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The question of the highest possible coordination number for
an atom is addressed as this is related to the Gregory–Newton
problem of kissing hard spheres.[1] Using first-principles
quantum chemical simulations we show that the interaction
of Pb2+ with He atoms results in remarkably stable PbHe15

2+

with 15 atoms in the first coordination sphere forming a
Frank–Kasper polyhedron.[2] The Pb�He distances do not
change significantly by subsequent filling of the first coordi-
nation shell as one expects for a hard-sphere model. Such high
coordination numbers have been proposed only in liquid
simulations so far.[3]

The problem of how many spheres (Nmax, called the
kissing number or Newton number) of a given radiusR can be
packed around a unit sphere in ndim dimensions is called the
generalized Gregory–Newton problem. In three dimensions,
if all spheres have the same radius, the answer is well known:
Nmax= 12.[1] The extension to general dimensions (with the
exception of ndim= 1, 2, 3, 8, and 24), or the kissing-number
problem of spheres with radius R on a unit sphere, remains
unsolved.[1]

In chemistry Nmax corresponds to the maximum coordi-
nation number of ligands interacting with a central atom, as
pointed out as early as 1875 by G4nther.[4] Herein we assume
that the ligands do not interact strongly with each other.
Hence this excludes systems like M@C60, which would have
Nmax= 60 but are better described as an atom trapped in a
fullerene cage.

It is well known that regular icosahedral structures with
N= 12 in the first coordination sphere are particularly stable
and are found, for example, in rare-gas clusters and in a
number of metallic clusters.[5] Such high coordination num-
bers are also found in actinide complexes, for example in
[U(NO3)6]

2� [6] and [Th(NO3)6]
2�.[7] In the solid state, coordi-

nation numbers up to Nmax= 12 (hexagonal closed packing
and face-centered cubic) are realized, and high coordination
numbers usually imply denser packing. In liquid-metal
simulations, coordination numbers as high as 16 or higher
have been postulated but only for a very short timeframe.[3,8]

In binary intermetallic alloys local coordination numbers of
14, 15, and even 16 are predicted; prime examples are Friauf–
Laves phases in MgZn2 or MgNi2.

[9] Frank and Kasper showed
that the frequent use of icosahedral coordination will occur in

conjunction with coordination numbers higher than 12
stabilized by the surrounding matrix.[2]

Herein we take a different approach. We look for a single
molecule MXN in the gas phase of high coordination number
N which can be experimentally verified. We choose a large
positively charged central atom, M=Pb2+, and a very small
ligand, X=He. Both atoms have reasonably small polar-
izabilities (aHe= 1.38 au[10] and aPb2+= 14.1 au[11]), and there-
fore fit the hard-sphere model quite well. The ionization
potential of Pb+ (15.03 eV) is much smaller than that of He
(24.58 eV).[12] Hence, Pb2+�He does not undergo a Coulomb
explosion and there is no (or minimal) charge transfer from
He to Pb2+. Hence the Pb2+–He interaction V(R) is mainly of
charge-induced-dipole (CID) nature [Eq. (1) with the charge
qPb=+ 2e]. There is also little interaction (mainly of van der
Waals type) between the helium atoms on the coordination
sphere. We employed both wavefunction as well as density-
functional-based methods in our calculations to calculate the
Pb2+–He potential energy curves shown in Figure 1.

VCIDðRÞ ¼ �q2
PbaHe=2R

4 ð1Þ

In Figure 2 the optimized structures for PbHeN
2+ with

N� 12 are shown as obtained from density functional
calculations. Additionally, in Table 1 the average Pb�He
and He�He distances on the coordination sphere are given.
The average Pb�He distance increases monotonically with
increasing N, whereas the average He�He distance in the
outer shell decreases (not monotonically) as one expects. The
“small-N” structures up to N= 7 deviate strongly from an
equally spaced He distribution around the central Pb. Instead,

Figure 1. Potential energy curves for PbHe2+ using various theoretical
methods. The CID curve is also shown. Binding energies Eb and bond
lengths Re : CCSD(T)/aug-cc-pVQZ 13.22 kJmol

�1 and 2.629 2;
CCSD(T)/aug-cc-pVDZ 8.97 kJmol�1 and 2.738 2; PW91/aug-cc-pVDZ
13.70 kJmol�1 and 2.595 2.
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up to N= 6, all He atoms lie in the same half sphere, arranged
into a part of an icosahedral distribution (Figure 2). This is
due to small van der Waals interactions between the He
atoms. For N= 6, for example, the structure with equally
distributed He atoms (which is not a local minimum) is only
0.51 kJmol�1 above the global minimum structure. We also
observe almost no charge transfer from He to Pb2+; the
Coulomb repulsion of the weakly charged He atoms is
therefore small (qHe=+ 0.012e for N= 6).

From N= 8 onwards, the structures resemble closely He
atoms equally distributed around the Pb atom. More inter-
esting are the structures with N� 12 as we find structural
minima for N up to 15. Thus, we report for the first time a

stable gas-phase structure with a coordination number higher
than 12.

For N= 12 the optimized icosahedral structure equals the
corresponding Frank–Kasper polyhedron (FKP). For N= 13,
no such polyhedron exists. Instead, the optimized structure
contains an “upper” half that equals half of the N= 12 FKP,
and a “bottom” half that equals half of the N= 14 FKP. For
N= 14 we get again the FKP as optimized structure. In the
N= 15 case, the ideal FKP is a transition state (first-order
saddle point) and the minimum is a distorted FKP (see
Figure 2). We interpret this as a sign that the limit of structural
stability is reached. Indeed, if we increase N to 16 or higher,
we do not find a minimum structure where all He atoms are

Figure 2. Optimized PbHeN
2+ structures for N�18. For N>15 the dark-gray He atoms denote atoms of the second shell.
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positioned in the first shell around the Pb atom. Hence for
PbHeN

2+ we getNmax= 15. This is larger than in the previously
studied YHeN

3+ system where only an icosahedral coordina-
tion has been achieved as the maximum,Nmax= 12.[13] Figure 3

shows isosurface plots of the highest occupied (HOMO) und
lowest unoccupied (LUMO) states of the PbHe15

2+ molecule.
The HOMO mainly consists of slightly polarized He 1s orbi-
tals antibonding to the Pb 6s orbital. The LUMO is mainly of
Pb 6p character, as expected. The plots illustrate that the
bonding of He to Pb is of CID nature.

The incremental binding energy (EIB) for each molecule
as shown in Figure 4 is given by Equation (2), where Eb(N) is
the binding energy of PbHeN

2+ and E(He) is the total energy
of He. EIB(N) is the energy gain upon attaching an additional
He atom to a PbHeN�1

2+ molecule. For N< 12 EIB decreases
(in absolute values) with increasing N. However, there is a
local maximum at N= 12, indicating the especially stable
icosahedral structure. As expected, EIB is much smaller for
N= 13, an indication of the rather unstable configuration seen
in Figure 2. For the first time, a second local maximum at N=

14 was shown, where again the very stable FKP structure is
adopted. For N= 15, EIB decreases again, a signal that the
structural-stability limit is reached. For N= 16, the energy of
the transition-state one-shell structure is given, that shows a

further decrease of EIB. From that point on, two-shell
structures are more favored (squares in Figure 4 for N= 16–
18). In these structures, one or more He atoms are in a second
geometrical shell, whereas the inner shell consists of 15 He
atoms (see Figure 2). Interestingly, we were not able to
construct two-shell systems, where the inner shell consists of
14 He atoms or less. In such cases, He atoms from the outer
shell always diffused into the inner shell during the optimi-
zation procedure to form a first coordination shell of 15
atoms. This further supports our opinion that the PbHe15

2+

molecule is a stable one-shell system. The stability of
PbHe15

2+ suggests that it can be identified by mass spectro-
metric methods.

EIBðNÞ ¼ EbðNÞ�EbðN�1Þ�EðHeÞ ð2Þ

Methods
Of all the density functionals (DFT) tested for PbHe2+ the gradient-
corrected Perdew–Wang functional (PW91)[14] performed better than
extensive coupled-cluster calculations[15] using an aug-cc-pVQZ basis
set for both He[17] and Pb.[18] In fact, for the PW91 calculations, the
potential curve is already well described with the smaller aug-cc-
PVDZ basis sets, which are therefore used for the cluster calcu-
lations.[16] Where computationally feasible (for the smallest clusters)
we optimized the structures at the CCSD(T)-level of theory using the
large aug-cc-PVQZ basis sets and these results are in good agreement
with the PW91 results (see Figure 1). Rather extensive second-order
perturbation theory calculations for electron correlation (MP2) and
hybrid-DFT (B3LYP) calculations[16] for PbHe15

2+ with double-zeta-
quality basis sets both verified that the global minimum is the one
with 15 He atoms in the first coordination shell. The Pb atom was
approximated by an energy-consistent scalar relativistic pseudopo-
tential including 20 electrons in the valence space.[19]

For all structures, the starting point in the search for the global
minimum was an equal spatial distribution of the He atoms on a
sphere of reasonable radius around the central Pb atom. The
respective distributions were determined numerically by damped
relaxation of a set of Coulomb-repulsing particles on the unit sphere.
The Hessian for the atom displacements was checked to assure that
minimum structures are obtained. Different distributions lead to the
location of the global minimum structure. We have also searched for
other positively charged ions interacting with He which are easily
accessible to future experiments, for example Cs+ or Ba2+. However,

Table 1: Minimum, maximum, and average Pb�He distances, and
average He�He distances for PbHeN2+ (in 2). For the He�He average
distance only the atoms in close contact with R�3.1 2 are chosen.

N Rmin(Pb�He) Rmax(Pb�He) Rav(Pb�He) Rav(He�He)

1 2.595 2.595 2.595
2 2.602 2.602 2.602 3.054
3 2.606 2.608 2.607 3.096
4 2.612 2.629 2.621 3.079
5 2.619 2.642 2.634 3.062
6 2.621 2.652 2.646 3.001
7 2.634 2.676 2.660 3.019
8 2.668 2.672 2.670 3.244
9 2.679 2.683 2.681 3.098
10 2.689 2.697 2.694 2.924
11 2.702 2.721 2.712 2.877
12 2.720 2.722 2.722 2.862
13 2.716 2.802 2.759 2.776
14 2.712 2.802 2.789 2.739
15 2.754 2.869 2.825 2.662

Figure 3. Isosurface plots of the HOMO (left) und LUMO (right) of
PbHe15

2+. Isosurface value 1=0.01 au.

Figure 4. EIB for PbHeN
2+. Circles: minima of one-shell structures;

squares: minima of two-shell structures.
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Pb2+ gave the most stable clusters with the highest coordination
number. We note that higher coordination number might be expected
for charged actinide–He interactions, for example, UHeN

q+ (q= 1–3),
but these are more difficult to study by theoretical and experimental
methods.

Received: October 10, 2006
Published online: February 21, 2007

.Keywords: coordination modes · density functional
calculations · dipole interactions · Gregory–Newton problem ·
lead

[1] N. J. A. Sloane, J. H. Conway, Sphere Packings, Lattices and
Groups, Springer, New York, 1999.

[2] F. C. Frank, J. S. Kasper, Acta Crystallogr. 1958, 11, 184 – 190.
[3] C. Bichara, A. Pellegatti, J.-P. Gaspard, Phys. Rev. B 1993, 47,

5002 – 5007.
[4] S. G4nther, Arch. Math. Phys. 1875, 57, 209 – 215.
[5] R. L. Johnston,Atomic andMolecular Clusters, Francis, London,

2002.
[6] J. Rebizant, C. Apostolidis, M. R. Spirlet, G. D. Andreeti, B.

Kanellakopulos, Acta Crystallogr. Sect. C 1988, 44, 2098 – 2101.
[7] U. Abram, E. Bonfada, E. Schulz Lang, Acta Crystallogr. Sect. C

1999, 55, 1479 – 1482.
[8] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, Nature

2006, 439, 419 – 425.
[9] Y. Komura, K. Tokunaga, Acta Crystallogr. Sect. B 1980, 36,

1548 – 1554.
[10] A. C. Newell, R. C. Baird, J. Appl. Phys. 1965, 36, 3751 – 3759.
[11] Calculated using the pseudopotential and accompanying aug-cc-

pVQZ basis set as described in the Methods Section. The small
polarizability of Pb2+ is due to the relativistic 6s contraction.

[12] C. E. Moore,Atomic Energy Levels, US GPO, Washington, 1958.
[13] R. Wesendrup, G. E. Moyano, M. Pernpointner, P. Schwerdt-

feger, J. Chem. Phys. 2002, 117, 7506 – 7511.
[14] J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 1996, 54, 16533 –

16539.
[15] R. J. Bartlett, J. Phys. Chem. 1989, 93, 1697 – 1708.
[16] Gaussian03, RevisionC.02, M. J. Frisch, G. W. Trucks, H. B.

Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M.
Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M.
Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K.
Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.
Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Program Gaussian,
Inc., Wallingford, CT, 2004.

[17] D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1994, 100, 2975 –
2988.

[18] K. A. Peterson, J. Chem. Phys. 2003, 119, 11099 – 11112.
[19] B. Metz, H. Stoll, M. Dolg, J. Chem. Phys. 2000, 113, 2563 – 2569;

the Stuttgart pseudopotentials and corresponding valence basis
sets can be obtained from the website http://www.theochem.uni-
stuttgart.de.

Angewandte
Chemie

2447Angew. Chem. Int. Ed. 2007, 46, 2444 –2447 � 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org

