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Complete basis set !CBS" limit calculations using second-order Møller–Plesset !MP2" theory for
electron correlation within a many-body expansion of the interaction potential up to third order are
carried out for the fcc lattices of Ne, Ar, Kr, and Xe. Lattice constants and cohesive energies from
recent localized MP2 solid-state calculations by Halo et al. #Chem. Phys. Lett. 467, 294 !2009"$ are
in reasonable agreement with our CBS limit results. A detailed analysis reveals that MP2 severely
underestimates long-range three-body effects, thus the Axilrod–Teller term is incorrectly described
causing bond contractions for all rare gas solids considered. Further, any deviations in the MP2
lattice constant, cohesive energy, and bulk modulus can be traced back to inaccuracies in the binding
energy and equilibrium distance of the rare gas dimer. Without inclusion of phonon dispersion, MP2
prefers the hcp over the fcc crystal structure for all rare gas solids considered. © 2009 American
Institute of Physics. #doi:10.1063/1.3279303$

I. INTRODUCTION

The quantum theoretical treatment of solids is currently
dominated by density functional theory !DFT", which is in
principle exact and avoids the construction of the compli-
cated many-electron wave function.1–3 However, the many
shortfalls of the numerous approximations used for the
exchange-correlation functional are well known and
documented,4–10 and these cannot be very easily fixed.11,12

For example, the incorrect long-range behavior of the one-
particle density originating from the various approximations
used for the formally exact exchange-correlation functional
results in an erratic behavior for dispersive type of
interactions,13 leading to inaccurate results for the interaction
of closed shell atoms such as group 2 and 12 metals,14 or rare
gas solids.15,16 Recent improvements to fix the long-range
part of the one-particle density include new exchange-
correlation functionals,9,17 the addition of Van der Waals type
interaction terms,18–24 exact Hartree–Fock exchange plus
electron correlation in the long-range,25–29 the use of the
random-phase approximation30 introduced into DFT,30–34 and
recently further developed by Kresse and co-workers,35–37

symmetry-adapted perturbation theory on top of DFT,38–40

self-consistent polarization DFT,41 tailored correlation func-
tionals on top of Hartree–Fock,42,43 nonlocal effective poten-
tials to simulate dispersion forces,44 and many more. Some
of these approximations are in fact using wave function
based post-Hartree–Fock methods to account for a better de-
scription of electron correlation, and should therefore not be
considered as pure DFT anymore. Despite the improvement
in nonempirical generalized gradient approximations to ac-
count for dispersive type of interactions,6,15 it is currently not
clear how some of these methods perform in general for
weakly interacting systems. For example, describing cor-

rectly the energetic sequence of the different polymorphs for
molecular crystals is a difficult task and remains a challenge
for solid-state theory.45,46

Wave function based methods also exhibit a number of
difficulties in correctly describing the solid state.47 Apart
from the computational demand of accurate post-Hartree–
Fock methods such as coupled cluster theory,48,49 it is un-
clear how electron correlation can accurately be accounted
for if the electronic band gap closes.50 Recent important de-
velopments into this direction were the implementation of
local second-order Møller–Plesset !LMP2" theory into the
program system CRYSTAL,51 and the incremental method de-
veloped by Stoll.52–54 Stoll’s method of increments has re-
cently been applied successfully to calculate the solid-state
structures for a variety of electronic systems including
metals.55–60 If coupled-cluster theory is used to obtain corre-
lation energies, the incremental method is very accurate but
computationally quite demanding and cumbersome, although
an efficient algorithm for this method has recently been de-
veloped by Friedrich and Dolg.61 The computationally much
less demanding LMP2 method diverges for metallic systems,
since single-particle band gaps appear in the denominator of
the perturbation series. It is thus applicable only to medium
or large band-gap materials, i.e., insulators. Furthermore,
Hartree–Fock calculations using Gaussian type basis sets of-
ten face difficulties regarding the self-consistent field !SCF"
convergence if diffuse basis functions are used, which are
necessary for the correct description of weakly interacting
systems. Such calculations are also plagued by sizable basis
set superposition errors which cannot be neglected in the
treatment of dispersive type of interactions. Hence, it is often
difficult to estimate the errors coming from the LMP2 ap-
proximation or from the finite basis set applied. For this rea-
son we decided to carry out complete basis set !CBS" limit
calculations at the MP2 level of theory within a many-bodya"Electronic mail: p.a.schwerdtfeger@massey.ac.nz.
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expansion of the interaction potential up to third order for the
solid-state structures of the rare gas elements Ne, Ar, Kr, and
Xe. This allows to assess the accuracy of recent LMP2 type
calculations by Halo et al.62–64 and serves as a benchmark for
future implementations of the LMP2 method. Also, a com-
parison of CBS limit MP2 results to experimental data gives
a more accurate and complete insight into the performance of
this method for solid state calculations. For example, Hobza
and co-workers65 pointed out that dispersive interactions are
overestimated by MP2, and this has been addressed recently
in more detail for the rare gas dimers by Tkatchenko et al.66

In fact, MP3 underestimates dispersion interactions almost as
much as MP2 overestimates them. In order to improve this
situation, very recently Marchetti and Werner67 introduced
the dispersion-weighted MP2 !DW-MP2" approximation as a
variant of Grimme’s spin-component-scaled MP2
!SCS-MP2".68 Another interesting aspect is the recent claim
that LMP2 prefers the fcc structure over the hcp structure for
argon by about 22 cm−1 !Ref. 62" in agreement with experi-
ment, but contrary to previous coupled cluster and many-
body expansion results.16,69

II. COMPUTATIONAL DETAILS

For the solid-state calculations we used a truncated ex-
pansion of the many-body interaction potential using trans-
lational symmetry for the rare gas solids Ne, Ar, Kr, and Xe
to obtain the cohesive energy Ecoh dependent on the volume
V of the fcc crystal,16

Ecoh!N,V" = %
n

E!n"!N,V"

=
1
2%

i

N

E!2"!r0i" +
1
3%

i!j

N

E!3"!r0i,r0j,rij" + ¯ , !1"

where r0i is the distance between the innermost !central
atom" and atom i in the fcc lattice for a specific lattice con-
stant a and corresponding volume V=a3 /4. The cluster size
N for the fcc lattice was chosen sufficiently large to achieve
convergence of the optimized lattice constant to four digits
behind the decimal point.16 The many-body expansion is in
principle exact, but computationally feasible only if the se-
ries expansion !1" converges fast, which is the case for the
rare-gas solids at low pressures.16,70,71 The lattice dynamics
was included within the harmonic approximation, that is
zero-point vibrational energy contributions !E0" were in-
cluded using the Einstein approximation3 by moving one
atom in the static field of all other atoms. This gives the
simple expression

E0!V" = 3"#E!V"/2, !2"

where #E is the Einstein frequency obtained from two-body
forces only at a specific volume of the crystal.16 The program
system SAMBA was used for all solid-state calculations.72

The dimer interaction energies E!2"!r" were calculated
for a range of atomic distances r between 4.25 and 11.33 a.u.
for Ne, and between 5.66 and 15.11 a.u. for the other ele-
ments. The same sets of distances r were used as side lengths

of equilateral triangles to calculate trimer interaction ener-
gies E!3"!r12,r13,r23" with r=r12=r13=r23. The calculations
were performed using the quantum chemistry packages
GAUSSIAN03 !Ref. 73" and MOLPRO !2006 version".74 All
MP2 calculations utilize the frozen-core approximation
keeping only the occupied valence n sp-space active. Inter-
action energies are corrected for basis set superposition er-
rors using the Boys–Bernardi approach,75

EX
!2"!r" = EXX!r" − 2EXG!r" , !3"

EX
!3"!r" = EXXX!r" − 3EXXG!r" + 3EXGG!r" . !4"

Here EX
!2" and EX

!3" denote the dimer and trimer interaction
energies for the rare gas element X, and G denotes the pres-
ence of ghost atom basis set!s" at the position!s" otherwise
occupied by an atom X. The dimer interaction energy is then
fitted in a least-squares procedure to an extended Lennard-
Jones potential,16

EX
!2"!r" = %

n=1

6
C2n+4

r2n+4 , !5"

and the trimer interaction potential is fitted to an extended
Axilrod–Teller potential that accounts for short range attrac-
tion as well as long-range dispersive repulsion interactions,71

EX
!3"!rij,rjk,rik" = f$&CAT

rg
9 + e−%rs%

n=0

3

A2nrg
2n' ,

with f$ = !1 + 3 cos $i cos $ j cos $k" , !6"

rg = !rijrjkrik"1/3, and rs = rij + rjk + rik.

This potential, when derived from coupled-cluster calcula-
tions, led recently to very accurate results for the equation-
of-state for solid neon.71 For Ne and Ar, all-electron aug-
mented correlation consistent basis sets aug-cc-pV5Z and
aug-cc-pV6Z76–79 were used to obtain E!2" and E!3". For Kr
and Xe, the small-core pseudopotential augmented correla-
tion consistent basis sets aug-cc-pVQZ-PP and aug-cc-
pV5Z-PP !Ref. 80" were used. For all elements, an extrapo-
lation of the correlation energy to the CBS limit was
performed using the ansatz by Halkier et al.,81

EMP2
c !x" = EMP2

c !CBS" + &x−3, !7"

where x is the cardinal number of the aug-cc-pVxZ!-PP" ba-
sis set. For x=5 the Hartree–Fock limit is already reached
within the set accuracy, and the SCF energies are therefore
not extrapolated, but taken from the aug-cc-pV6Z
!aug-cc-pV5Z-PP" calculations for Ne and Ar !Kr and Xe",
respectively. The adjusted coefficients from the potential en-
ergy fits are listed in Table I. The spectroscopic constants
were obtained numerically using the Numerov–Cooley
procedure.82,83

III. RESULTS AND DISCUSSION

The calculated spectroscopic constants for the rare gas
dimers are listed in Table II together with other MP2,
coupled cluster, and long-range corrected DFT results and
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experimental data. The corresponding MP2 potential curves
are shown in Fig. 1. The calculated MP2 bond distances for
the rare gas dimers Ar2, Kr2, and Xe2 are about 0.1 Å below
the very precise CCSDTQ results reported recently by Jäger
et al.,85 or the CCSD!T" results by Goll et al.,25 Woon,89 or
van Mourik,90 and below the experimental bond
distances.86,87 The neon dimer is an exception here with the
MP2 distance being about 0.1 Å above the experimental
value or the precise CCSDTQ result of Hellman et al.84 Our
MP2 CBS limit results are in reasonable agreement with re-
sults reported earlier by Halo et al.,64 but deviate in the case
of Ne2 due to basis set deficiencies in their calculations. We
note that the CBS MP2 results for neon are in less good

agreement with experiment than for example the long-range
corrected DFT results published by Hirao and co-workers.21

The MP2 method is well known to overbind, thus leading to
too short bond distances, and resulting in an overestimation
of binding energies. This is indeed the case for the rare gas
dimers except for Ne2, where the interaction is rather weak.
It was noted before that MP2 tends to overestimate disper-
sive type of interactions.65,91 We will see below how these
errors for the diatomics propagate into the rare gas solids.

Figure 2 shows the three-body MP2 curves E!3"!r" for
the equilateral triangle !D3h symmetry" for all rare gas ele-
ments. ENe

!3"!r" is extremely small around the equilibrium dis-

TABLE I. Coefficients for the X2 and X3 !X=Ne, Ar, Kr, Xe" potential energy hypersurfaces as defined in Eqs.
!5" and !6" !in atomic units".

Coeff. Ne Ar Kr Xe

Two-body
C6 −8.911 90'100 −1.336 54'102 −2.435 69'102 −6.836 65'102

C8 8.513 97'102 2.074 23'104 4.115 01'104 1.696 08'105

C10 −8.562 74'104 −3.128 97'106 −7.964 56'106 −3.614 86'107

C12 3.326 90'106 1.818 17'108 5.533 10'108 2.958 28'109

C14 −4.673 58'107 −4.099 80'109 −1.457 18'1010 −9.666 61'1010

C16 2.323 08'108 3.332 36'1010 1.363 94'1011 1.147 08'1012

Three-body
A0 6.947 52'101 1.667 05'102 6.935 09'102 3.042 10'103

A2 −8.643 89'101 −9.592 91'101 −1.403 95'102 −2.943 41'102

A4 1.985 56'100 2.514 17'100 3.098 03'100 4.927 79'100

A6 −6.285 15'10−4 −1.351 33'10−2 −1.447 81'10−2 −1.891 66'10−2

% 1.205 70'100 8.817 84'10−1 8.159 44'10−1 7.492 99'10−1

CAT 7.024 70'10−2 1.158 94'10−2 1.536 60'10−2 6.048 72'101

TABLE II. Spectroscopic constants re !in angstrom", De, #e, and #exe !in cm−1" for the diatomics X2 !X=Ne, Ar,
Kr, Xe" compared to experiment and to results from other authors, and potential maximum positions rm

!in angstrom" and values E!3"!rm" !in 10−6 a.u." for the D3h path of the three-body potential.

Prop. Method Reference Ne Ar Kr Xe

Two-body
re MP2 3.198 3.725 3.978 4.347

MP2 64 3.10 3.75 4.05 4.40
CCSD!T" 25, 84, and 85 3.090 3.762 4.076 4.471
LC-DFT 21 3.077 3.890 ¯ ¯

B3LYP+vdW 19 3.000 3.897 ¯ ¯
Exp. 86–88 3.094 3.756 4.008 4.363

De MP2 18.9 114.6 164.9 231.0
MP2 64 22.5 100.1 139.3 193.8

CCSD!T" 25, 84, and 85 29.3 99.47 120.8 161.2
LC-DFT 21 29 84 ¯ ¯

B3LYP+vdW 19 15 31 ¯ ¯
Exp. 86–88 29.4 99.5 139.8 196.2

#e MP2 22.5 33.7 26.7 23.4
CCSD!T" 25 25.8 27.9 21.8 18.5

Exp. 86–88 21.3 31.4 23.8 21.1
#exe MP2 6.9 3.0 1.4 0.8

Exp. 86 and 87 7.6 2.9 1.3 0.7

Three-body
rm MP2 3.624 3.977 4.190 4.646
E!3"!rm" MP2 0.0106 1.067 2.634 3.846
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tance, which required tighter convergence criteria for the
SCF procedure in order to avoid numerical errors. In fact,
ENe

!3" is about two orders of magnitude smaller in the long-
range part than the corresponding CCSD!T" values published
recently.71 This implies that double excitations cannot de-
scribe three-body dispersive type of interactions, which
comes at no surprise. As a consequence, the MP2 Axilrod–
Teller coefficient !CAT=0.07 a.u., see Table I" for Ne is not
even close to the experimentally derived value of 12.0 a.u.
!Ref. 92". In fact, all the MP2 Axilrod–Teller coefficients are
orders of magnitude smaller than the literature values of
518 a.u. for Ar3, 1554 a.u. for Kr3, and 5605 a.u. for Xe3.92

Moreover, the equilibrium bond distances for the rare gas
dimers are much smaller than the potential maximum posi-
tion rm listed in Table I, and well within the attractive region
of the MP2 three-body potential. Hence, the combination of
the severe underestimation of the repulsive region in the
three-body potential and the fact that re!rm will lead to a
contraction in the rare-gas crystals and an increased cohesive

energy when three-body terms are included in the solid-state
calculations. This is in stark contrast with what is found at
the coupled-cluster level of theory.69,71 As another conse-
quence, the many-body expansion for the MP2 interaction
potential converges much faster in the long-range than the
exact decomposition, and we expect that four-body forces
can be neglected in the long range.

The solid-state results are collected in Table III in com-
parison with experiment and results from other authors. As
expected the MP2 lattice constants are smaller than the
coupled-cluster #CCSD!T"$ values of Stoll and
co-workers69,102 except for neon, which reflects the wrong
behavior of the MP2 two-body interaction. For all solids the
three-body effect is attractive at the solid-state nearest-
neighbor distance, and therefore opposite in sign compared
to more accurate coupled-cluster results.69,71 For example,
for Xe2 the MP2 three-body contribution to the cohesive en-
ergy is attractive with −38 cm−1 compared to the repulsive
contribution of +32 cm−1 at the coupled cluster level.69 Our
lattice constants !not corrected for zero-point vibrational en-
ergy" are, except for neon, smaller than the MP2 values of
Halo et al.,64 and the deviations in the cohesive energies are
as much as 9% for neon and not much smaller for the other
rare gas solids. The bulk modulus is extremely sensitive to
the lattice constants and here we have larger deviations from
the LMP2 values.

In order to compare to experimental data one must in-
clude the zero-point vibrational energy. This is done here
using the Einstein approximation. The MP2 !E!2"+E!3"+E0"
lattice constants for neon is too large compared with experi-
ment, while for the heavier rare gas elements we obtain lat-
tice constants which are too small. For the cohesive energies
we obtain much larger deviations. For Ne the MP2 cohesive
energy is underestimated by 37%, and for Ar, Kr, and Xe
overestimated by 29%, 31%, and 33%, respectively. Similar
large deviations are observed for the bulk moduli.

It may be useful here to discuss some approximate rela-
tions between the properties of the rare gas dimers and the
respective solid state properties. If we compare the nearest
neighbor distances rNN in the crystal obtained from the lattice
constants a !rNN=a /(2" with the MP2 equilibrium distances
re of the dimers, we obtain from a simple Lennard-Jones
ansatz for the solid state interaction potential,

rNN = &L12

L6
'1/6

re, !8"

where L6 and L12 belong to a set of Lennard–Jones–Ingham
coefficients for the fcc lattice,103 which have been derived
recently to high precision.16 This gives re /rNN=1.0296,
which is the additional attractive two-body interactions in the
rare-gas crystal lead to a contraction compared to the rare gas
dimer. From our MP2 calculations we obtain re /rNN=1.018
for Ne, 1.022 for Ar and Kr, and 1.023 for Xe considering
two-body forces only. Hence this simple relation is quite well
fulfilled at the MP2 level of theory, and consequently any
deviation we obtain for the crystal lattice constants can be
traced back to errors in the bond distance re for the dimer. In
a similar way we have for the Lennard-Jones cohesive
energy16
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FIG. 1. X2 !X=Ne, Ar, Kr, Xe" potential energy curves. The red plus signs
indicate CBS limit data points and the black solid line indicates fit with ELJ
potential from Eq. !5", parameters from Table I. All energies and distances
are in atomic units.
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FIG. 2. X3 !X=Ne, Ar, Kr, Xe" three-body curves for the equilateral triangle.
Red plus signs indicate CBS limit data points and black solid lines indicate
fits with potential from Eq. !6", parameters from Table I. All energies and
distances are in atomic units.
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Ecoh =
1
2

L6
2

L12
De, !9"

which gives Ecoh /De=8.6093 for the fcc lattice. From our
MP2 calculations we obtain Ecoh /De=7.98 for Ne, 7.93 for
Ar, 7.84 for Kr, and 7.85 for Xe considering two-body forces
only. Again, this simple relation is reasonably well fulfilled
and in agreement with the ratios obtained from more accu-
rate potential curves,16 and therefore errors in the cohesive
energy can be traced back to errors in the dimer binding
energy. For the bulk modulus we have16

B = L12&2L6

L12
'5/2De

re
3 . !10"

Hence the bulk modulus becomes sensitive to errors in both
the binding energy and equilibrium bond distance of the
dimer which is clearly seen in our results.

Finally we address the problem of the hcp/fcc lattice
difference in energy. The question here is if MP2 correctly
describes energy differences between polymorphic crystals.
In a recent paper by Casassa et al.62 it was stated that LMP2
favors fcc over hcp by 21.9 cm−1 for argon, which is in
agreement with experiment where only the fcc phase is
known. This, however, is in contradiction with previous
coupled-cluster results by Stoll and co-workers52,55 using an
incremental method, and to results from many-body expan-
sions carried out in our group.16 There it was concluded that
quantum fluctuations from the zero-point vibrational energy
are responsible for the change from hcp to fcc and not the
three-body force as originally claimed by Lotrich and
Szalewicz.104 The result by Casassa et al. is rather peculiar as
the three-body forces are underestimated in the MP2 proce-

dure, and the question arises whether their result is related to
differences in the localization procedure for the different
crystal structures considered. We therefore optimized the hcp
lattices at the MP2 level of theory taking both the two- and
three-body forces into account and applying extremely tight
convergence criteria as the energy differences between both
lattice types are rather small. For all elements the MP2 CBS
limit results show that the hcp lattice is preferred if zero-
point vibration is neglected, in agreement with previous
calculations.16,52,55 The calculated energy difference between
fcc and hcp !E!2"+E!3"" are 0.010 cm−1 for Ne, 0.113 cm−1

for Ar, 0.153 cm−1 for Kr, and 0.230 cm−1 for Xe. Hence,
for the accurate determination of rare gas solids, and in gen-
eral for polymorphs in molecular crystals, where rather small
energy differences become relevant for the correct structure
determination, one has to take great care of the approxima-
tion applied.

IV. CONCLUSIONS

We demonstrated the failure of MP2 to correctly de-
scribe long-range three-body dispersive type of interactions,
which could be remedied by applying higher-order perturba-
tion theory such as MP4 or by coupled-cluster theory. This
error leads to an unphysical contraction of the fcc lattice.
Besides this error in the three-body force, MP2 in general
leads to lattice constants, cohesive energies, and bulk moduli
for the rare gases which are not in good agreement with more
accurate coupled-cluster results or experimental data. These
deviations can be traced back to the incorrect description of
rare gas dimers, which is the incorrect behavior of the MP2
two-body potential. The result that argon prefers crystalliza-
tion in the fcc structure over hcp because of quantum fluc-

TABLE III. Calculated MP2 lattice parameters a !angstrom", cohesive energies Ecoh !cm−1" and bulk moduli B
!kbar" for the rare gas solids Ne, Ar, Kr, and Xe in comparison with experiment and results from other authors.

Prop. Method Reference Ne Ar Kr Xe

a MP2 E!2" 4.430 5.153 5.502 6.012
MP2 E!2"+E!3" 4.423 5.134 5.481 5.974

LMP2 64 4.35 5.20 5.50 6.10
CCSD!T" 69 4.297 5.251 5.598 6.087

MP2 E!2"+E!3"+E0 4.660 5.192 5.514 5.996
CCSD!T"+E0 69 4.468 5.311 5.633 6.111

Exp. 93–96 4.464 5.300 5.646 6.132

Ecoh MP2 E!2" 150.9 908.4 1292 1814
MP2 E!2"+E!3" 151.5 912.6 1294 1827

LMP2 64 165.5 852.7 1234 1693
CCSD!T" 69 211.5 709.1 983.0 1372

MP2 E!2"+E!3"+E0 104.7 830.7 1230 1771
CCSD!T"+E0 69 164.8 645.9 935.8 1328

Exp. 97 and 98 161.6 645.5 931.9 1319

B MP2 E!2" 12.4 44.0 50.6 53.7
MP2 E!2"+E!3" 12.3 42.7 48.4 50.7

LMP2 64 6.1 27.8 32.5 40.9
CCSD!T" 69 18.8 33.1 36.1 39.6

MP2 E!2"+E!3"+E0 5.4 36.7 44.6 48.0
CCSD!T"+E0 69 10.4 27.9 32.9 37.2

Exp. 94 and 99–101 11.0 26.7 36.1 36.4
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tuations remains unchallenged, and the use of LMP2 to de-
scribe small energy differences between polymorphs needs to
be further explored.
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