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Abstract. We use dynamic light scattering and numerical simulations to
study the approach to equilibrium and the equilibrium dynamics of systems
of colloidal hard spheres over a broad range of densities, from dilute systems
up to very concentrated suspensions undergoing glassy dynamics. We discuss
several experimental issues (sedimentation, thermal control, non-equilibrium
ageing effects, dynamic heterogeneity) arising when very large relaxation times
are measured. When analyzed over more than seven decades in time, we find that
the equilibrium relaxation time, τα, of our system is described by the algebraic
divergence predicted by mode-coupling theory over a window of about three
decades. At higher density, τα increases exponentially with distance to a critical
volume fraction ϕ0, which is much larger than the mode-coupling singularity. This
is reminiscent of the behavior of molecular glass-formers in the activated regime.
We compare these results to previous work, carefully discussing crystallization
and size polydispersity effects. Our results suggest the absence of a genuine
algebraic divergence of τα in colloidal hard spheres.
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1. Introduction

Colloidal particles are increasingly popular as model systems for investigating the behavior
of atomic and molecular materials [1]. As the typical size of a colloidal particle is
comparable to the wavelength of visible light, one can use relatively simple, yet powerful,
techniques, such as optical and confocal microscopy [2] or static and dynamic light
scattering [3], to fully characterize their structural and dynamical properties. In contrast
to molecular systems, the interaction between colloids can easily be tuned from repulsive
(e.g. due to electrostatic interactions) to hard sphere-like [4], moderately attractive
(e.g. due to depletion forces [5]) or even strongly attractive (e.g. due to van der Waals
attractions). Furthermore, colloidal particles can now be synthesized in a variety of non-
spherical shapes and their surface can have non-uniform physical or chemical properties,
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opening the way to anisotropic systems with directional interactions that can be precisely
tailored [6].

This variety of morphologies and surface properties, and the possibility to study
colloidal systems with relative ease, comes with a price. Unlike atoms, colloids have
to be synthesized and the outcome is usually a polydisperse assembly of particles with
different sizes. Depending on the phenomenon of interest, polydispersity might be an
important control parameter, e.g. when the precise location of phase transitions must be
determined. Moreover, the very same feature that makes accessible their typical time
and spatial scales—their comparatively large size—also makes colloidal particles prone to
sedimentation. The density of a colloid typically differs from that of the solvent in which
it is suspended. Therefore, colloids experience a buoyant force, proportional to Δρ, the
difference between the density of the particle and that of the solvent. Sedimentation (or
creaming, if Δρ < 0) is usually not a severe issue for isolated, submicron colloids. The
situation is, however, radically different for colloids that form solid structures, such as
aggregates, crystallites or glasses, because the gravitational stress due to a large number
of particles may add up. These effects can be mitigated only partially by matching the
solvent density to that of the particles [7, 8], since a perfect matching cannot be achieved
in practice. Finally, a large particle size implies that microscopic motion occurs on a
timescale typically much larger than for molecular systems. Although clearly an advantage
when single-particle motion is investigated via direct visualization techniques, this is not
necessarily so when slow, collective relaxation phenomena are studied, which can occur
on timescales of several days.

In this paper, we discuss some of these issues in relation to our investigations by
dynamic light scattering (DLS) of dense suspensions of colloidal hard spheres approaching
the colloidal glass transition [9]. For hard spheres at thermal equilibrium, several distinct
glass transition scenarios have been described. In a first line of research, the viscosity
or, equivalently, the timescale for structural relaxation, τα(ϕ), is believed to diverge
algebraically:

τα(ϕ) ∼ (ϕc − ϕ)−γ. (1)

This result is both predicted [10] by mode-coupling theory (MCT) and supported by light
scattering data [11]. Packing fractions ϕc ≈ 0.57–0.59 are the most often quoted values
for the location of this colloidal glass transition. A truly non-ergodic state is also often
reported for larger ϕ [11]–[14].

Several alternative scenarios [15]–[18] suggest a stronger divergence:

τα(ϕ) = τ∞ exp

[
C

(ϕ0 − ϕ)δ

]
. (2)

Equation (2) with δ = 1 is frequently used to account for viscosity data [19, 20] because it
resembles the Vogel–Fulcher–Tammann (VFT) form used to fit the viscosity of molecular
glass-formers [21], with temperature replaced by ϕ. Moreover, it is theoretically expected
on the basis of free volume arguments [15], which lead to the identification ϕ0 ≡ ϕrcp,
the random close packing fraction where osmotic pressure diverges. Kinetic arrest must
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occur at ϕrcp (possibly with δ = 2 [16]), because all particles block each other at that
density [22, 16, 23]. This is analogous to a T = 0 glass transition for molecular systems [24].
Entropy-based theories and replica calculations [17, 18] predict instead a divergence of τα

at an ideal glass transition at ϕ0 < ϕrcp, where the configurational entropy vanishes but
the pressure is still finite. This is analogous to a finite-temperature ideal glass transition
in molecular glass-formers [24]. In this context, the connection to dynamical properties
is made through nucleation arguments [25], yielding equation (2), with δ not necessarily
equal to unity [26]. Here, the relaxation time does not diverge because particles are in
close contact, but because the configurational entropy counting the number of metastable
states vanishes.

In molecular glass-formers where dynamical slowing down can be followed over as
many as 15 decades, the transition from an MCT regime, equation (1), to an activated
one, equation (2), has been experimentally demonstrated [21]. For colloidal hard spheres,
the situation remains controversial, because dynamic data are available over a much
smaller range [11, 14, 19, 27], typically five decades or less. Crucially, only equilibrium
measurements for ϕ < ϕc were reported, leaving unknown the precise nature and location
of the divergence. A confusing feature of the colloidal glass transition, therefore, is that the
‘experimental glass transition’, which we denote by ϕg, and which occurs when equilibrium
relaxation times become too large to be confidently measured experimentally, occurs near
the fitted MCT singularity, ϕg ≈ ϕc, while the two crossovers are well separated in
molecular systems.

At the theoretical level, there is also an ongoing debate about the nature of the
glass transition in colloidal hard-sphere systems. Theoretical claims exist that the cutoff
mechanism suppressing the MCT divergence in molecular systems is inefficient in colloids
due to the Brownian nature of the microscopic dynamics, suggesting that MCT could
be virtually exact for colloids [28]. This viewpoint is challenged by more recent MCT
calculations [29, 30] and by computer studies of simple model systems where the MCT
transition is similarly avoided both for stochastic and Newtonian dynamics [31]–[33],
directly emphasizing that the cutoff mechanism of the MCT transition in molecular
systems is different from the one described in [28], and is likely very similar for hard-
sphere colloids and molecules. The only physical ingredient missing in these theoretical
works is the inclusion of hydrodynamic interactions, which are always supposed to play
little role at very large volume fractions. It would be very surprising if hydrodynamic
interactions in colloids could suppress activated processes and make the MCT predictions
exact.

In this paper we discuss in detail all these issues. In a short version of this work [9],
we claimed that we had been able to detect ergodic dynamics for a colloidal hard-
sphere system at volume fractions above the mode-coupling transition, ϕc, because our
experiment was able to cover an unprecedented range of variation of the equilibrium
relaxation time. In the present paper, we discuss in detail the several challenges we had to
face in order to obtain these data, and we argue that our experimental results should apply
quite generally to colloidal hard spheres. We first describe our sample and experimental
set-up in section 2. In section 3 we specifically discuss the difficulties associated with
measurements of long relaxation timescales. In section 4 we analyze our results for the
equilibrium dynamics and compare them with previous experiments and a new set of
numerical simulations. Finally, we conclude the paper in section 5.
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2. Colloidal particles and experimental set-up

2.1. Sample preparation

The particles are poly(methylmethacrylate) (PMMA) spheres of average radius R =
130 nm, sterically stabilized by a thin layer of poly(12-hydroxystearic) acid of thickness
≈10 nm. They are physically similar to those used in previous studies of the glass
transition (see, e.g., [4, 11, 19]). A major advantage is that they are slightly smaller
than in previous studies. This implies that relaxation in the dilute limit is faster and
that we can cover a broader range of volume fractions. The particles are polydisperse
(standard deviation of the size distribution normalized by the average size σ ≈ 10%, as
obtained by a cumulant analysis of DLS data [34]), in order to prevent crystallization
for at least several months, much longer than the typical experiment duration. They are
suspended in a mixture of cis/trans-decalin and tetralin (66/34 w/w), whose refractive
index nD = 1.503 at T = 27 ◦C closely matches that of the colloids, thereby minimizing
van der Waals attractions and allowing light scattering experiments to be performed in
the single scattering regime. Prior to each measurement, the suspensions are vortexed for
about 6 h, centrifuged for a few minutes to remove air bubbles and then kept on a gently
tumbling wheel for at least 12 h. The waiting time or sample age, tw, is measured from
the end of the tumbling. When several measurements are repeated on a sample at a given
volume fraction, the dynamics are re-initialized by tumbling it on the wheel overnight,
with no further vortexing or centrifugation.

Samples at various volume fractions are prepared as follows. A stock suspension is
centrifuged in a cylindrical cell for about 24 h at 1000g, where g is the acceleration of
gravity, to obtain a random close packing (RCP) sediment, whose volume fraction, ϕ,
is estimated to be ϕ = ϕrcp ≈ 0.67 according to numerical results [35]. It is crucial to
remark that this value is affected by a large uncertainty, since it depends on the details
of the particle size distribution, but also because the polymer layer covering the particles
may be slightly compressed during strong centrifugation, implying that volume fraction
is not accurately known at this stage of the preparation.

Solvent is then added to, or removed from, the clear supernatant in order to adjust
the overall volume fraction to ϕ ≈ 0.4. The suspension thus obtained is used as a mother
batch from which individual samples are prepared at the desired volume fraction by adding
or removing a known amount of solvent. All volume fractions comparative to that of the
initial batch are obtained with a relative accuracy of 10−4, using an analytical balance
and literature values of the particle and solvent densities (1190 kg m−3 and 930 kg m−3,
respectively) [27].

Although the relative volume fractions within our experimental data are known with
high accuracy, the absolute scale of ϕ is far more difficult to estimate precisely, as there
is no direct way to measure ϕ which is not prone to uncertainty. We discuss this issue in
more detail in section 2.4 below.

2.2. Dynamic light scattering set-up

We use dynamic light scattering to probe the dynamics of our concentrated colloidal hard
spheres. In a DLS experiment one measures the autocorrelation function of the temporal
fluctuations of the intensity scattered at an angle θ [3]. This allows the dynamics to be
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probed on a length scale ∼2π/q, where q = 2k0 sin(θ/2) is the magnitude of the scattering
vector, with k0 the wavevector (in the solvent) of the incident light, usually a laser beam.

Dynamic light scattering experiments are performed on samples thermostated at
T = 27±0.1 ◦C, using both a commercial goniometer and hardware correlator (Brookhaven
BI9000-AT) to access the dynamics on timescales shorter than 10 s, and a home-built,
CCD-based apparatus to measure slower dynamics. The CCD apparatus is described
in [36], and so we simply recall here its main features. The source is a solid state laser
with in vacuo wavelength 532.5 nm and maximum power 150 mW. The sample is held in
a temperature-controlled copper cylinder, with small apertures to let the incoming beam
in and out and to collect the scattered light. The beam is collimated, with a diameter of
0.8 mm. All data reported here are obtained at a scattering angle θ = 90◦, corresponding
to q = 25.08 μm−1 and qR = 3.25, slightly smaller than the interparticle peak in the static
structure factor. The collection optics images a cylindrical portion of the scattering volume
onto the CCD detector, the diameter and the length of the cylinder being approximately
0.8 and 2 mm, respectively.

We process the CCD data using the time-resolved correlation (TRC) method [37],
which allows us to characterize precisely both equilibrium and time-varying dynamics.
The degree of correlation, cI , between pairs of images of the speckle pattern scattered by
the sample at time tw and tw + τ is calculated according to

cI(tw, τ) =
〈Ip(tw)Ip(tw + τ)〉p

〈Ip(tw)〉p〈Ip(tw + τ)〉p
− 1, (3)

where Ip is the intensity at pixel p and the average is over all CCD pixels. Data
are corrected for the uneven distribution of the scattered intensity on the detector as
explained in [38]. For non-stationary dynamics (e.g. during sample ageing) the two-time
intensity correlation function, g2(tw, tw + τ) − 1, is obtained by averaging cI(tw, τ) over
tw, choosing a time window short enough for the dynamics not to evolve significantly. For
age-independent dynamics (e.g. when equilibrium is reached), time invariance is fulfilled
and g2(tw, tw + τ) − 1 reduces to the usual intensity correlation function g2(τ) − 1.

In order to obtain the full correlation function at all relevant time delays, we first
use the CCD apparatus to measure the dynamics for time delays τ ≥ 0.1 s. By applying
the TRC method, we monitor the evolution of the dynamics until an age-independent
state is reached. The sample is then transferred to the goniometer set-up, where the
fast dynamics (τ ≤ 10 s) are measured using a point-like detector and averaging the
correlation function over time. When displacing the sample we take care to minimize any
shear that could perturb its dynamics; furthermore, we have checked that the dynamics
measured by the CCD are the same before and after displacing the sample. The intensity
correlation functions measured in the two set-ups are merged by multiplying the CCD
data by a constant, so that the two sets of data overlap in the range 0.1 s ≤ τ ≤ 10 s.
Finally, the full intensity correlation function is rescaled so that g2(τ)− 1 → 1 for τ → 0.
Although in this paper we focus on the slow dynamics measured by the CCD, we point
out that the goniometer measurements are still necessary in order to properly normalize
the intensity correlation function. For ϕ � 0.55, we find that the dynamics are too slow
to obtain properly averaged data when only a time average is performed. We thus adopt
the so-called brute force method [39] for the goniometer measurements: a large number of
intensity correlation functions are collected (typically 200–500), the sample being turned
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in between two measurements in order to probe statistically independent configurations.
Additionally, the collection optics are designed in such a way that about 10 coherence
areas, or speckles, are collected by the detector, further enhancing the statistics.

2.3. Coherent versus incoherent scattering

The intensity correlation function is related to f(tw, tw + τ), the (two-time) intermediate
scattering function (ISF) or dynamic structure factor, by the Siegert relation [40]:
f = β−1

√
g2 − 1, where β ≤ 1 is a constant that depends on the collection optics. The

ISF quantifies the evolution of the particle position via

f(tw, tw + τ) =

〈
1

N

N∑
j=1

N∑
k=1

eiq·[rj(tw+τ)−rk(tw)]

〉
. (4)

Here, the double sum is over N particles, rj(t) is the position of particle j at time t, q is
the scattering vector and brackets indicate the same average as for g2. Note that in general
DLS measurements provide information on the collective (or coherent) ISF, as indicated
by the double sum over j and k in equation (4). For optically polydisperse samples,
however, the refractive index of the solvent may be tuned so that the ISF reduces to its
self-(or incoherent) part, i.e. only terms with j = k contribute to the rhs of equation (4).
Our sample is optically polydisperse, because the PMMA core is polydisperse in size and
the grafted PHSA layer has a refractive index that is different from that of the PMMA
core, so that the average refractive index of a particle varies with its size. Since the size
polydispersity is only moderate, one can safely assume that the scattering power of a
given particle is independent of the particle position. Under this assumption, the ISF can
be written as the sum of a ‘full’ and a ‘self-’ (incoherent) term [34]. The contribution of
the full term vanishes if one matches the solvent refractive index to the mean refractive
index of the particles. In the experiments performed to calibrate the absolute volume
fraction by measuring the ϕ dependence of the short time dynamics for ϕ � 0.2 (see
section 2.4 and figure 1), we carefully adjust the refractive index of the solvent so as to
fulfill this condition. Additionally, these measurements are performed at qR = 4.0, for
which S(q) ≈ 1, where the only contribution to the ISF is the self-part even if the average
index is not matched [34]. Thus, in these runs we probe uniquely the self-part of the ISF,
as required for applying the calibration method described below.

In all the other measurements reported in this paper and in [9], we deliberately
increase by a small amount the optical mismatch between the particles and the solvent, in
order to increase the intensity signal to be detected by the CCD camera. By comparing
the mean intensity for the slightly mismatched sample to that measured for the best
match, we find that the relative weight of the ‘full’ and ‘self-’ terms of the ISF are 35%
and 65%, respectively. The ‘full’ term itself is a combination of the self-and distinct parts
of the ISF, the relative weight of the self-part being of the order of 1/S(q) [34]. At the
scattering vector where the measurements are performed (qR = 3.25), S(q) � 2 for all
studied volume fractions. Therefore, the relative weight of the self-term in the measured
ISF is ≈80% or more, and we conclude that our DLS experiments probe essentially the
self-part of the ISF, namely

f(tw, tw + τ) �
〈

1

N

N∑
j=1

eiq·[rj(tw+τ)−rj(tw)]

〉
. (5)
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Figure 1. Volume fraction dependence of the dimensionless short time self-
diffusion coefficient. Open squares: experimental data with the absolute volume
fraction scaled to fit the Tokuyama–Oppenheim prediction [41]. Open circles:
same data scaled to the Beenakker–Mazur prediction [42]. Crosses: same data
scaled to maximize the overlap between the experimental and numerical results
for the structural relaxation time, τα, in the glassy regime ϕ ≥ 0.55. The scaling
factor for absolute ϕ between squares and circles is 1.07.

2.4. Determination of the volume fraction

As mentioned above, the absolute value of the volume fraction after preparation of a
new sample is not known precisely, whereas the uncertainty on the relative values of ϕ
for a series of samples obtained by dilution can be reduced to 10−4 or less. In most
works on nearly monodisperse colloidal hard spheres, the absolute scale of the volume
fraction is obtained by preparing samples in the crystal–fluid coexistence region and by
setting ϕ such that the experimental melting and freezing fractions coincide with those
predicted theoretically [4, 11]. It is important to remark that, unless the sample is perfectly
monodisperse, this method suffers from some uncertainty, since numerical work shows
that the volume fraction at freezing depends on polydispersity. For example, in [11] the
authors use nominal values of ϕ that are obtained by comparison to the freezing point
of a monodisperse suspension, but they warn that the true values of ϕ could be up to
a factor of 1.04 higher than the nominal ones, due to a sample polydispersity σ ≈ 6%.
More generally, a relative error of about 5% is unavoidable in experiments on hard-sphere
colloids.

This calibration procedure cannot be applied to our more polydisperse suspensions,
since they do not crystallize. Instead, we calibrate the absolute ϕ by comparing the
volume fraction dependence of the short time self-diffusion coefficient, Ds, to theoretical
predictions by Tokuyama and Oppenheim [41] and Beenakker and Mazur [42]. In practice,
we start from an initial guess of the absolute volume fractions, ϕguess, and measure
Ds versus ϕguess in the range ϕguess � 0.2 by fitting the initial decay of the ISF to
f(q, τ → 0) � exp(−q2Dsτ). As explained in section 2.3, we measure f at qR = 4
and under the best index matching conditions, to make sure that only the self-part of the
ISF is probed. We then fit Ds(ϕguess) to the prediction for Ds(ϕ) of either [41] or [42],
setting ϕ = bϕguess. There are two fitting parameters in this procedure: b is the scale factor
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for the absolute volume fractions and D0 ≡ limϕ→0 Ds(ϕ) is the self-diffusion coefficient
in the limit of infinite dilution.

The results of the fit are shown in figure 1 together with the theoretical curves. The
data agree well with both theoretical predictions, although the fit to the Beenakker–Mazur
expression is slightly better. The ratio of the scaling factors b obtained by fitting the data
to [41] or [42], respectively, is 1.07. Thus, the spread in the estimate of the absolute
volume fractions is of the order of 7%, comparable to that in [11]. Interestingly, the
present method was used in [43] for a sample where calibration using the experimental
freezing point was simultaneously possible, yielding fully compatible results.

As a final, alternative procedure to calibrate the absolute volume fraction, we compare
our data for the equilibrium relaxation times, described in more detail in section 4, to
the results of Monte Carlo simulations for a three-dimensional binary mixture of hard
spheres [9, 24]. We find that it is possible to make data in the glassy regime coincide
over about five decades of relaxation times by adjusting the experimental scale for ϕ by a
factor very close to that required to fit Ds to the Beenakker–Mazur theory (see figure 1).
In this paper, as in [9], we adopt for convenience the scaling factor required to collapse
the experimental and numerical relaxation times in the glassy regime (crosses in figure 1).

This section shows that two distinct indicators obtained by theoretical and numerical
work can be used to adjust absolute volume fractions in moderately polydisperse colloidal
hard spheres, yielding results that are consistent within a confidence interval of about
Δϕ/ϕ ≈ 7%, an uncertainty comparable to that plaguing adjustments onto the static
phase diagram due to the polydispersity effects. This uncertainty should be kept in mind
when absolute numbers for critical volume fractions are compared between different works
using different particles, different solvents, different techniques and different calibration
methods for the volume fraction.

2.5. Data analysis

As an example of the TRC data obtained in our experiments and their processing, we
show in figures 2 and 3 the degree of correlation cI and the final relaxation of the age-
dependent ISF, respectively, for a sample at ϕ = 0.5970. This is the densest system for
which we were able to collect data at thermal equilibrium.

The degree of correlation initially grows with tw, implying that the change in sample
configuration over a fixed time lag τ becomes progressively smaller, i.e. that the dynamics
slows down. After about 104–105 s the evolution of the dynamics essentially stops and a
nearly stationary state is reached. Figure 3 shows the two-time ISF obtained by averaging
the cI data of figure 2 over time windows of duration 200 s (for the younger ages) to 1000 s
(for the oldest samples), for various ages tw (for clarity, the fast dynamics measured with
the goniometer apparatus is not shown). The lines are stretched exponential fits to the
final decay of the ISF:

f(tw, tw + τ) = A(tw) exp
{
− [τ/τα(tw)]p(tw)

}
+ B, (6)

where A is the height of the plateau preceding the final, or α, relaxation, τα the α
relaxation time, p the stretching exponent and B ≥ 0 a small, residual base line most
likely due to an imperfect correction of the effect of uneven illumination, as discussed
in [38]. The ageing behavior observed for cI in figure 2 is reflected by the increase of τα
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Figure 2. Degree of correlation cI(tw, τ) measured for a sample with a volume
fraction ϕ = 0.5970. From top to bottom, the time delay τ is 0, 1, 10, 20, 50,
100, 200, 500, 1k, 2k, 5k, 10k, 20k, 50k, 100k and 200k s. Note the logarithmic
time axis, to better appreciate the initial ageing regime.

Figure 3. Symbols: two-time intermediate scattering functions (ISFs) f(tw, tw +
τ) obtained from the degree of correlation shown in figure 2 (ϕ = 0.5970). From
left to right, tw = 1k, 2k, 5k, 10k, 50k, 100k, 200k and 300k s. The solid lines
are stretched exponential fits to the data according to equation (6).

with tw. We find that for tw ≥ 5 × 104 s the relaxation time does not evolve any more
(see also figure 6 and the related discussion below), while the height of the plateau still
slightly increases, albeit extremely slowly. We take tw = 5 × 104 as the end of the ageing
regime and obtain the equilibrium value of τα as the average of the fitted relaxation time
in the stationary regime.
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Figure 4. Age dependence of the α relaxation time for a sample at ϕ = 0.5970.
The curves are labeled by the laser power used for the measurement. The decrease
of τα at large tw observed at the higher laser powers is an artifact due to sample
heating and convection, which is removed by reducing the power and introducing
a shutter.

3. Measuring long relaxation times

We faced several challenges due to the extremely long relaxation times of the system, the
use of a CCD detector and the influence of gravity. In this section, we describe some of
the potential artifacts and the difficulties associated with measurements on nearly glassy
samples, together with our solutions to overcome these problems.

3.1. Sample heating and convection

The CCD detector is much less sensitive than a traditional phototube or an avalanche
photodiode. Consequently, a larger laser power is required, potentially leading to sample
heating, if the particles or the solvent absorb light at the wavelength of the source.
Under normal gravity conditions, local heating results in convective motion, which can
significantly alter the spontaneous dynamics of our samples [44]. Figure 4 shows the age
dependence of the α relaxation time obtained by fitting the ISF to equation (6) for a
sample at ϕ = 0.5970. The different curves are labeled by the power of the incident beam;
when the largest available power is used (150 mW, full circles), τα initially increases, as
observed for many out-of-equilibrium systems, but then drops sharply with increasing tw.
This surprising ‘rejuvenation’ effect is much less pronounced when a reduced laser power is
used (50 mW, open squares): the slowing down of the dynamics persists over a longer time
span and the decrease of τα that eventually sets in is more modest. These observations
suggest that the acceleration of the dynamics, reported in one of our previous papers [36],
is a nonlinear effect perturbing the equilibrium dynamics, due to the onset of convective
motion driven by sample heating. Indeed, we found that the solvent had became slightly
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yellowish since samples were prepared, which was responsible for increased absorption in
the green region of the visible spectrum, where our laser operates.

To avoid any artifact due to convection, we have added a shutter to the set-up, so
that the sample is illuminated only for 100 ms at each CCD acquisition, rather than
continuously. Since the typical acquisition rate is 1 Hz or lower, this reduces the average
power injected in the sample by a factor of ten or more. Additionally, we perform our
experiments at the minimum laser power compatible with good beam stability (about
10 mW). Under these conditions, τα is found to increase monotonically until a plateau is
reached, with no rejuvenation effect even after 2 days, as shown by the triangles in figure 4.
By changing the opening time of the shutter, we have checked that the dynamics shows
no dependence on the average illuminating power, as long as the laser power is ≤10 mW
and the shutter time is ≤1 s. As a final remark on this spurious rejuvenation, we note
that this phenomenon sets in very slowly, especially when the laser power is not too
high. This hints at a subtle interplay between ageing and an external drive, similarly to
the behavior of other soft glassy materials to which a (modest) mechanical perturbation
is applied during their ageing [45]. More experiments will be needed to explore these
analogies.

3.2. Sedimentation

Sedimentation is a potential additional source of a spurious acceleration of the dynamics,
since it can act as a nonlinear driving force. This is especially true for systems that relax
very slowly and are very sensitive to external forcing [46, 47]. In the imaging geometry
of our CCD set-up, sedimentation results in an overall drift of the speckle pattern on the
detector, which contributes to the change of Ip at any given pixel and thus to the decay
of g2. We have implemented a correction scheme, which will be described in detail in a
forthcoming publication; here we explain only the principles of the method. We use Image
Correlation Velocimetry (ICV) [48], a technique similar to Particle Imaging Velocimetry,
to measure the drift of the speckle pattern due to sedimentation for each pair of images
taken at times tw and tw + τ . The drift is obtained by calculating the spatial cross-
correlation between the two speckle images. If the relative displacement of the particles
over the lag τ is smaller than 1/q, the length scale probed in a DLS experiment, the speckle
pattern is essentially frozen, except for its overall drift. The second speckle image is then
a shifted version of the first one; consequently, the cross-correlation function exhibits a
marked peak whose position corresponds to the average particle drift. Once the drift is
obtained, the second image is backshifted numerically [49] by the same amount but in
the opposite direction, so as to compensate the physical drift. The corrected cI is finally
calculated between the first image and the backshifted version of the second one. The
minimum shift that can be reliably measured is a few hundredths of a pixel, corresponding
to about 50–100 nm in the sample. This is slightly less than 2π/q = 250 nm, the length
scale over which the relative motion is probed by DLS: thus, we are able to detect and
correct for an overall drift comparable to the relative displacement of the particles. Note
that our correction method fails when the speckle pattern ‘boils’ and changes faster than
it drifts, since no peak in the cross-correlation function can be detected reliably. However,
this situation corresponds precisely to the case where the internal, spontaneous dynamics
dominates over sedimentation, making the correction for the drift irrelevant.
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Figure 5. Main panel, filled squares: final relaxation of the ISF for a concentrated
sample at ϕ = 0.5990 and tw = 105 s. The open symbols are the same data after
correcting for the contribution of the average sedimentation velocity to the decay
of f . Inset: for the same ϕ, tw dependence of the α relaxation time for the raw
ISFs and the corrected data.

Figure 5 shows both the raw (solid squares) and the corrected (open squares) ISF
for the most concentrated sample that we have studied (ϕ = 0.5990) at tw = 105 s.
Sedimentation clearly affects the decay of f , which is about three times faster for the raw
data than for the correct ones. The inset shows the large age behavior of the relaxation
time extracted from raw (open squares) and corrected (solid squares) correlation functions.
Sedimentation leads to an apparent arrest of ageing for tw ≥ 104 s, while the corrected data
indicate that the sample barely equilibrates for tw ≥ 105, an age ten times larger. Note
that, although we do correct for the average sedimentation velocity, we cannot correct for
velocity fluctuations stemming from hydrodynamics interactions and possibly changing
the relative position of the particles, thereby contributing to the loss of correlation of
the scattered light. Since velocity fluctuations are known to be relevant in concentrated
suspensions [50], it is likely that sedimentation still accelerates to some extent the decay
of f . These data are therefore not included in the analysis of equilibrium dynamics below.

An additional artifact due to sedimentation could be a change of volume fraction
with height. For selected samples, we have performed several measurements at different
heights and found no differences in the dynamics, except very close to the sample top.
This is consistent with a numerical analysis of the sedimentation of dense suspensions,
which shows that in the initial stages the volume fraction profile is affected only very close
to the top and the bottom of the sample [51].

It is interesting to compare the potential impact of sedimentation on our results to that
in other works. A recent set of experiments [8] on concentrated PMMA hard spheres has
shown that ageing is faster for off-buoyancy-matching particles than for nearly-buoyancy-
matched colloids. Although our particles are not buoyancy-matched (Δρ = 259 kg m−3),
they are smaller than those used in the optical microscopy investigation of [8], enhancing
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Figure 6. Age dependence of the α relaxation time for samples at volume
fractions 0.5876 ≤ ϕ ≤ 0.5990, as indicated by the labels. Different symbol
fillings correspond to independent experiments on the same sample. Large-tw
data for the two largest volume fractions are corrected for sedimentation effects.
The line has a slope of 1, showing that the initial growth of τα is in general close
to linear.

the role of Brownian diffusion with respect to the gravity-driven drift. The relevant
parameter is the inverse Peclet number:

Λ =
3kBT

4πgΔρR4
, (7)

defined as the ratio of the gravitational length to the particle radius (T is the absolute
temperature and kB is Boltzmann’s constant). In this work, Λ ≈ 1350, much larger than
Λ = 44.1 for the ‘normal gravity’ experiments of [8] (for which Δρ = 300 kg m−3) and
greater than Λ = 678 for their ‘reduced gravity’ measurements (Δρ = 20 kg m−3). Thus,
in our experiments Λ is larger than in typical ‘reduced gravity’ microscopy investigations.
This illustrates the great advantage of using smaller particles to mitigate gravity effects,
due to the R−4 dependence of Λ. In order to further investigate the role of gravity
in the slow dynamics of colloidal hard spheres in the large Λ regime, light scattering
measurements on small particles that are partially buoyancy-matched or microgravity
experiments will be needed.

As a final remark on potential artifacts, one may wonder whether mechanical
instabilities could be partially responsible for the ultra-slow decay observed in figure 5,
where the relaxation time can be as large as 1.5 days. To test this possibility, we have
measured g2 for a sample compressed at random close packing and where very little
dynamics is expected to occur. Although g2 does exhibit some decay, whose origin is
still unclear (either mechanical instability or some extremely slow rearrangement of the
packed particles, or the contributions of a small number of ‘rattlers’), we stress that this
relaxation is much slower than that observed for the most concentrated sample studied
in this work. Furthermore, the relaxation of the most concentrated sample (figure 5) is a
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factor of 10 slower than the slowest equilibrium relaxation reported here and in [9]: we
can therefore rule out any significant artifact due to mechanical instability.

3.3. Non-equilibrium ageing effects

Besides artifacts due to sample heating and sedimentation, the dynamics of very
concentrated samples become intrinsically difficult to measure because of ageing and
dynamical heterogeneity. Ageing is a quite general feature of glassy systems (see, e.g., [52]
and references therein), where the dynamics slows down with time or sample ‘age’, tw,
as the system evolves towards equilibrium. In traditional DLS, the intensity correlation
function has to be extensively averaged over time, making it impossible to capture the
evolution of the dynamics for non-stationary systems. By contrast, the TRC approach
and other multispeckle methods [53]–[55] allow one to fully characterize time-evolving
dynamics, because the time average is replaced in part, or completely, by an average over
the slightly different q vectors associated with distinct pixels of the CCD.

Figure 6 shows the age dependence of τα for samples prepared at different volume
fractions ϕ ≥ 0.5876. Symbols with the same shape but different filling correspond to
independent experiments at the same volume fraction. Data for the two largest ϕ are
corrected for sedimentation effects at the largest tw; in all other cases, corrected and raw
data yield the same results. Initially, τα increases with tw; in this regime, the growth of τα

versus tw is generally close to linear, as shown by the line τα ∝ tw. For the most diluted
sample in figure 6 (ϕ = 0.5876), the initial ageing regime is very short and is comparable
to the time needed by the sample to equilibrate at the temperature imposed by the copper
holder; consequently, no precise ageing law can be determined. After the initial regime,
τα saturates and becomes almost independent of time, suggesting that all samples reach
equilibrium, with the possible exception of the most concentrated suspension (ϕ = 0.5990,
squares in figure 6), for which the dynamics seem to keep slowing down over the full
duration of the experiment (more than 3 days), although at an increasingly smaller rate.
Note that the experiments are quite generally well reproducible, with the exception of
the earliest stages, where presumably the dynamics is more influenced by the exact initial
configuration and thermalization.

The time needed for reaching equilibrium, teq, is about 30 times greater than the
(equilibrium) relaxation time for the samples at the lowest volume fraction, ϕ = 0.5876.
However, this value is certainly overestimated due to the contribution of the thermalization
time, of the order of 103 s. For the samples at ϕ = 0.5953 and 0.5970, for which full
equilibration is reached and where the initial thermalization time is negligible compared
to all relevant timescales, teq/τα ≈ 3–4. This confirms the intuitive notion that equilibrium
is reached on the timescale of a few structural relaxation times, i.e. after a few cage escape
processes. Note that we are able to show that there is indeed an equilibrium regime even
for samples whose α relaxation time is more than seven orders of magnitude larger than
that of very dilute suspensions. This significantly extends the range of samples that do
reach equilibrium, compared to previous work [11], where samples with τα larger than a
few 105 times the Brownian decay time were classified as ageing samples, most likely due
to technical difficulties in accessing much larger relaxation timescales.

The time evolution of the stretching exponent p(tw) is shown in figure 7. For
sufficiently large tw, p saturates at 0.5–0.6, regardless of the volume fraction of the particles

doi:10.1088/1742-5468/2009/07/P07015 15

http://dx.doi.org/10.1088/1742-5468/2009/07/P07015


J.S
tat.M

ech.
(2009)

P
07015

Dynamics of dense suspensions of colloidal hard spheres

Figure 7. Age dependence of the stretching exponent p obtained by fitting the
final decay of the ISF to equation (6). Same symbols as in figure 6.

and the history of the samples. This stretched exponential shape might be related to
sample polydispersity, since in previous experimental work on similar but less polydisperse
colloidal hard spheres (σ ≈ 6%) the ISF was shown to relax nearly exponentially [11].
However, we point out that we find a similar value in the simulations described below
in section 4.2 for both σ = 5.77% (p ≈ 0.55) and σ = 11.5% (p ≈ 0.65). Interestingly,
for the most concentrated sample p remains well above the asymptotic value measured
for all other samples, further suggesting that this sample has not fully relaxed during the
experimental time window. Note that here we never observe ‘compressed’ exponential
relaxations (p > 1), in contrast to the data of [36]. We recall that for the latter laser
heating yielded convection, which was most likely responsible for faster-than-exponential
relaxations.

3.4. Dynamic heterogeneity

A detailed discussion of dynamical heterogeneity in samples at intermediate volume
fractions (0.20 < ϕ < 0.576) has been presented in [9, 56, 57]. Here, we simply report
that both the degree of correlation cI and the age-dependent ISF become more erratic
and exhibit significant temporal fluctuations as ϕ grows. An example is shown in figure 8
for cI and in figure 9 for the corresponding time-resolved ISFs. The data presented here
are for the most concentrated sample that we have studied, ϕ = 0.5990. Note that the
fluctuations of cI are particularly relevant at early ages, when the sample is presumably
further from its equilibrium configuration. Because of these fluctuations, the shape of
f(tw, tw + τ) is less well defined and the fits are generally poorer. However, we stress
that τα remains reasonably well defined, since the decay of the ISF, although somehow
‘bumpy’, is generally not too stretched, with the exception of the earliest ages.

The observation that cI and f are increasingly noisy as ϕ increases is consistent with
the recently reported growth of cooperatively rearranging regions in supercooled colloidal
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Figure 8. Degree of correlation for the most concentrated sample (ϕ = 0.5990).
Note the large fluctuations of cI , especially for tw ≤ 5 × 103 s, indicative of a
temporally heterogeneous dynamics. From top to bottom, τ is 0, 5, 10, 25, 50,
100, 250, 1k, 2.5k, 5k, 10k, 25k, 50k, 100k and 150k s.

Figure 9. Two-time ISFs obtained from the cI data shown in figure 8 (ϕ =
0.5990). From left to right, tw = 500, 5k, 7k, 10k, 20k, 30k, 50k, 70k, 100k
and 170k s. Dynamical heterogeneity at early times results in noisy ISFs, whose
shape significantly departs from a stretched exponential.

suspensions approaching the glass transition [9, 56, 58, 59], in analogy with the behavior
of molecular glass-formers [60, 61]. Indeed, as the size of the regions that rearrange
cooperatively increases, the number of such regions in the scattering volume decreases:
the dynamics are averaged over a smaller number of statistically independent objects,
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Figure 10. Inset: representative ISFs for equilibrated samples at volume fractions
0.0480, 0.3096, 0.4967, 0.5555, 0.5772, 0.5818, 0.5852, 0.5916, 0.5957 and 0.5970,
from left to right. The lines are stretched exponential fits to the final decay of f .
Main figure: scaling of the α relaxation of the ISFs for ϕ ≥ 0.4967 when using
the reduced variable τ/τα. The line is the function 0.68 exp[−(τ/τα)0.558].

leading to enhanced fluctuations [62]. The fact that dynamical fluctuations at high ϕ
are significant suggests that cooperatively rearranging regions may extend over a sizable
fraction of the scattering volume. This would imply a correlation length of the dynamics
of the order of several hundred particle diameters, much larger than the ∼10 particles
reported in previous works [9, 56, 58, 59] at lower ϕ, but comparable to recent findings in
polydisperse colloids near random close packing [63]. More experiments will be required
to confirm these intriguing preliminary results.

4. Analysis of equilibrium dynamics

4.1. Equilibrium relaxation times

The first two sections were meant to convince the reader that it is possible to access the
equilibrium dynamics of our colloidal hard-sphere sample over a broad range of timescales
for several well-controlled volume fractions. We now turn to the analysis of these results,
which were briefly presented in a shorter paper [9].

In the inset of figure 10 we show the time decay of the ISF at selected volume fractions
from a dilute system at ϕ ≈ 0.05, up to very large volume fractions, ϕ = 0.597 (same
data as in [9]). Our data cover a broad range of eleven decades in time, and we follow
the slowing down of the equilibrium dynamics over about seven decades in relaxation
times. In agreement with previous work [12], we find that time correlation functions
decay exponentially when the volume fraction is moderate, with a time constant that
increases weakly with ϕ. When ϕ is increased above some ‘onset’ volume fraction, ϕ ≈ 0.5,
the relaxation becomes strongly non-exponential, with a two-step decay that become more
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pronounced as ϕ continues to grow, signaling the arrest of particle motion for intermediate
timescales. While the short time decay is relatively unaffected by the increase of ϕ, the
characteristic time of the second decay corresponding to the structural relaxation of the
fluid increases rapidly over a small range of volume fractions. For ϕ > 0.597, we were
not able to collect data for which stationary behavior and thermal equilibrium could
be unambiguously established, and this volume fraction thus marks the location of the
‘experimental colloidal glass transition’, ϕg ≈ 0.6, by analogy with the temperature scale
Tg in thermal glasses. We do not attach any particular significance to ϕg, because it
obviously depends on the details of the experimental set-up and of the sample.

As described in section 2.5, we fit the long time decay of the time correlation functions
to a stretched exponential form, equation (6). The resulting fits are shown in the inset
of figure 10 as continuous lines. They describe the data very well and yield quantitative
confirmation of the above qualitative remarks. We find that the amplitude A of the decay
is A ≈ 1 at low ϕ when relaxation is mono-exponential, so that p ≈ 1 in that regime.
When ϕ increases, we find that A drops to A ≈ 0.7, signaling a two-step process. At the
same time, the stretching exponent p decreases and stabilizes around p ≈ 0.56, indicating
that structural relaxation occurs through a broad distribution of timescales.

The fact that p is only weakly dependent on the volume fraction suggests that the
structural decay of the ISFs should collapse when plotted against rescaled time, in the
spirit of the ‘time–temperature superposition principle’ frequently observed in molecular
glass-formers. We show such a scaling in the main plot of figure 10, where the ISFs for
ϕ ≥ 0.4967 are plotted as a function of τ/τα, with τα the structural relaxation time issued
from the stretched exponential fit to the data. The data collapse reasonably well onto
a single master curve, confirming that the time–volume fraction superposition principle
holds for colloidal hard spheres, as observed in [11].

We present in figure 11 the evolution of the equilibrium relaxation time τα(ϕ)
extracted from the fits of the ISFs. For the sake of clarity, only data for ϕ ≥ 0.48
are shown: data at all volume fractions were reported in [9]. While τα increases by
about one decade from ϕ = 0.05 to 0.5 (data not shown), the structural relaxation
slows down dramatically by about six decades when ϕ approaches the largest volume
fraction considered in this work. Following previous analysis [11], we fit τα to an algebraic
divergence, as in equation (1), using ϕc and γ as adjustable parameters. Such a power law,
predicted by MCT, cannot account for our data over the whole range of volume fraction,
and the range of volume fractions fitted by equation (1) must be chosen with great care. As
is also found in molecular glass-formers, we find that the power law equation (1) describes
a window of relaxation times of about three decades, immediately following the onset of
glassy dynamics, as shown in figure 11. The values of the exponent, γ = 2.5 ± 0.1, and
of the critical volume fraction, ϕc = 0.590± 0.005, depend on the precise range of volume
fraction fitted, but they agree well with previous work [11] and theoretical and numerical
analysis [9, 24], as we will further discuss in section 4.3. If we attempt to include the
largest volume fractions in our fit, we find that γ takes unphysically large values, up to
γ ≈ 6. We interpret this finding as the sign that the growth of τα is not appropriately
described by equation (1) at large volume fraction.

A more direct indication can be observed in figures 10 and 11, since we were able to
collect equilibrium data at volume fractions ϕ above the fitted value of the critical volume
fraction ϕc. Therefore, the dynamic singularity implied by equation (1) is not observed in
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Figure 11. Solid circles: volume fraction dependence of the α relaxation timescale
for equilibrated samples in the ‘high ϕ’ regime. The red dashed line is an MCT fit
to the data, equation (1) (see figure (13) for more details). The black solid line is
the best exponential fit discussed in the text. The dotted lines are extrapolations
of the fits beyond the fitting intervals. Note that τα remains finite across the
apparent MCT divergence at ϕc = 0.59, indicated by the vertical dashed line.

our sample and ergodic behavior can be detected for ϕ > ϕc. Just as is generically found
in thermal glasses, we conclude therefore that the singularity predicted by mode-coupling
theory is avoided in our experimental colloidal system. Although suggested by theory and
computer simulations, such an observation was not reported in experimental work before.

As discussed in detail in [9], we find that an exponential divergence of τα accounts
for our data very well, as in equation (2). We argued in [9] that the best fit of our data
for ϕ > 0.41 was obtained for C = 2.25 × 10−2, τ∞ = 6.49 × 10−3 s, δ = 2.0 ± 0.2 and
ϕ0 = 0.637 ± 0.002, although imposing δ = 1, as in free volume predictions, yields an
acceptable fit and a smaller critical volume fraction, ϕ0(δ = 1) = 0.614 ± 0.002.

Interestingly, the non-trivial exponent δ ≈ 2 is also supported by the numerical data
for the polydisperse system of quasi-hard spheres studied in section 4.2 (see figure 12) and
by Monte Carlo results for a binary mixture of hard spheres [9, 24] (also shown in figure 12).
Additionally, a recent scaling analysis of the glass transition occurring in systems of soft
repulsive particles yields δ = 2.2±0.2 for the hard-sphere limit [24, 64], a value compatible
with that obtained here from the fit of equation (2). Thus, there is mounting evidence
from both simulations and experiments that a simple VFT law, equation (2) with δ = 1,
is not the most accurate description of the dynamics of hard spheres.

Overall, we find that, while the onset of dynamical slowing can be described by an
MCT divergence at a critical volume fraction ϕc, upon further compression a crossover
from an algebraic to an exponential divergence at a much larger volume fraction ϕ0 is
observed, showing that the apparent singularity at ϕc does not correspond to a genuine
‘colloidal glass transition’. Instead, the system enters a regime where dynamics is
‘activated’, in the sense that τα increases exponentially fast with the distance to ϕ0.

doi:10.1088/1742-5468/2009/07/P07015 20

http://dx.doi.org/10.1088/1742-5468/2009/07/P07015


J.S
tat.M

ech.
(2009)

P
07015

Dynamics of dense suspensions of colloidal hard spheres

Figure 12. Top panel: self-intermediate scattering function from numerical
simulations of a quasi-hard-sphere system at two different values of the
polydispersity, σ, and various volume fractions. For the less polydisperse system,
ϕ = 0.053, 0.50. 0.55, 0.58 and 0.592, from left to right. For the more polydisperse
system, ϕ = 0.074, 0.50, 0.55, 0.58, 0.5914 and 0.60, from left to right. Bottom
panel: relaxation time τα for the two systems, with data from Monte Carlo
simulations of a binary mixture [9] superimposed. The three sets of data are
fitted to the MCT prediction, equation (1), using the same exponent γ = 2.7.
The critical volume fraction issued from the fit is shown in the label.

These observations therefore suggest that the glass transition scenario in colloidal hard
spheres strongly resembles the one observed in molecular glass-forming materials.

4.2. Polydispersity effects

A central finding from our experiments is the absence of a genuine dynamic singularity
occurring at the fitted mode-coupling singularity ϕc. Since polydispersity influences the
dynamics of colloidal hard spheres, we must ask how our findings may change for samples
with a different polydispersity.

In [11] a sample less polydisperse than ours (σ ≈ 6% as opposed to σ ≈ 10%) was
analyzed using similar light scattering techniques, but no deviation from an algebraic
singularity was reported. Additionally, experiments performed on samples at different
polydispersities showed that increasing the polydispersity at constant volume fraction
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produces an acceleration of the dynamics [65]. These observations suggest a possible
explanation for our findings. One could argue that the observed ergodic behavior in our
sample at large ϕ stems from the fact that the glass state above the critical volume fraction
ϕc determined in [11] is ‘melted’ by polydispersity effects. In other words, polydispersity
could push ϕc to a much larger value so that our fluid states could all be observed below
the ‘true’ ϕc characterizing our sample. This view is apparently supported by numerical
analysis [35], which showed that volume fractions for the location of random close packing
could be shifted from ϕrcp = 0.64 to ϕrcp = 0.67, from monodisperse to 10% polydisperse
samples, respectively, thus suggesting a similarly large shift in the MCT critical volume
fraction.

This string of arguments is immediately contradicted by the fact that we have self-
consistently determined ϕc for our own sample, and that we do observe ergodic behavior
for ϕ which are larger than this critical volume fraction. It thus remains to establish that
polydispersity does not qualitatively affect the dynamics in such a drastic manner that
the results reported in this paper do not shed light on the behavior of less polydisperse
samples.

To definitely settle this issue, we performed computer simulations of a quasi-hard-
sphere system at different polydispersities [66]. Following previous work [67], we study an
assembly of point particles interacting via a purely repulsive potential:

V (rij) = ε

(
rij

2Rij

)36

, (8)

where rij is the distance between particles i and j, and Rij = (Ri + Rj)/2 with Ri

the radius of particle i. The prefactor ε is an energy scale. The interaction potential
is very steep, and should therefore constitute a good approximation of the hard-sphere
potential. We set the polydispersity by drawing the particle radii from a flat distribution:
Ri ∈ [R− δR/2, R+ δR/2], so that the average diameter is Ri = R and the polydispersity

is σ =

√
R2

i − R2/R = δR/(
√

12R). We have studied the system for two values of

polydispersity, δR/R = 0.2 and 0.4, leading to polydispersities σ � 5.77% and σ � 11.5%,
which compare well with the colloidal samples studied in [11] and in the present study,
respectively.

We follow previous work dedicated to the Hamiltonian (8) in the context of hard
spheres. We solve Newton’s equations for N particles of mass m inside a three-dimensional
simulation box of size L with periodic boundary conditions [68]. For the inverse power law
potential in equation (8), density and temperature can be combined in a unique control
parameter, Γ = ϕT−1/12, so we fix the temperature and energy scales, kBT = ε = 1/3,
and vary the system size to change the volume fraction, ϕ = 4πNR3[1+(δR/4R)2]/(3L3).
Since we deal with soft spheres, it is of course not possible to compare absolute values for
critical volume fractions with results obtained in the true hard-sphere limit. Timescales
are expressed in units of 2R

√
m/ε. We choose the self-intermediate scattering function

Fs(q, t) as a dynamic observable and work at a single wavevector, qR = 3.9, close to the
first diffraction peak.

We perform the simulations in two steps. We prepare initial configurations at the
desired state points and perform a long equilibration run using periodic velocity rescaling
to reach thermal equilibrium. We then perform a production run in the microcanonical
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ensemble. We check very carefully that thermal equilibrium is indeed reached during
equilibration. We also check that our results do not depend on the duration of these two
steps, and we repeat them for at least five independent samples at each volume fraction
to obtain better statistics. The main issue, mentioned in the original work of [67], is the
possibility for the less polydisperse system (σ ≈ 6%) to crystallize in the course of the
simulation. In this case the sample is discarded and a new sample studied. We found that
this problem is much more severe than reported in [67], and so we were not able to collect
data above ϕ = 0.587. For the more polydisperse system (σ ≈ 12%), we never detected
crystallization and we were able to collect data up to ϕ = 0.60, where we stopped because
we could not reach equilibrium within our numerical time window. It is interesting to
note that crystallization similarly prevented the colloidal samples of [11] to be studied at
very large volume fractions, while no such problem is encountered for the colloidal system
studied in this paper.

We report in the top panel of figure 12 some representative results for the self-
intermediate scattering function of the system at two polydispersities and different volume
fractions. This figure is qualitatively very similar to the experimental data of figure 10,
with a pronounced non-exponential relaxation which slows down dramatically when
ϕ increases. When volume fraction is low, we see that the change in polydispersity
has no detectable influence on the dynamics, and data for the two systems nicely
superimpose. A first visible effect of polydispersity is that we do not have data for the
6% polydisperse sample at very large values of the relaxation time because the system
eventually crystallizes. A second effect can be detected when the glassy regime is entered.
For a fixed ϕ, the dynamics of the system become faster when polydispersity is increased,
as observed previously [65, 69].

To quantify these observations, we fit the long time decay of the relaxation to a
stretched exponential form, as in equation (6), and show the results for τα(ϕ) in the
bottom panel of figure 12. As mentioned before, the polydispersity has very little effect
when dynamics is fast, ϕ < 0.5, while the more polydisperse sample relaxes faster in the
glassy regime.

We have fitted the dynamic slowing down with increasing ϕ to the algebraic form
suggested by MCT. As expected, we find that polydispersity affects the value of the
critical volume fraction, although the change is rather modest, since ϕc increases from
ϕc = 0.595 to 0.597 when changing polydispersity from 6% to 12%. Note that we used
the same exponent γ = 2.7 to fit both sets of data over a comparable window of relaxation
times, showing that polydispersity does not quantitatively affect the form of the slowing
down. It must be noted that the shift in the absolute value of ϕc is much less severe
than expected from that for the random close packing volume fraction on the basis of the
numerical work of [35].

It is interesting to note that deviations from the MCT power law cannot be detected
very clearly for the less polydisperse system, because crystallization prevents observation
of larger relaxation timescales. For the more polydisperse system, however, we find that
deviations from the MCT power law at even larger volume fractions become observable,
since a broader window of relaxation timescales can be measured. We believe that similar
effects are relevant also in experiments. As we will show shortly, both the experiments
reported in [11] and our data are described by a comparable power law over a similar
window of relaxation timescales. However, while previous work did not detect deviations
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from an algebraic divergence, by studying a more polydisperse system we can efficiently
suppress crystallization and access a range of equilibrium relaxation timescales that are
beyond the volume fraction regime which can be described by MCT, but the MCT regime
itself is not qualitatively affected by polydispersity effects.

For completeness, we report in the bottom panel of figure 12 the Monte Carlo results
obtained in [9] for a three-dimensional 50:50 binary mixture of hard spheres of diameter
ratio 1.4, for which polydispersity is σ ≈ 16.7%. Again, we find that the data is
qualitatively unaffected by the use of a very different particle size distribution, by the
fact that a true hard-sphere potential is used and by the use of a stochastic microscopic
dynamics. An MCT power law also describes the data over a comparable time window
of about three decades, with a similar exponent γ = 2.7 and a critical volume fraction
ϕc = 0.593. Remember that we cannot directly compare the result for ϕc to the ones for
the quasi-hard-sphere system, since the latter is dependent on the temperature scale used
(a larger temperature would yield a smaller critical density). Overall, it is reassuring that,
whenever comparison is possible, neither the choice of a microscopic dynamics, nor the
particle size distribution and polydispersity seem to influence the dynamics in a drastic
manner, as also confirmed by very recent numerical work by Valeriani et al [70]. This
certainly suggests that quantitative comparison between different experimental samples
is meaningful.

4.3. Comparison with previous work

Considering colloidal hard spheres from the viewpoint of the glass transition field, it is very
natural to expect, just as is found for all molecular glasses, that the dynamic singularity
deduced from fitting data to an algebraic law predicted by MCT is eventually avoided as
the glassy regime is entered more deeply. Yet, the present experiment is the first direct
demonstration that the MCT dynamic transition is avoided in a colloidal hard-sphere
sample. Although we are tempted to assume that our conclusions should apply to all
colloidal hard-sphere samples, this statement would seem to require additional discussion.

As a first remark, it is reassuring to observe that several computational studies
performed in recent years with hard spheres, using different types of polydispersities and
different types of microscopic dynamics, indicated the presence of strong deviations from
an algebraic divergence when approaching ϕc. In that sense, the experiments of [11] stood
as an exception, although arguably an important one. Are they truly incompatible with
our findings?

To address this question, we report in the inset of figure 13 data from [11] (blue open
squares), together with our data, taken from [9] (black solid circles). The relaxation time
is plotted against ϕc − ϕ, the distance from the critical volume fraction obtained from
an MCT fit. In order to better compare the two experiments, τα has been scaled by τα,0,
the ϕ → 0 limit of the relaxation time of f(q, τ). Both datasets show that τα is well
described by an algebraic divergence, as predicted by MCT, over about three decades.
For our data (solid circles), deviations from the MCT fit are observed, as expected, at low
density before the onset of slow dynamics, but also very close to ϕc due to the departure
from the MCT regime at high ϕ. Our data at volume fractions above ϕc do not appear
in this representation.
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Figure 13. Inset: relaxation time τα versus distance from the MCT critical
volume fraction. Black solid circles: this work and [9]; blue open squares: [11].
In order to ease the comparison, τα has been normalized by τα,0, the relaxation
time of f in the limit ϕ → 0. The straight lines are MCT fits to the data,
equation (1), with γ = 2.5, ϕc = 0.59 and γ = 2.9, ϕc = 0.572 for this work
and [11], respectively. The fitting interval for the black circles is 0.49 ≤ ϕ ≤ 0.585.
The dashed red line is a fit of equation (2) to the data for ϕ > 0.41. Main figure:
dimensionless relaxation time τα/τα,0 as a function of volume fraction. Black
solid circles: this work and [9]; open squares: [11]; open stars: [72] (from figures 1
and 4). Semisolid symbols: same data as a function of scaled volume fraction,
1.04 × ϕ, to account for polydispersity.

The values of ϕc reported for the open [11] and solid [9] symbols are 0.572 and 0.59,
respectively. They are fully compatible, due to experimental uncertainties and given that
in [11] ϕ may be underestimated by a factor ≤1.04, because of polydispersity, as discussed
in section 2.4. The critical exponent γ is 2.9 and 2.5 in [11] and [9], respectively. These
values are very close and in fact fully compatible, given the uncertainty on the value
of this exponent arising from changing the fitting interval. Absolute timescales differ in
the two datasets by about a factor of 10–20. Interestingly, this difference does not stem
from a different behavior above the ‘onset’ volume fraction ϕ ≈ 0.5, but rather from the
behavior at low ϕ. As can be seen in figure 13, the two datasets coincide (by construction)
at ϕ ≈ 0, while they already differ by a factor ≈14 at ϕ ≈ 0.47. Unfortunately, data at
intermediate volume fractions that could help understand this difference are not available
for [11]. However, the relaxation time [72] of the self-part of the ISF measured for a
system similar to that of [11] (with comparable polydispersity σ ≈ 5%) appears to be
consistent with our data in the low and intermediate ϕ regime, as shown in the main
panel of figure 13 (open stars). Note that the agreement is even better if the volume
fraction quoted in [72] is scaled by a factor 1.04 to account for polydispersity, as discussed
in section 2.4.

We can therefore conclude that, when compared over the range of volume fractions
where MCT applies, both sets of data are nearly indistinguishable, confirming that in this
regime sample polydispersity has a very small influence on the dynamics, as indicated
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by the simulations discussed in section 4.2. As a final remark, we note that figures 11
and 13 also show that the range of timescales of the present data extend about two decades
beyond the end of the MCT regime, while the highest ϕ reported in [11] appears to lie just
below the volume fraction where deviations from MCT predictions should start becoming
visible (see figure 13). Assuming that the behavior of the fluid at larger ϕ for the sample
of [11] would also compare well with the one we observe, this may explain why no such
deviations were observed in that work. Of course, obtaining equilibrium data at larger
ϕ for this sample would be difficult, because slow dynamics would start competing with
crystallization, as we observed numerically in section 4.2 for the sample at the lowest
polydispersity.

5. Conclusions

We have discussed some of the challenges that must be faced when investigating the slow
dynamics of concentrated colloidal systems, together with the solutions we devised. These
challenges include the determination of the absolute volume fraction and avoiding, or at
least minimizing, artifacts due to sedimentation and convection. At very large volume
fractions, ageing and dynamical heterogeneity make measurements even more difficult.
The data become more erratic, suggesting that a proper ensemble average is not being
achieved.

The data presented here and in [9] show unambiguously that, for our sample, the
power law divergence of τα(ϕ) is avoided and that at high ϕ the growth of the relaxation
time is well described by a generalized VFT law. A comparison with the measurements
reported by van Megen et al [11] indicates that, in the MCT regime, the two sets of data
are compatible within the experimental uncertainty on the absolute volume fraction. This
suggests that the slow dynamics of hard spheres is only weakly sensitive to the precise
value of polydispersity, at least up to moderate values σ ∼ 10%. Our numerical work
supports this conclusion. The agreement between our data and previous work strongly
suggests that the absence of a true algebraic divergence of τα should be a general feature
in colloidal hard spheres, independent of the details of the system. In this respect, hard
spheres should be similar to molecular glass-formers, for which the MCT transition is
avoided as well. Several questions remain open. While we were able to rule out the
existence of an MCT glass transition at ϕ = ϕc ≈ 0.59, our experiments do not allow us
to determine unambiguously whether the location of the divergence of τα obtained by a
generalized VFT fit, ϕ0 = 0.637, is distinct from ϕrcp. Addressing this issue would allow
one to discriminate between competing theoretical approaches [71], e.g. recent excluded-
volume approaches [16] and thermodynamic glass transition theories [17, 18]. However,
providing an experimental answer will be particularly difficult: on the one hand, ϕ0 can
only be obtained by extrapolation. On the other hand, ϕrcp is difficult to locate both on
a conceptual standpoint [23] and because any deviations from the behavior of an ideal
hard-sphere potential may become important very close to ϕrcp.

Another promising line of research concerns the ageing regime. We have shown that
at the highest volume fractions investigated the dynamics slows down over a period of the
order of a few (equilibrium) structural relaxation times. Whether a similar behavior also
applies to more diluted samples remains to be ascertained. Indeed, in our experiments
the thermalization time, during which convective motion is likely to set in due to small

doi:10.1088/1742-5468/2009/07/P07015 26

http://dx.doi.org/10.1088/1742-5468/2009/07/P07015


J.S
tat.M

ech.(2009)
P

07015

Dynamics of dense suspensions of colloidal hard spheres

temperature gradients across the sample, was too long to reach any conclusive result
for ϕ < 0.5953. The large dynamical heterogeneity of the most concentrated sample
suggests that dynamical fluctuations may be much larger than previously thought in out-
of-equilibrium samples at very high ϕ. The interplay between dynamical heterogeneity
and the evolution of the dynamics in the ageing regime appears a promising field for future
investigation.
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