ppm # c # 20 ppm) in the mixture.

To image our colloids, we employ the Nikon A1R confocal

laser-scanning microscope in the resonant scanning mode, at

0.13 mm pixel�1, which is close to the actual optical resolution.14

Typically, the field of view in a single image is about 270� 270 mm

and �30 static images, separated by 700 mm from each other, are

taken across the sample in order to collect sufficient statistics, at

�24 h after the sample preparation. We repeat some of our

measurements 3–4 days after the sample preparation; the results

are unchanged, which indicates that the system reaches some

type of an equilibrium state within several hours from the sample

preparation. We detect the centers of all our particles within the

two dimensional layer at the bottom of the sample, employing

the PLuTARC image-analysis codes,15 based on the algorithm

of Crocker and Grier.16 The area fraction of the particles

in the image is obtained directly from the particle positions, as

h ¼ nps2/4. We define clusters of particles based on the separa-

tion r between the centers of the particles in the confocal

image. Particles separated by r < rc are considered connected,

where rc ¼ 1.25s, such that only the nearest-neighbor (NN)

particles can match this criterion. The cut-off distance rc was

varied by up to 6% without changing any of the major results in

our current work. According to this definition, for two particles

to be considered connected, their surfaces do not necessarily have

to be in a hard contact. A similar definition was employed in

recent studies of electric conductivity in conductor–insulator

composite materials, where the electrons move by tunneling over

short distances between the surfaces of nearby conducting

particles17 and in recent computer studies of colloidal sedimen-

tation.2 Importantly, with this definition of clusters adopted, we
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do not distinguish between permanent clusters, which appear

only in the presence of sticky interactions, and short-lived clus-

ters, which appear at a sufficiently high particle density n in

a static image of even a purely repulsive system.
3. Results and discussion

3.1 Radii of gyration: experimental results

To quantify the shape of the short-lived clusters, we measure

the gyration radii Rg of clusters in a system of repulsive particles,

where long-lived clusters do not form. For a cluster of M

particles, the positions of which are given by a set of vectors

{~ri}, the radius of gyration is defined as

Rg ¼
"
M�1

X
i
~ri � rCM

��!� �2
#1=2

, where rCM
��! ¼ M�1

X
i

~ri is the

center of mass of the cluster and the summation is carried out

over allM particles belonging to the cluster. The radii of gyration

measure the linear dimensions of our clusters, which have, in

general, complex ramified shapes, as shown in Fig. 1(a). Typi-

cally, for both solid and fractal objects in a two-dimensional

space, the average hRgi scales as M1/d, where d ¼ 2 for the solid

objects; fractal objects are characterized by a smaller, fractal

dimension. Interestingly, our experimental data does not follow

a straight line when plotted on a log–log scale, as shown in

Fig. 2(a). Instead, hRgi � M1/2 only for the largest clusters

(dashed, green line), which are, therefore, solid-like. For the

smaller clusters, a different scaling is observed. This indicates

that the small clusters are more ramified than the usual solid.

To test the universality of this behavior, we repeat the same

measurement using sticky colloids (h ¼ 0.3, c ¼ 20 ppm), instead

of the repulsive ones (see Fig. 1(b)). The sticky clusters are

permanent and rigid, such that their shapes do not significantly

change with time. Strikingly, in view of the distinct physical

nature of these sticky clusters, the trends exhibited by their

hRg(M)i are similar to those observed above in the short-lived

clusters, as shown in Fig. 2(b). As before, the scaling of the large

clusters is hRgi � M1/2, indicating that they are characterized by

the dimension of their embedding space d ¼ 2. The small clusters

are more ramified, as was the case with the repulsive particles.
3.2 Radii of gyration: theoretical model

To quantitatively describe the hRg(M)i of the smallest clusters,

we compare them with the hRg(M)i of lattice animals, random,

connected clusters on a two-dimensional lattice.18 The hRg(M)i
Soft Matter, 2012, 8, 2924–2929 | 2925



Fig. 2 The experimental average radii of gyration, in particle-diameter

units, for systems of repulsive (a) and sticky (b) particles (open symbols)

scale as M1/2 for high M (dashed line), which is typical for solid, two-

dimensional matter. The hRgi of the smaller clusters exhibit a higher slope

on this log–log scale, which indicates that the structure of these clusters is

more ramified than a common two-dimensional solid. More precisely,

these clusters are well-matched byRg(M) of the theoretical lattice animals

(blue dash-dotted curve in (b)). Our theoretical model (solid curve)

perfectly fits the experimental data for all M, for both the repulsive and

the sticky particles. An example of a simulated lattice animal is shown in

the inset to (a). The theoretical hRg(M)i scaling of the diffusion-limited

aggregates (DLA) overestimates the ramification of our clusters at large

M, as shown by the dash-double dotted line in section (b). The experi-

mental data were binned for clarity of representation. The horizontal

error bars denote the widths of the bins; the vertical error bars denote the

standard deviation from the mean for each of the bins. For largeM, there

was only one cluster per bin, such that the standard deviation was not

defined.
of the smallest lattice animals, which are exactly known,19

perfectly match our experimental data at small M, as shown by

the dash-dotted curve in Fig. 2(b). The hRg(M)i scaling of the

lattice animals at large M is universal for all possible two-

dimensional lattice structures, regardless of their symmetry. This

suggests that this simple model may possibly be used to describe

our experimental clusters, which are amorphous, such that the

particle positions do not in general match the symmetry of any

periodic lattice.

The number of different configurations of M connected

particles on a lattice, or lattice animals, is large, increasing with

M. In the mathematical model of lattice animals, all types of

shapes are equivalent.1,18 However, in our experimental system,

clusters of the same mass, which have different shapes, occur

with different probabilities. To match the behavior of mathe-

matical lattice animals with that of our experimental clusters, the

probability for a cluster of a given mass and shape must decay as

(1 � p)L with its interfacial perimeter length L, where p < 1 is the
2926 | Soft Matter, 2012, 8, 2924–2929
probability for an additional particle to contact this given cluster

at a certain position along the interface. For hard particles,

randomly distributed on a lattice, p is simply the area fraction h

of the particles. For the experimental particles, which are not

restricted to reside on discrete lattice sites, we assume p(h) ¼ uh,

where u is an unknown parameter. Thus, for a given M, the

theoretical average radius of gyration of the clusters is obtained

as:

�
RgðMÞ� ¼

"X
i

ð1� pÞLi

#�1 X
i

Ri
gð1� pÞLi ; (1)

where the summation is carried out over all possible shapes of

lattice animals of mass M, each weighted by the probability,

which is attributed to its interfacial perimeter length Li. Note,

eqn (1) is commonly used to describe the clusters which appear in

the theoretical percolation model.1

To evaluate hRg(M)i, we simulate a representative set of 106

random lattice animals employing an algorithm that is based on

a random walk on a two-dimensional hexagonal lattice. For each

of these lattice animals, the radius of gyration Ri
g and the

perimeter length Li are plugged into eqn (1), which then yields the

average Rg for each M. We generate a random lattice animal of

M particles inM steps. First, we pick the cell at the (0,0) position

to be part of our lattice animal. Then, in each of the (M� 1) steps

remaining, one of the cells that are NNs to the current position is

chosen at random. If this cell is already part of our lattice animal,

we adopt the position of this cell to be our current position and

continue to the next step, without having this step counted. If the

cell is not a part of our lattice animal yet, we add it to our lattice

animal, adopt the position of this cell to be our current position,

count this step, and proceed to the next step. An example of our

generated lattice animal is shown in the inset to Fig. 2(a). For

each lattice animal formed, we calculate its radius of gyration Ri
g

and interfacial length Li, which allows us to test the algorithm by

comparing the average hRgi with the known18 scaling of the large

lattice animals hRgi � M0.64. In addition, we test the most

compact lattice animals obtained by simulation as these repre-

sent a usual (2D) solid, such that hRgi � M1/2. Unfortunately,

while our simple algorithm works well in three dimensions22 it is

not as accurate in two dimensions, such that the most compact

clusters scale as M1/2�n, where n z 0.03. Once a set of 106 lattice

animals is generated, we evaluate eqn (1) for different values of p

and divide the resulting hRg(M)i by M�n to account for the

deficiencies of our algorithm. The p value is then tuned to have

the theoretical hRg(M)i perfectly fit the experimental data, as

shown Fig. 2(a) (solid line).

When particles are sticky, forming permanent clusters, the

probability p for an extra particle contact along the interfacial

boundary depends on both h and the probability for two NNs to

stick together, which is itself related to the fraction of PHSA

monolayer remaining on the surface of each of these particles

after etching; thus, p is now a function of both h and c. With our

model we avoid the detailed modelling of interparticle interac-

tions; instead, as in the case of the repulsive particles, we set p as

a free fitting parameter. Again, a perfect match is obtained

between this simple theoretical model, as shown in Fig. 2(b)

(solid line), and the experimental data (scatter) with only one free

parameter being used; importantly, the fitted p is different in
This journal is ª The Royal Society of Chemistry 2012



Fig. 2(b) and in Fig. 2(a). This perfect agreement between our

very simple theoretical lattice model and the experimental data is

encouraging; it suggests that, for a given h and c, the clusters may

possibly be fully described by a single parameter p, which

accounts for both the permanent and temporary contacts

between the particles. Importantly, the hRg(M)i data alone, with

the probability for a cluster of massM to form still unknown, do

not fully characterize the ‘typical’ clusters in our system. Clusters

of certain masses may be extremely rare, in which case their

influence on mechanical or electronic properties of the macro-

scopic system is negligible, regardless of their shape.
3.3 Size distributions of the clusters: hard particles

To complement the statistical description of the clusters of

repulsive particles, we measure the probability for a cluster of

massM to form in the system. Na€ıvely, the formation of a cluster

may be considered a sequence of independent single-particle

contact formation events, each having a certain probability s.

However, the experimental size distributionP(M) of the clusters is

a power law P(M) f M�a with a constant a (for a given h)

rather than a Poisson distribution, as shown in Fig. 3, where the

experimental data are plotted on a log–log scale for a system of

repulsive particles. The P(M) at h¼ 0.49 exhibit slight deviations

from a power law, which becomes exponentially truncated

P(M)fM�ae�M/Mt, withMt being a constant. The data at h¼ 0.23

reveal a similar, albeit much smaller, truncation. Importantly,

while the data are better fitted by a truncated power law, the

a index does not significantly change when the truncation expo-

nent is either introduced or excluded from the fitting formula.

The average distance between the particles ra scales as r�1/2,

where r ¼ (4h/ps2) is the number density of the colloids. There-

fore, large clusters become increasingly probable at high densities,

such that the power law index a decreases with the area fraction h.
Fig. 3 The cluster size distributions P(M) at several different densities h

of repulsive colloids (see legend) exhibit a power law decay P(M)fM�a.

All data are normalized P(1) ¼ 1 to simplify the comparison between

different h. The high h data were log-binned (the horizontal error bars

indicate the bin dimensions); the vertical error bar is the standard devi-

ation of P(M) within this bin size. Slight deviation from a power law,

caused by truncation by exponential decay, is observed for h ¼ 0.49

(triangles) atM < 200. Interestingly, a, the power law indices of our data

are linear in h (as shown in the inset), such that the extrapolation of a(h)

hits zero at the melting area fraction of hard disks,20,21 where h ¼ 0.706

(vertical dashes).

This journal is ª The Royal Society of Chemistry 2012
Interestingly, the observed decrease of awith h is linear, as shown

in the inset to Fig. 3. Moreover, the linear extrapolation of our

experimentala(h) values hits zero at hz 0.7, which is very close to

h¼ 0.706 (vertical dashes in the inset to Fig. 3), where an ordering

phase transition was suggested to occur in a two-dimensional

system of hard disks.20,21 The extrapolated vanishing of a may

possibly indicate that clusters of all masses are equally probable at

h ¼ 0.7. This situation is somewhat reminiscent of the critical

point in a liquid1 where the surface tension is zero and droplets of

all shapes form. Clearly, the suggested scenario is highly specu-

lative, and much more experimental and theoretical work is

needed to fully establish whether this scenario is correct and how

exactly the proliferation of non-crystalline clusters may be related

to the onset of crystallinity at h ¼ 0.706. If indeed a connection

exists between the phase diagram of the system and the size

distribution of the clusters, this further supports our conclusion

that the formation of clusters can not be described as a sequence of

independent contact-formation events involving uncorrelated

particles; rather, the correlations between particles play an

important role in cluster formation.

To further understand the physics of cluster formation, we

attempt to reproduce our P(M), employing the same simple

lattice model, which correctly describes our experimental

hRg(M)i. We fill a 100 � 100 hexagonal lattice with particles at

random, such that the fraction of filled sites is h; this corresponds

to the well-known percolation model.1 For h > 0.5, a percolating

macroscopic cluster spans through the system;23 this h is known

as the percolation threshold hc ¼ 0.5. The correlation length x

diverges24 at h ¼ hc, such that the theoretical P(M) exhibits

a power law scaling1 M�2; this power law is identical, within

error, to the scaling of our experimental data at h ¼ 0.49.

However, for a smaller area fraction h ¼ 0.23, the theoretical

prediction,25 shown in Fig. 4 (open symbols), is functionally

different from the experiment (red filled circles, Fig. 4). This

theoretical model predicts a relatively short x far from hc, such

that P(M) is exponentially truncated for clusters exceeding the

size x. The experimental P(M) is much closer to a power law,

which indicates that the x value is higher than theoretically pre-

dicted. More importantly, the experimental scaling index a, as

shown in the inset to Fig. 3, is much higher than its theoretically
Fig. 4 Our experimental P(M), obtained for the repulsive colloids at

h¼ 0.23, exhibit a power law scalingM�a, where az 4.7, with a possible

slight exponential truncation. The theoretical predictions, obtained with

three different models, dramatically miss the experimental scaling.

Soft Matter, 2012, 8, 2924–2929 | 2927



Fig. 5 The P(M) of sticky colloids scale asM�a, where a depends on the

concentration of sodium methoxide in the etching solution, as shown in

the inset. The curved lines are the fitted power law dependencies, slightly

truncated by an exponential.
predicted value. The failure of this very simple theoretical model

is hardly surprising, since in this model the particles and the

clusters do not move once deposited onto a lattice; thus, particles

that are initially deposited at a distance never directly interact.

This limitation of our theoretical model may possibly diminish

the correlations, giving rise to the observed disagreement with

the experimental P(M).

To improve the agreement of our model with the experiment,

we allow the particles to move randomly, after their deposition.

Each particle moves in its turn to the next lattice site, in a direc-

tion that is randomly chosen for each step; this occurs as long as

the chosen lattice site is vacant. If the chosen lattice site is full, the

particle stays in place, waiting for its next turn to move. Some-

what surprisingly, this lattice–gas (LG) simulation is even further

away from the experimental P(M); while the correlation length is

roughly the same as with the immobile particles, the a index is far

too small, as shown in Fig. 4 (black solid symbols). Typically, the

lattice models provide a reasonable approximation for the

behavior of real-life systems, in which particle positions are not

discretized. However, in our case, the agreement is very poor,

which suggests that a continuum model may be necessary to

better describe our clusters.

To overcome the limitations due to a discrete lattice, we adopt

a model of simple hard disks, in which particle positions can

change continuously. This model, implemented via direct Monte-

Carlo (MC) simulations,26 is usually capable of mimicking the

behavior of the experimental colloids more closely. Our disks, of

diameter s, move on a square of size 84 � 84 (in s units) subject

to cyclic boundary conditions. The area fraction of the particles

is h ¼ 0.23, as in the experiment. In each step, one particle is

chosen at random; this particle is moved a distance of 3.3s in

a randomly-chosen direction, on condition that the new position

of this particle does not overlap with any other particle in the

system. Varying the step size by a factor of 10 does not alter the

results of our simulation, but may significantly increase

the equilibration time. If the move of the particle results in an

overlap, the move is cancelled, such that the particle remains in

its original position. This process continues until the number of

successful moves is 5N, N being the total number of particles in

the system, such that any dependence on the initial configuration

is removed; this algorithm is the classical MC, tested over the last

few decades on hundreds of different model systems.26 Strikingly,

this model, in which particle positions are continuous, is still

incapable of yielding the correct functional shape for the P(M) at

h¼ 0.23, as shown in Fig. 4 (green triangles). The P(M) obtained

with these MC simulations are closer to the experimental data

than the predictions of our lattice models. However, the power

law scaling index a is still totally missed, and the correlation

length is still lower than experimentally detected, as demon-

strated by the higher curvature of the theoretical P(M) in Fig. 4.

Importantly, while slightly longer interactions than those

between theoretical hard disks may be present in our experi-

mental system, such interactions are usually taken into account

by simply rescaling the particle size seff ¼ As, where A is

a constant; then, the effective area fraction is heff ¼ A2h. This

rescaled heff may be closer to hc, where x is longer, such that the

theoretical P(M) would then scale as a power law. However, this

rescaling can not bridge the disparity between theory and

experiment with respect to the value of the scaling index a; the
2928 | Soft Matter, 2012, 8, 2924–2929
experimental a z 4.7 at h ¼ 0.23 can not be reconciled with the

theoretical a z 2 observed near hc. Thus, the observed disparity

is insensitive to the details of the interaction potential which

suggests that a more fundamental issue may be missing in our

understanding of the collective behavior in this very simple

system.
3.4 Size distributions of the clusters: sticky particles

We further test the universality of our conclusions by measuring

the experimental P(M) with sticky, rather than repulsive,

colloids. This drastic change in interparticle interactions signifi-

cantly changes the nature of our clusters; instead of short-lived

clusters of repulsive particles, which deform and reorganize on

the scale of the particle self-diffusion time �10 s, the sticky

particles form permanent clusters which have a finite elastic

modulus.5 Interestingly, while the attractive interactions in our

system are irreversible, the clusters do not grow indefinitely;

instead, our cluster size distribution P(M) is stable on a timescale

of at least two weeks. This timescale is longer, by many orders of

magnitude, than the self-diffusion time of an individual particle

or cluster. A similar behavior was observed earlier in a three-

dimensional colloidal suspension, where cluster formation was

induced by depletion interactions4 and the P(M) did not exhibit

a power law.5However, the physical mechanism for this behavior

is still not fully understood, even on a qualitative level.

Strikingly, the P(M) of our permanent clusters of sticky

particles scales as a power law, much like the P(M) of the short-

lived clusters in the repulsive system. In both cases, the P(M) is

subject to only slight exponential truncation, as we demonstrate

in Fig. 5. The scaling index a depends, for the sticky particles, on

both h and the fraction of the steric PHSA monolayer removed

from the particles’ surfaces. This fraction itself scales with the

sodium methoxide concentration c in the etching solution as

indicated in the legend to Fig. 5. Particles that were etched in

a more concentrated solution have a larger fraction of their

PHSA monolayer removed; these particles then have a higher

chance of sticking together. The P(M) for the repulsive particles,

extrapolated to the same h, is also shown in Fig. 5 (green solid

line) for the sake of comparison. Unsurprisingly, the probability
This journal is ª The Royal Society of Chemistry 2012



for large clusters is reduced when particles are not sticky. Inter-

estingly, the scaling index a initially decreases with c, then

saturates for c > 10 ppm, as shown in the inset to Fig. 5. This

variation of a with c is reminiscent of the a(h) variation observed

in the repulsive systems. Clearly, the variation of P(M) with c

indicates that our particles do not undergo a diffusion-limited

aggregation (DLA), where for each close approach between

particles (or clusters) a permanent contact between them is ulti-

mately established. This further supports our theoretical model

in Fig. 2(b), in which the probability for contact formation is

a function of c and h. Indeed, the hRg(M)i of the DLA clusters,

embedded in a two-dimensional space, scale27 as M0.583; this

scaling does not match our experimental data, as shown in

Fig. 2(b) (yellow dash-dotted line). A peaked P(M), rather than

a monotonically decaying power law, was predicted28 to describe

a system of DLA clusters undergoing Brownian motion in 2D at

all intermediate times. A somewhat unphysical model of DLA, in

which the mobility of clusters was assumed to be mass-inde-

pendent,29 yields a power law P(M) with a ¼ 0.75. This value of

a can possibly be settled with our data where a decreases with c.

For even higher values of c, at the DLA limit, a may be lower

than measured in our work. Our a value can also be compared to

early TEM measurements, where a ¼ 1.5 was observed for

a reaction-limited aggregation.30 Finally, the theoretical models

for cluster distributions in thermodynamically-equilibrated

systems, discussed above, predict a to be invariant with the

distance, in the phase space, from the percolation threshold.

Only the correlation length is expected to vary, decreasing far

from the percolation threshold, such that the M range, in which

the power law behavior is observed, is shortened. The observed

variation of a with h and c suggests that a line of critical points

may exist, such that each of these points corresponds to

a different value of a. This is further supported by the experi-

mental correlation lengths, which are systematically longer than

those predicted by the theory. These excessively long correlations

are difficult to justify if the behavior of our system is determined

by a single critical point at the percolation threshold.31,32 While

these results suggest that a line of critical points may exist, the

nature of these multiple critical points is still not clear.

4. Conclusions

In conclusion, our experimental hRg(M)i, describing the shape of
clusters composed of either repulsive or sticky colloids, are well-

described by a simple lattice model. This is so in spite of their

rather complex scaling with M, where the usual M0.5 scaling law

is observed at high M, while the smaller clusters are more

ramified. The size distributions of these clusters exhibit a power

law scaling, with the scaling index a being dependent on both h,

the area fraction of the particles, and the parameter c, describing

their stickiness. This h- and c- dependent, power law scaling,

exponentially truncated at a very highM, cannot be described by

the common theoretical models, such as the percolation on

a lattice, the lattice–gas, and the MC simulation of hard disks.

Thus, our simple and fundamental 2D system is still not fully

understood, deserving further theoretical attention.
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