Prediction of Novel High-Pressure Structures of Magnesium Niobium Dihydride

Chuanzhao Zhang,† Guoliang Sun,‡ Jingjing Wang,† Cheng Lu,*,†∥ Yuanyuan Jin,§ Xiaoyu Kuang,*,† and Andreas Hermann*†

†Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
‡Department of Physics, Nanyang Normal University, Nanyang 473061, China
§Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
∥Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States
⊥Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH93JZ, United Kingdom

ABSTRACT: On the basis of a combination of the particle-swarm optimization technique and density functional theory (DFT), we explore the crystal structures of MgH2, NbH2, and MgNbH2 under high pressure. The enthalpy−pressure (H−P) diagrams indicate that the structural transition sequence of MgH2 is α → γ → δ → ε → ζ and that NbH2 transforms from the Fm3̅m phase to the Pnma phase at 47.80 GPa. However, MgNbH2 is unstable when the pressure is too low or too high. Two novel MgNbH2 structures, the hexagonal P6̅m2 phase and the orthorhombic Cmcm phase, are discovered, which are stable in the pressure ranges of 13.24−128.27 GPa and 128.27−186.77 GPa, respectively. The P6̅m2 phase of MgNbH2 consists of alternate layers of polymetric NbH6 and MgH6 triangular prisms, while the Cmcm phase contains distorted MgH6 trigonal prisms. The calculated elastic constants and phonon dispersions confirm that both phases are mechanically and dynamically stable. The analyses of density of states (DOS), electron localization function (ELF), and Bader charge demonstrate that a combination of ionic and metallic bonds exist in both P6̅m2 and Cmcm phases. We hope the newly predicted magnesium niobium dihydrides with desirable electronic properties will promote future experimental and theoretical studies on mixed main group-transition metal hydrides.

KEYWORDS: magnesium niobium dihydride, particle swarm optimization algorithm, density functional theory, structural transition, electronic structures

INTRODUCTION

Over the past decades, magnesium hydride (MgH2) has been considered one of the most promising candidates for the reversible storage of hydrogen because of its low price and high weight percent storage (7.6 wt %).1−3 Nevertheless, major shortcomings such as slow hydrogenation and dehydrogenation kinetics and the requirement of high temperatures (≈300 °C) for decomposition have significantly restricted the development of magnesium hydride in mobile applications. To solve these problems and improve the hydrogen storage properties, various attempts to add transition metals to magnesium hydride through high-pressure syntheses have been made. These attempts have been successful for the metals Nb, Ti, V, Hf, Zr, and Ta.4−6 To date, several ternary Mg−Nb hydride compounds have been experimentally synthesized through doping MgH2 with niobium metal and theoretically investigated using density functional theory (DFT). These include MgNb2H6, Mg2NbH16, Mg2.5NbH14, and MgNb2H4.4−6 In Figure 1, we construct the ternary Mg−Nb−H3 phase diagram that comprises known and predicted Mg−H and Nb−H binary compounds and the ternary compounds listed above. The MgNbH2 compound, so far unknown in the literature, is situated in the middle of this phase diagram. To successfully synthesize the considered MgNbH2 compound under high pressure, we consider using not only MgH2 but also NbH2 as starting materials, as both MgH2 and NbH2 are stable under ambient conditions. On the basis of the synthesis routes of MgNbH2, several crucial questions will arise. Can the ternary MgNbH2 compound stably exist under ambient conditions? Does MgNbH2 transform under pressure, and what are the structural and energetic characteristics of such transitions? How do the electronic properties of stable...
In the present work, we employed the recently developed Crystal Structure Analysis by Particle Swarm Optimization (CALYPSO) method in combination with first-principles calculations to extensively explore and search for the structures of MgH$_2$, NbH$_2$, and MgNbH$_2$ over the pressure range of 0–200 GPa. We obtain thermodynamically stable structures and identify a large number of stable phases which may be synthesized under specific pressure conditions. We examine in detail their structures, their dynamical and mechanical stability, electronic properties, and the bonding characteristics of the stable MgNbH$_2$ phases. We extend our computational investigation to pressures much higher than those used in hydrogen storage. There is much interest in the formation of hydrogen-rich metal hydrides under pressure, such as for superconductivity as seen recently in sulfur and phosphorus hydrides,16 or the emergence of new chemistry, such as bound H$_{11}^+$ cations in H$_2$Cl and hydrogen cages in CaH$_6$. While stable only at very high pressures, the emergence of such materials properties motivates synthesis studies at much less extreme conditions. One successful avenue pursued in high T$_c$ cuprate and iron superconductors was to increase materials complexity, e.g., by ad-mixing different metal cations. We pursue a similar route here, in a systematic theoretical investigation of a relevant mixed metal hydride.

COMPUTATIONAL METHODS

To obtain stable structures of MgH$_2$, NbH$_2$, and MgNbH$_2$, we conducted an unbiased structure prediction based on the particle swarm optimization algorithm as implemented in the CALYPSO 3.5 package.18,21 This method has successfully predicted the high-pressure structures of various systems.$^{6,8,11–16}$ The structure predictions were performed using unit cells containing up to four formula units (f.u.) and at pressures of 50, 100, 150, and 200 GPa. In every crystal search, the first generation of structures is generated randomly with some symmetry constraints and subsequent optimizations. Each generation contains 30 structures. For subsequent generations, 60% of the structures are generated from the best (lowest enthalpy) structures in the previous generation through the particle swarm optimization algorithms, while the other 40% will be generated randomly to ensure continuous diversity of the structures. We usually followed 50 generations to achieve convergence of the sampling of the low-energy minima in configurational space. Next, among the resulting 1000–1500 structures, the 50 lowest-lying structures are collected as candidates for the lowest-enthalpy structure. Those structures within 0.5 eV (usually ~20) from the lowest-lying structures are further optimized to identify the lowest-energy structure and subsequently relaxed along the entire pressure regime.

The underlying ab initio structural relaxations and electronic structure calculations were performed in the framework of DFT using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional as implemented in Vienna ab Initio Simulation Package (VASP, the 5.3.5 version).27,28 Plane-wave basis sets and the projector augmented wave (PAW) method29 were adopted with 2p63s2,4d45s1, and 1s1 treated as valence electron space for Mg, Nb, and H, respectively. A plane wave cutoff energy of 800 eV and appropriate Monkhorst–Pack k-meshes30 were chosen to ensure that all the enthalpy calculations were well converged to less than 1 meV/atom. The phonon dispersion curves were computed by the direct supercell calculation method as implemented in the Phonopy program.31,32 The electronic localization function (ELF)33,34 was also calculated using VASP. Figures of crystal structures and ELF are produced using the VESTA software.35

RESULTS AND DISCUSSION

MgH$_2$. First, based only on its chemical composition, we have implemented structure prediction simulations for MgH$_2$ in...
the pressure range of 0–200 GPa. A variety of structures are found to be the stable/metastable phases under specific conditions. See the Supporting Information for their lattice parameters and atomic coordinates at ambient pressure (Table S1) as well as visualizations (Figure S1). The experimental and theoretical structures were successfully reproduced, which strongly supports the validity of a CALYPSO methodology used in structure searches of MgH2. The enthalpy—pressure (H—P) relations of the most relevant candidate structures for MgH2 within the pressure ranges of 0–30 and 30–200 GPa are shown in Figure 2. Under ambient pressure conditions, in the ground state, we find that α-MgH2 adopts the tetragonal P4/ mmm structure and then transforms into γ-MgH2 at 0.34 GPa. Subsequently, γ-MgH2 is stable over the pressure range from 0.34 to 7.48 GPa, followed by δ-MgH2 as the most stable structure in the pressure range of 7.48–11.42 GPa. Upon further compression, δ-MgH2 is predicted to transform into ε- MgH2 at 11.42 GPa, which remains stable up to 163.22 GPa. These calculated transition pressures (0.34, 7.48, and 11.42 GPa) are in excellent agreement with previous computational results of 0.39, 6.73, and 10.26 GPa, respectively.10 Beyond the last transition (>163.22 GPa), ζ-MgH2 with a hexagonal structure is found to be energetically favorable up to at least 200 GPa, which is also in good agreement with previous calculations.10 We also find (see Figure 2a) that the energy difference between the Pbcn and the Pbc2₁ modification of δ-MgH2 is very small, in agreement with the previous results by Vajeeston et al.10 and Moriwaki et al.12 We find that the Pbc2₁ structure is more stable than the Pbcn structure below 14.42 GPa while the latter is more stable than the former above 14.42 GPa. Furthermore, it should be noted that we do not find β-MgH2 to be stable at any pressure conditions; its appearance in experiment16 could be due to finite temperature effects, which we do not consider here. From the above results, we can conclude that MgH2 undergoes a series of structural transitions over the pressure range of 0–200 GPa, α → γ → δ → ε → ζ, at 0.34, 7.48, 11.42, and 163.22 GPa, respectively. This structural sequence for MgH2 in the ground state is also supported by the volume-pressure relations, as depicted in Figure S2: The four transitions are accompanied by volume reductions of 1.7, 9.0, 5.6, and 1.7%, respectively. Below, we focus on the α-MgH2 configuration at 1 atm, the γ-MgH2 configuration at 5 GPa, the δ-MgH2 configuration at 10 GPa, the ε-MgH2 configuration at 100 GPa, and the ζ-MgH2 configuration at 180 GPa, each of which may be synthesized at the corresponding pressures. The crystal structures of these five MgH2 phases are presented in Figure 3, and their structural parameters are shown in Table S2.

Figure 2. Enthalpies per atom in MgH2 as functions of pressure with respect to (a) β-MgH2 (Pα3) over the pressure range of 0–30 GPa and (b) P62m phase over the pressure range of 30–200 GPa.

Figure 3. Crystal structures of five considered MgH2 phases, together with metal coordination polyhedra: (a) α-MgH2 (TiO2-rutile type) at 1 atm, (b) γ-MgH2 (α-PbO2 type) at 5 GPa, (c) δ-MgH2 (Pbc2₁ structure) at 10 GPa, (d) ε-MgH2 (cotunnite-type) at 100 GPa, and (e) ζ-MgH2 (Ni3In type) at 180 GPa.

In α-MgH2 at 1 atm, each Mg atom is at the center of an oblate MgH6 octahedron: Two polar Mg–H separations are 1.939 Å, and four equatorial Mg–H separations are 1.953 Å. The smallest H–Mg–H angles are 79, 90, and 101°. These results characterize that the Mg environment in α-MgH2 are slightly distorted octahedrons. In γ-MgH2 at 5 GPa, one Mg atom is also surrounded by six H atoms, with the Mg–H separations varying from 1.857 to 1.950 Å and the H–Mg–H angles varying from 78 to 101°. Hence, the Mg–H atom arrangements can be considered more strongly distorted MgH6 octahedrons. In δ-MgH2 at 10 GPa, there are seven H atoms around each Mg. The Mg–H separations vary widely from 1.834 to 2.087 Å, and the H–Mg–H angles vary between 68 and 133°. Thus, the Mg environment in δ-MgH2 can be described as highly distorted MgH2 enneahedrons. In ε-MgH2 at 100 GPa, each Mg atom is surrounded by nine H atoms with
MgH$_2$ compounds, we computed their electronic band and phonon modes in the Brillouin zone. They are also dynamically stable, as none of them feature imaginary frequencies. Figure S4), the occupied electronic states near the valence band Fermi level, forming an elongated hole pocket along the Γ-A direction. Our calculated results suggest that metallization of MgH$_2$ (likely underestimated) should occur around 160 GPa, which is in good agreement with previous theoretical results. MgH$_2$ becomes metallic through closure of an indirect band gap. This exciting phenomenon clearly suggests that a flat band displaying H s character rises above the Fermi level E_F around Γ-A and a steep band that boosts primarily Mg s and some Mg p character falling below E_F around the H point. The calculated band gap (from the top of the valence band to the bottom of the conduction band) for α-MgH$_2$ at 1 atm is 3.72 eV, which is in good agreement with the previous theoretical values of 3.4 and 4.2 eV40,38 and less than the experimental value of 5.16 eV. In fact, the present underestimation of the band gap by approximately 28% is typical for the accuracy obtained in standard DFT calculations for semiconductors and insulators. One major source of error in such calculations is the use of semilocal GGA-based exchange correlation functionals. The band gaps of the γ, δ, and ϵ-phases are calculated to be 3.78, 2.28, and 2.09 eV at 5, 10, and 100 GPa, respectively.

As displayed in the partial densities of states (PDOS) (see Figure S4), the occupied electronic states near the valence band maximum are dominated by H $1s$ character, while contributions from Mg $3s$ and Mg $2p$ states are limited. This means that the valence electrons of Mg are mostly transferred to the H sites and that the five MgH$_2$ phases predominantly have ionic character. Relevant chemical bonding features can be identified by the ELF, as plotted in Figure S5. The ELF values of the H sites in all five MgH$_2$ phases are approximately equal to 1, while those of the Mg sites are extremely low. This corresponds to and confirms the DOS analysis above which shows the valence electrons have mostly transferred from the Mg to H sites. In addition, we performed a topological analysis of the charge distribution50 for the five considered MgH$_2$ phases. Atom-projected partial charges are summarized in Table S3. This confirms substantial charge transfer from Mg to H atoms and further suggests that MgH$_2$ has primarily ionic bonding. However, the amount of charge transfer from Mg to the H atoms becomes smaller upon compression, which suggests that the iconicity of the MgH$_2$ compounds decreases with increasing pressure. This corroborates the closure of the band gap under pressure. In short, analyses of DOS, ELF, and Bader charges all demonstrate that the five stable MgH$_2$ phases possess a dominant ionic character, which is consistent with previous results.11

NbH$_2$ Next, we performed structure predictions for NbH$_2$ with the CALYPSO code, in the pressure range of 0–200 GPa. All relevant predicted structures are shown in Figure S6 with their lattice parameters and atom coordinates at ambient pressure listed in Table S4. The fact that all experimental and theoretical structures were also successfully reproduced in specific pressure ranges validates our methodology as applied to NbH$_2$. The H–P relations of the candidate structures for NbH$_2$ are presented in Figure 4. At ambient pressure, the fluorite $Fm\overline{3}m$ phase has the lowest ground state energy for NbH$_2$, and this structure is in agreement with experimental findings.41 With increasing pressure, the $Fm\overline{3}m$ structure transforms into an orthorhombic structure with space group $Pnma$ at 47.80 GPa which remains stable in the ground state up to at least 200 GPa. This structure has been proposed in an earlier theoretical work, which predicted the $Fm\overline{3}m \rightarrow Pnma$ transition pressure at around 50 GPa.10 This $Pnma$ structure is also the high-pressure structure of WH$_2$42 and certain alkali-earth dihydrides such as CaH$_2$, SrH$_2$, and BaH$_2$.43,44 The volume-pressure relations shown in Figure S7 support the validity of our results. The structural transition for NbH$_2$ as we find a volume collapse of 3.7% at the transition pressure. Below we concentrate on the properties of the $Fm\overline{3}m$ phase at 1 atm and the $Pnma$ phase at 100 GPa, which are most stable and accessible to experiment at the corresponding pressures. The crystal structures for both stable NbH$_2$ phases are depicted in Figure 5 with their structural parameters displayed in Table S5.

In the $Fm\overline{3}m$ phase at 1 atm, each Nb atom is surrounded by eight H atoms at equal Nb–H separations of 1.982 Å. The Nb environments are regular NbH$_4$ cubes. In the $Pnma$ phase at 100 GPa, each Nb atom is instead surrounded by nine H atoms.

![Figure 4. Enthalpy–pressure relations for NbH$_2$ with respect to the $Pnma$ phase.](image-url)
in NbH₂ transform from NbH₆ cubes to NbH₆ cuboctahedrons as pressure increases. As shown in Figure S8, our phonon calculations verify that both structures are dynamically stable, as evidenced by the absence of any imaginary frequencies in the whole Brillouin zone.

The electronic band structures and DOS’s for both stable NbH₂ phases were also computed (see Figure S9). The overlap between the conduction bands and the valence bands for these two structures suggests that they are metallic. As could be expected, the Nb 4d state contributes most to the total DOS and dominates the DOS at the Fermi level, in good agreement with findings for late transition metal hydrides. To obtain a comprehensive understanding of the metallic character of both NbH₂ structures, we calculated the ELF, as plotted in Figure S10. High ELF values (approximately 1.0) are distributed around the H atoms, indicating filled 1s² shells with a strongly localized character. Between the Nb and H atoms, the ELF values not only close to the Nb and H sites but also in interstitial areas are approximately 0.5, as expected for the homogeneous electron gas, while ELF near the center of the shortest Nb–H separations reduces to 0.1. Overall, ELF reflects the partially metallic and partially ionic character of the bonding in NbH₂. A Bader partial charge analysis, summarized in Table S6, suggests that in the Pm3m phase at 1 atm each H atom gains approximately 0.61 e while the Nb atoms lose about 1.33 e. For the Pmna phase at 100 GPa, each H atom gains approximately 0.49 e, while the Nb atoms lose about 0.98 e. Even in an overall metallic state, there are large amounts of charge transfer from Nb to H atoms, revealing the ionic character of the bonding. Coupled with the DOS and ELF analyses, the bonding nature in both NbH₂ phases can be characterized as mixed metallic and ionic bonds.

MgNbH₂. Finally, we predict relevant structures of ternary MgNbH₂ using the CALYPSO method in the pressure range of 0–200 GPa. All relevant predicted structures are shown in Figure S11, and their lattice parameters and atom coordinates at ambient pressure are listed in Table S7. To investigate the two possible decomposition routes of MgNbH₂ (NbH₂ + Mg and MgH₂ + Nb), the H–P curves for all predicted structures together with these decompositions are shown in Figure 6 relative to our predicted Pmna phase. For the elements Mg and Nb, we considered the known P6/mmmc and Im3m structures (for Mg) and Im3m and Fm3m (for Nb); see Figures S12 and S13 for their relative enthalpic behavior. The pressure evolution of MgNbH₂ is quite surprising. From Figure 6, we see that MgNbH₂ in the ground state is unstable at ambient pressure and both decomposition reactions NbH₂ + Mg and MgH₂ + Nb are exothermic. The order of stability for these three components is NbH₂ + Mg > MgH₂ + Nb > MgNbH₂. Stability of the decomposition product NbH₂ + Mg is found in the pressure range from 0 to 13.24 GPa. However, an intriguing hexagonal P6/m2 phase of MgNbH₂ is found to then be energetically favorable relative to NbH₂ + Mg and MgH₂ + Nb and to remain so over the wide pressure range of 13.24–128.27 GPa. Subsequently, an orthorhombic Cmcm structure is found as the most stable phase between 128.27 and 186.77 GPa. Above 186.77 GPa, MgNbH₂ again becomes unstable and is predicted to decompose into MgH₂ + Nb. Such a combination—transformation—decomposition behavior with pressure is reported here, to the best of our knowledge, for the first time in a ternary compound. The phase transition of MgNbH₂ at the transition pressure (128.27 GPa) results in a small volume drop of 1.4%, which is displayed in Figure S14. In view of the stability field of MgNbH₂ (13.24–186.77 GPa), the structural properties, mechanical and dynamical stabilities, and related electronic properties are explored in detail below for the P6/m2 phase at 100 GPa and the Cmcm phase at 160 GPa. The two newly predicted crystal structures are depicted in Figure 7.

Figure 5. Crystal structures of two considered NbH₂ phases, together with NbH₆ coordination environments: (a) Fm3m (fluorite) phase at 1 atm and (b) Pmna phase at 100 GPa.

Figure 6. Enthalpy—pressure relations for MgNbH₂ with respect to the Pmna phase.

Figure 7. Crystal structures of two stable MgNbH₂ compounds: (a) P6/m2 phase at 100 GPa and (b) Cmcm phase at 160 GPa.

with their structural parameters presented in Table 1. As shown in Figure 7a, the P6/m2 structure is composed of alternate layers of polymeric NbH₆ and MgH₂ triangular prisms along the c axis. The Mg and Nb atoms are surrounded by six H atoms with Mg–H and Nb–H separations of 1.894 and 1.921 Å, respectively. Conversely, each H atom is surrounded by three Mg and three Nb atoms. The P6/m2 phase can be regarded as the NiAs structure with mixed (Nb, Mg) occupancy of the Ni site and H occupancy on the As site. This structure type is similar to the Cmcm phase of LiBeH₃ and the Cmca phase.
Table 1. Structural Information of Two Stable MgNbH2 Phases

<table>
<thead>
<tr>
<th>phase</th>
<th>lattice parameters (Å, °)</th>
<th>atom coordinates (fractional)</th>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6m2</td>
<td>a = 2.750, b = 2.750, c = 4.226, γ = 120</td>
<td>Mg1(1d)</td>
<td>0.333</td>
<td>0.667</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nb1(1a)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H(2i)</td>
<td>0.667</td>
<td>0.333</td>
<td>0.744</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg1(4c)</td>
<td>0.500</td>
<td>0.935</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nb1(4c)</td>
<td>0.000</td>
<td>0.174</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H(14c)</td>
<td>0.000</td>
<td>0.812</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H(24a)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>Cmcm</td>
<td>a = 2.585, b = 9.358, c = 3.801</td>
<td>Mg1(1d)</td>
<td>0.333</td>
<td>0.667</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nb1(1a)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H(2i)</td>
<td>0.667</td>
<td>0.333</td>
<td>0.744</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg1(4c)</td>
<td>0.500</td>
<td>0.935</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nb1(4c)</td>
<td>0.000</td>
<td>0.174</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H(14c)</td>
<td>0.000</td>
<td>0.812</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H(24a)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.500</td>
<td></td>
</tr>
</tbody>
</table>

*P6m2 phase at 100 GPa and Cmcm phase at 160 GPa.

Of Li2B6H6. In the Cmcm phase at 160 GPa (see Figure 7b), the Mg atoms are in a slightly distorted trigonal MgH6 prism, with two H atoms at a separation of 1.939 Å and four H atoms at a separation of 1.953 Å. The MgH6 trigonal prisms are aligned along the a axis and are edge-sharing in the bc plane. There are also six H atoms around each Nb atom. However, the bond lengths vary over a wide range, from 1.862 to 1.946 Å, and the H–Nb–H angles vary from 61° to 127°. Hence it is difficult to define a polyhedral Nb–H environment. The remarkable structural difference between the P6m2 and Cmcm phases can be attributed to the pressure effect: At 160 GPa, the Cmcm phase is 1.2% more compact than the P6m2 phase.

To verify the mechanical stability of our predicted MgNbH2 structures, we calculated the elastic constants of the P6m2 phase at 100 GPa and Cmcm phase at 160 GPa by employing the strain–stress method. The full elastic stiffness constants of both phases are given in Table S8. We find that both crystals fulfill their respective mechanical stability criteria. The dynamical stability of both structures is also confirmed through the calculations of the phonon dispersion curves, as there are no imaginary phonon frequencies detected in the whole Brillouin zone; see Figures 8a,c.

The electronic properties for the P6m2 phase at 100 GPa and the Cmcm phase at 160 GPa were investigated by analyzing their electronic band structures, total densities of states (TDOS), and PDOS; see Figure 8. Clearly, both structures exhibit metallic character as evident by the finite electronic DOS at the Fermi level (EF). For both compounds, the TDOS near the Fermi level is largely contributed by the Nb 4d states, so the metallic properties are mainly due to partially filled Nb 4d shell. Contributions from the Mg 3s and Mg 2p states are negligible, suggesting that the valence electrons of the Mg atoms in these two structures transfer to the H atoms nearby. To obtain a more quantitative understanding of the chemical bonding in MgNbH2, we conduct ELF analysis on the P6m2 phase at 100 GPa and Cmcm phase at 160 GPa, as presented in Figure 9. In both phases, the ELF values around the Mg atoms are close 0, while the electrons near the H atoms are very localized, with ELF values close to 1.0 indicating nearly filled 1s2 shells. This can be explained through an Mg–H interaction that is dominantly ionic. From Figure 9, there are large interstitial areas with ELF values of about 0.5, suggesting metallic bonding feature in both compounds. A Bader charge analysis, summarized in Table 2, shows that for the P6m2 phase at 100 GPa, a charge of 1.46 e is stripped off the Mg atom. The Nb atoms, on the other hand, are almost neutral (partial charge −0.05 e), which means almost the entire charge is transferred to the H atoms (each acquiring 0.71 e). At atmospheric pressure, the first ionization energy of Mg (738 kJ/mol) is higher than that of Nb (652 kJ/mol). Under pressure, it is known that higher-order angular momentum states rise slower in energy and their occupation becomes favored. At 100 GPa, seemingly, the relative position of the Nb 4d states and the Mg 3s states has reversed, and ionization of the Mg valence shell is more favorable than the Nb valence states. The depopulation of the Mg valence shell is then sufficient to fill the H atom 1s shells. The same picture emerges for the Cmcm phase at 160 GPa: a charge of 1.44 e is stripped off the Mg atom...
and transferred almost entirely to the H atoms (0.67 e each), with minor charge transfer to Nb (0.10 e). The role of Nb atoms in the ternary MgNbH₂ is thus quite different from the hydride NbH₄, where Nb has the active role of electron donor. We thus conclude that the chemical bonding in the P6/m2 and Cmcm phases of MgNbH₄ comprises a complex combination of ionic and metallic characteristics.

CONCLUSION

Using the CALYPSO method for crystal structure prediction combined with first-principles calculations, the structures of MgH₂, NbH₂, and MgNbH₂ within the pressure range from 0 to 200 GPa have been explored comprehensively. For MgH₂, the structural transition sequence is $\alpha \rightarrow \gamma \rightarrow \delta \rightarrow \epsilon \rightarrow \zeta$ with transformation pressures of 0.34, 7.48, 11.42, and 163.22 GPa, respectively. For NbH₂, the P6/m2 structure transforms into the orthorhombic Pnma phase at 47.80 GPa. It is found that MgNbH₂ decomposes into NbH₂ + Mg and MgH₂ + Nb at pressures below 13.24 GPa and above 186.77 GPa, respectively. In the intermediate pressure regime, we successfully predicted two phases of MgNbH₂ stable with respect to NbH₂ + Mg and MgH₂ + Nb, with space groups P6/m2 and Cmcm, respectively, and an internal phase transition at 128.27 GPa. The P6/m2 phase, suggestively drawn with two-dimensional character in Figure 7, is composed of alternate layers of MgH₂ and NbH₂ trigonal prisms, while the Cmcm structure contains distorted MgH₂ trigonal prisms. Both phases are mechanically and dynamically stable, as verified by calculating elastic constants and phonon dispersions. In both phases we find simultaneously significant ionic and metallic bonding features; the latter is stimulated by almost charge-neutral Nb atoms. This work is the first comprehensive study of mixed main group transition metal ternary hydride formation under pressure, and the method used here is expected to be applicable to exploring the pressure-induced formation of other ternary metal hydrides. The predicted onset of stability for MgNbH₂ should be accessible to X-ray and even neutron diffraction experiments, and the formation of a layered subhydride of 1:1 Mg/Nb would be an intriguing addition to an already quite complex phase diagram.

ASSOCIATED CONTENT

2 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b06143.

Details of crystal structures, volume-pressure relations and electronic properties for MgH₂, NbH₂, and MgNbH₂ (PDF)

AUTHOR INFORMATION

Corresponding Authors
E-mail: lucheng@calypso.cn.
E-mail: scu_kuang@163.com.
E-mail: a.hermann@ed.ac.uk.

ORCID
Chuanzhao Zhang: 0000-0003-1267-2245
Cheng Lu: 0000-0003-1746-7697
Xiaoyu Kuang: 0000-0001-7489-9715

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No. 11574220, 11274235, 11304167, and 21671114), Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT1020), and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) (No. U1501501). Calculations were performed using the Cherry Creek Supercomputer of the UNLV’s National Supercomputing Institute, as well as the National Supercomputer Center in Guangzhou.

REFERENCES

