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We introduce a simple but computationally very efficient har-

monic force field, which works for all fullerene structures and

includes bond stretching, bending, and torsional motions as

implemented into our open-source code Fullerene. This gives

accurate geometries and reasonably accurate vibrational fre-

quencies with root mean square deviations of up to 0.05 Å for

bond distances and 45.5 cm21 for vibrational frequencies com-

pared with more elaborate density functional calculations. The

structures obtained were used for density functional calcula-

tions of Goldberg–Coxeter fullerenes up to C980. This gives a

rather large range of fullerenes making it possible to extrapo-

late to the graphene limit. Periodic boundary condition calcu-

lations using density functional theory (DFT) within the

projector augmented wave method gave an energy difference

between 28.6 and 28.8 kcal/mol at various levels of DFT for

the reaction C60!graphene (per carbon atom) in excellent

agreement with the linear extrapolation to the graphene limit

(28.6 kcal/mol at the Perdew–Burke–Ernzerhof level of theory).
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Introduction

Fullerenes are hollow polyhedral carbon structures consisting

of 12 pentagons and F6 hexagons with F6 � 0 and F6 6¼ 1.[1–4]

Schleyer and coworkers pointed out that both C20-Ih and C60-Ih

are not spherically p aromatic[5] but spherically p antiaro-

matic,[6] which for C60 explains the large heat of formation (for

a more detailed discussion of fullerene aromaticity see Ref.

[7]). They concluded that against common belief, fullerenes are

not highly stable molecules,[6] showing no “magic” stability for

C60 compared with other fullerenes (and graphene).

As the pentagons can be distributed in many different ways

on a 2D surface (of genus zero),[3] the number of isomers grows

rapidly with increasing number of carbon atoms N, that is, Thur-

ston established a OðN9Þ polynomial growth for the number of

isomers with vertex number N.[8] These isomers come in many

different shapes and symmetries,[9] and it is clear that a fast

algorithm is required to determine accurate molecular shapes,

which can further be refined by a more rigorous quantum theo-

retical treatment. Such an algorithm should give the right bond

distances and angles for the 12 pentagons and F6 hexagons,

and the 3D structure should have the right symmetry, shape,

and Gaussian curvature (which is predominantly positive but

may be slightly negative locally in fullerenes).[9]

The fullerene graph G5ðV; EÞ with vertices vi 2 Vði51; . . . ;NÞ
and edges ej 2 Eðj51; . . . ; 3N=2Þ contains all the information

required to construct a structural carbon framework. A compact

short-hand notation for fullerene graphs is given by the

Fowler–Manolopoulos face-spiral algorithm, which, starting from

a selected face, goes through all faces of the fullerene exactly

once, that is, it is identical to a Hamilton spiral path for the

dual of the fullerene. Only the locations of the pentagons need

to be listed, and if the spiral gets stuck in a cul-de-sac, one can

define jumps to remedy the situation. This leads to a general-

ized spiral algorithm which uniquely defines the fullerene graph.

Conversely, from the general face spiral, one obtains the graph

G (and its vertex adjacency matrix Akl), which can be used to

embed the graph on an appropriate 2D surface to obtain an
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initial 3D structure. Such 2D embedding algorithms are already

available, for example, the Adjacency Matrix Eigenvector (AME)

algorithm introduced by Fowler and Manolopoulos,[3,9,10] or the

more recent combination of the Tutte embedding of the graph

onto a 2D plane with subsequent projection onto the surface

of a sphere, which was developed in our group.[9,11]

The next step is to refine the initial crude 3D geometry by a

force-field optimization, which should lead to a structure close

to the real (experimental) one. It is common for molecular

force fields to distinguish between single and double bonds.

This strategy, however, is not practical for fullerenes due to

exponential growth of different Kekul�e structures with increas-

ing vertex number N. Force fields for fullerenes should there-

fore be designed avoiding the distinction between single and

double bonds. The first force field tailored specifically to fuller-

enes was developed by Wu et al.[12] It was designed for C60-Ih

only using harmonic force field terms between two bond

types: Bonds adjacent to two hexagons with a bond length of

1.54 Å, and bonds adjacent to a pentagon and a hexagon

with a bond length of 1.41 Å. Angles are either part of a pen-

tagon (h05 3
5 p) or a hexagon (h05 2

3 p).

A number of extensions and modifications to the Wu force

field have been published since.[13–18] Except for the force field

by Ceulemans et al.,[17] all others have been exclusively

designed for C60-Ih. Here, we introduce a harmonic force field

applicable to all fullerenes as implemented into our program

package Fullerene, and test the obtained structures for larger

fullerenes (obtained from Goldberg–Coxeter transforms of C20)

against more accurate density functional theory (DFT) calcula-

tions. As an illustrative example, we use the DFT electronic

energies to extrapolate to the graphene limit, and compare

our results to periodic DFT calculations for graphene.[19,20] The

force-field vibrational frequencies are also used to extrapolate

to the zero-point energy limit of graphene.

Computational Methods

The initial fullerene structures were generated by the program

Fullerene* through a face-spiral algorithm,[21] a Tutte embed-

ding of the graph and subsequent mapping of the planar lay-

out on a sphere followed by a geometry optimization using

the general fullerene force field as introduced in the next

chapter. We chose the most stable fullerene structures for

each vertex number up to C60 (see Ref. [22] for details), plus

some selected fullerenes up to C100. As candidates for larger

fullerenes beyond 100 vertices, we chose the Goldberg–Cox-

eter transforms[3,23,24] of C20, that is, GCk,l[C20-Ih] 5 CN with

N520ðk21kl1l2Þ � 980. These icosahedral structures were

taken as input for refined optimization using DFT. In a first

step, the structures were optimized with the Perdew–Burke–

Ernzerhof (PBE) functional[25] using the def2-TZVPP basis set

for the fullerenes from C20 up to C60, and the smaller def2-SVP

basis set[26] for the larger fullerenes (from C60 onwards) within

the Gaussian09 code.[27] Tight geometry convergence criteria

and ultra-fine integration grids were applied and the symme-

try of the structures was exploited. Starting from these struc-

tures, subsequent optimizations for the larger fullerenes were

carried out with the Becke–Lee–Yang–Parr hybrid functional

(B3LYP)[28,29] functional as implemented in Gaussian09 and Tur-

bomole (for the optimized structures see Supplementary Infor-

mation).[27,30] This was done to obtain a second value for the

graphene limit. We only chose these two commonly applied

functionals as some of the calculations for the larger fullerenes

became very computer time intensive. All structures were

treated as closed-shell singlet molecules, except for some of

the smaller fullerenes as detailed in Ref. [22].

The energy difference between C60 and graphene was calcu-

lated using the Vienna Ab Initio simulation package (VASP),[31]

with a plane wave basis set (energy cutoff Ec 5 600 eV) and a

1s frozen core PAW dataset.[32,33] Graphene sheets as shown in

Figure 1, in the graphite arrangement, were kept 10 Å apart,

and C60 was calculated in a cubic box of size 20 Å. All internal

coordinates (and thus, the lattice constants of graphene) were

optimized until residual forces were below 1 meV/Å. Here, we

chose a variety of functionals as implemented in VASP,[31]

namely the local density approximation (LDA), the PBE func-

tional as already mentioned,[25] the PBE functional corrected

using Grimme’s dispersion correction (PBE-D2),[34,35] and the

optB88-vdW functional Michaelides et al., and others.[36–38]

A General Harmonic Force Field for Fullerenes

The original program Fullerene[21] included a harmonic force

field of the form

EHFF5
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In this simple force field, introduced by Wu et al. for C60-

Ih,[12] bonded pairs of vertices are taken into account. kp and

kh are the force constants for the two different CAC bonds

(set to � 300 kcal Å22), Rp and Rh the corresponding pentagon

and hexagon bond distances (�1.4 Å), fp and fh are the force

constants for the two different bending modes in a pentagon

and hexagon with the corresponding bond angles ap and ah of

Figure 1. The structure of graphene.

*Program Fullerene is an open-source code and is freely downloadable at

http://ctcp.massey.ac.nz/index.php?page=fullerenes

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 10–17 11

http://onlinelibrary.wiley.com/


108� and 120�, respectively. As the original Wu force field was

developed for C60-Ih only, bonds adjacent to two pentagons

were treated in the same way as bonds adjacent to one pen-

tagon and one hexagon in the program Fullerene.[21] The

geometry can then be optimized using for example a

Fletcher–Reeves–Polak–Ribiere geometry optimization with

analytical gradients,[39] which is very computer time efficient

even for larger fullerenes containing thousands of carbon

atoms.[21,40]

The Wu force field is in principle applicable to all fullerenes

and usually yields structures that are in good agreement with

optimized structures from a more rigorous quantum theoreti-

cal treatment such as DFT. The root mean square (rms) devia-

tions between DFT and force field optimized bond lengths are

usually smaller than 0.05 Å.[21] However, the Wu force field suf-

fers from two problems. First, the optimization may converge

to local minima, especially if the initial structure is far from the

real one. This may result in distortions away from convexity

(dents) or, in the worst case, partially inverted structures with

self-intersecting planes. Second, as no dihedral angles are

restrained in this force field, the minimum geometry does not

correctly reproduce the convexity or planarity of calculated

geometries at DFT level of theory.

The former problem can be alleviated by adding a Coulomb

repulsive potential in the initial phase of the geometry

optimization,[21]

E5EHFF1ECoulomb5EHFF1
XN

i51

fCoulomb

j r!i 2 r!0j
(2)

with r!i 2 r!0 being the distance between vertex i and the bary-

center at r!0. fCoulomb can be chosen as large as necessary to

keep the fullerene cage in the right shape. Another more

robust as well as more challenging solution to this issue is, to

come up with an initial structure that is closer to the global

minimum, for example, by directly deriving the shape of the

ideal embedding from the graph.

As a solution to the second problem, we add a dihedral

angle term to the Wu force field (the result is denoted as

extended harmonic force field in the following, EHFF), which

enhances planarity in areas of connected hexagons and enfor-

ces convexity in areas of positive Gaussian curvature. In addi-

tion to improving the global minimum structure, the dihedral

angle term makes the force field more robust with respect to

converging to the global minimum.

The extended Wu force field takes three types of bonds (in

the ring fusion of 0, 1, or 2 pentagons), two types of angles,

and four types of dihedral angles into account. There is one

dihedral per atom that is uniquely defined with respect to the

three adjacent faces (Fig. 2). Dihedrals habcd are defined

between one atom a and its three neighbors b, c, and d. Note

that the connection a–b represents an edge in the graph,

while b–c and c–d do not. As one atom is part of three faces

(0, 1, 2, or 3 pentagons) there are four different types of dihe-

drals which differ in their respective zero value and force con-

stant as shown in Figure 2. In the case of mixed adjacent

faces, that is, vertex a being adjacent to one or two penta-

gons, vertex b is chosen to lie between the two equal faces, a

choice that is unique and symmetry preserving. Vertices c and

d are placed counter clockwise which leads to positive dihe-

dral angles at convex vertices. This definition requires the least

possible number of angle evaluations per vertex compared

with for example the usual definition of a torsional motion.

The total energy for the EHFF force field is given by
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where pp-e (hp-e, hh-e) denotes the number of edges adja-

cent to 2 (1, 0) pentagons, and ppp-v (hpp-v, hhp-v, hhh-v) is

the number of vertices adjacent to 3 (2, 1, 0) pentagons. If

required, the Coulomb repulsive potential in eq. (2) can be

added to this force field for the initial geometry optimization.

The force-field parameters are set as follows: Rhp51:458 Å

and Rhh51:401 Å are taken from an electron gas diffraction

study of C60,[41] which are close to the distances obtained

from X-ray diffraction measurements of solid C60 (Rhp51:455 Å

and Rhh51:391 Å).[42] Rpp 5 1.479 Å has been estimated from

PBE calculations on C50 and scaled with the experimental Rhp

and Rhh for C60. The angles in pentagons and hexagons have

been set to ap5108� and ah5120� under the assumption that

faces are planar. The dihedral angles hppp537:38�,

hhpp529:20�, hhpp523:49�, and hhhh50:0� have been

Figure 2. Unique and symmetry preserving layout of the four types of dihedral angles habcd, depending on the adjacent faces. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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calculated assuming planar faces and the above given bond

lengths. It is clear that for many fullerenes the optimized

structural parameters can deviate substantially from the ideal

ones given in this force field, for example, two neighboring

hexagons in carbon nanotubes are not in one plane. Never-

theless, the structures we obtain are rather accurate as we

shall see.

From the least squares fit to B3LYP frequencies of the vibra-

tional spectra of C50-C1(193), C60-Ih(1812) and C70-D5h(8149)

(numbering of the isomers stems from lexicographically ordered

face-spiral pentagon indices, see Ref. [3]), we obtain the follow-

ing force constants for the force field shown in eq. (3) (in N/m

or Nm/deg[2]): fpp5260:0; fhp5390:0; fhh5450:0; fp5100:0; fh5

100:0, fppp535:0; fpph565:0; fphh585:0; fhhh5270:0. The stretch-

ing and bending force constants are not too far away from the

original force-field parameters published by Wu et al.[12] or Ceu-

lemans et al.[16] Within the extended force field, frequencies are

obtained through analytical second derivatives. The (rms) devia-

tion of the fit Dxrms545:5 cm21 is relatively small considering

the fact that such a simple force field does not correctly

describe the coupling between the stretching, bending, and tor-

sional modes in terms of the correct normal modes.

Results and Discussion

The results of our EHFF and PBE calculations are shown in

Tables 1 and 2. Here, we only give the ideal point group of

the graph, which is reproduced by the force field, even

though a DFT geometry optimization may reduce the sym-

metry due to Jahn–Teller distortions (see for example the

discussion in Refs. [9,22]). The rms deviations listed for the

bond lengths, bond angles, and torsion angles show that

the EHFF performs well, especially if we consider that the

bond lengths have been fixed to experimental values (note

that the rms error for the bond distances can be consider-

ably reduced if we use distances closer to the PBE optimized

structure). The rms error is therefore predominantly caused

by the fact that the DFT optimized structures have bond

lengths with larger spreads. The smallest deviation is

observed for C60 as we expect from the near ideal spherical

geometry of this molecule. Moreover, if we compare the

zero-point vibrational energy, which we obtained at the

B3LYP level of theory for C50-C1(193) with 0.1667 eV/atom

(this isomer is not listed in Table 1), C60-Ih(1812) with 0.1705

eV/atom, and C70-D5h(8149) with 0.1711 eV/atom, we see

that these are in excellent agreement with the values

obtained from the general force field with 0.1681 eV/atom,

0.1685 eV/atom, and 0.1726 eV/atom, respectively. The force

field structures of the two largest isolated pentagon rule

(IPR) fullerenes C980-Ih and C980-I are shown in Figure 3 in

comparison with the PBE optimized structures. It is not easy

to spot differences between the two structures with the

naked eye, except perhaps for the curvature around the pen-

tagons. We conclude that our force-field optimized struc-

tures, which are computationally very efficient, are ideal to

be used as starting geometries for a more elaborate quan-

tum theoretical treatment.

Tables 1 and 2 also show the stability of the fullerenes

with respect to C60 according to the isodesmic reaction 1=60

EðC60Þ ! 1=N EðCNÞ (relative fullerene stability, RFS),

Table 1. Properties of selected fullerenes CN (N52012n; n‰N0nf1g) up to C60 (numbering of the isomers stems from lexicographically ordered face-spiral

pentagon indices, see Ref. [3]) from the EHFF and DFT (PBE) optimizations using a def2-TZVPP basis set for carbon.

N Isomer IPG RPBE
min REHFF

min RPBE
max REHFF

max DRrms Darms Dhrms APBE AEHFF DEPBE
RFS DEEHFF

ZPV

20 1 Ih 1.409 1.479 1.514 1.479 0.041 1.63 1.88 43.64 45.16 18.148 0.13977

24 1 D6d 1.373 1.460 1.530 1.481 0.054 1.28 1.91 54.66 55.82 15.710 0.14736

26 1 D3h 1.384 1.458 1.540 1.484 0.047 1.69 1.95 59.88 61.24 14.024 0.15020

28 2 Td 1.430 1.458 1.510 1.482 0.026 1.05 1.57 65.01 66.69 11.735 0.15261

30 3 C2v 1.368 1.406 1.524 1.485 0.034 1.86 3.04 70.16 71.77 10.350 0.15472

32 6 D3 1.384 1.406 1.503 1.482 0.036 1.48 2.69 75.37 77.08 8.369 0.15654

34 5 C2 1.389 1.403 1.503 1.483 0.033 1.62 2.67 80.66 82.21 8.029 0.15810

36 15 D6h 1.414 1.401 1.490 1.479 0.030 0.70 1.27 85.87 87.55 7.126 0.15949

38 17 C2 1.377 1.401 1.491 1.481 0.034 1.25 2.20 91.31 92.71 6.409 0.16072

40 38 D2 1.377 1.402 1.497 1.480 0.034 1.46 2.61 96.67 97.90 5.749 0.16184

42 45 D3 1.383 1.402 1.489 1.481 0.030 1.49 2.39 101.8 103.1 5.012 0.16284

44 75 D2 1.384 1.401 1.481 1.480 0.027 1.36 2.21 107.1 108.3 4.296 0.16368

46 109 C2 1.395 1.398 1.483 1.481 0.030 1.64 4.30 112.4 113.2 4.066 0.16522

48 171 C2 1.387 1.399 1.480 1.479 0.027 1.65 4.28 117.6 118.3 3.384 0.16587

50 271 D5h 1.395 1.401 1.468 1.474 0.021 1.01 1.71 122.8 123.9 2.526 0.16591

52 422 C2 1.389 1.399 1.480 1.479 0.031 1.94 5.57 128.2 128.5 2.512 0.16782

54 540 C2v 1.379 1.398 1.480 1.479 0.024 1.19 3.80 133.4 134.0 1.921 0.16766

56 916 D2 1.382 1.396 1.469 1.477 0.026 1.54 4.70 138.8 139.0 1.560 0.16877

58 1205 C3v 1.391 1.397 1.467 1.479 0.022 1.48 4.65 144.0 144.2 1.260 0.16911

60 1812 Ih 1.399 1.401 1.452 1.458 0.005 0.06 0.02 149.1 150.1 0.000 0.16851

Ideal point group symmetry IPG, smallest Rmin and largest Rmax bond distances, rms between the force-field and PBE calculated distances DRrms, bond

angles Darms and torsions between adjacent carbon atoms Dhrms (for the torsions a positive value implies a convex arrangement), surface area A in Å2,

the PBE total energy DEPBE
RFS per carbon atom relative to C60 in kcal/mol, and the force-field zero-point vibrational energy contribution DEEHFF

ZPV per carbon

atom in eV.
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DERFSðNÞ51=60 EðC60Þ21=N EðCNÞ (4)

where E(CN) is the total electronic energy obtained from the

DFT calculation. Figure 4 compares the different RFS energies.

It is clear that for N!1, we approach the graphene limit as

the size of planar hexagon sheets increase and the pentagons

become less relevant in this limit. An extrapolation to N!1
using all fullerenes shown in Tables 1 and 2 and a N21 law for

DERFSðNÞ (NB: the N21 law comes from the curvature term or

strain energy in fullerenes, for details see Refs. [19,43–46]),[9]

gives 28.06 kcal/mol at the PBE level of theory (and 28.42

kcal/mol at the B3LYP level of theory). However, the DERFSðNÞ
behavior is not strictly linear with N21. A linear extrapolation

for the DERFSðNÞ values using larger fullerenes with N � 500

gives DERFS528:64 kcal/mol at the PBE level of theory (29.22

kcal/mol at the B3LYP level of theory) in much better agree-

ment with the periodic boundary calculations listed in Table 3.

More importantly, Figure 4 supports Schleyer’s hypothesis that

fullerenes are not highly stable molecules,[6] there is no

“magic” stability of C60 compared with all the other fullerenes

and especially graphene.

The graph representing C60 has 90 edges, out of these only

one-third are double bonds (giving rise to 12,500 Kekul�e struc-

tures of which 158 are symmetry distinct).[47–49] Moreover, the

heat of formation cannot be simply derived from single and

double bond energy increments as there is an additional

repulsive curvature term from the 12 pentagons in the fuller-

ene, which is mainly responsible for the difference in stability

to graphene.[50] However, this curvature term approaches zero

as “spherical” fullerenes with pentagons separated as far as

possible from each other grow toward infinity (N!1). Such

fullerenes can be obtained as Goldberg–Coxeter transforma-

tions of C20, that is, GCk;l½C20�. This is the main reason why we

used this class of fullerenes (up to C980) to obtain the gra-

phene limit. For a recent interesting discussion on smooth

scaling of fullerene properties toward the graphene limit see

Lewis et al.[51]

In a recent paper by Radom and coworkers, the heat of for-

mation for C60 was calculated accurately to be 602.7 kcal/

mol,[52] which translates into 10.0 kcal/mol per carbon atom.

This value is already in very good agreement with our PBE or

B3LYP graphene limit value (mean value between both levels

Table 2. Properties of selected fullerenes CN for N � 60 (numbering of the isomers stems from lexicographically ordered face-spiral pentagon indices up

to C100, see Ref. [3], otherwise the Goldberg–Coxeter symbols (k, l) are given) from the EHFF and DFT (PBE/def2-SVP) optimizations.

N Isomer IPG RPBE
min REHFF

min RPBE
max REHFF

max DRrms Darms Dhrms APBE AEHFF DEPBE
RFS DEEHFF

ZPV

60 1812 Ih 1.407 1.401 1.457 1.458 0.004 0.06 0.03 150.3 150.1 0.000 0.16851

70 8149 D5h 1.402 1.395 1.474 1.461 0.022 2.06 6.38 177.1 174.9 20.875 0.17262

72 11190 D6d 1.390 1.395 1.470 1.468 0.029 1.69 5.23 182.5 179.8 20.476 0.17341

74 14246 D3h 1.397 1.397 1.476 1.463 0.026 2.20 7.30 187.9 184.8 20.913 0.17394

76 19150 D2 1.395 1.392 1.476 1.466 0.029 2.37 6.95 193.2 189.8 21.039 0.17456

76 19151 Td 1.396 1.398 1.477 1.461 0.028 2.28 7.84 193.3 189.8 20.900 0.17453

78 24105 D3 1.393 1.392 1.474 1.463 0.032 2.51 7.01 198.5 194.8 21.222 0.17512

78 24107 C2v 1.385 1.397 1.476 1.464 0.029 2.53 7.88 198.6 194.8 21.087 0.17509

78 24108 D3h 1.369 1.396 1.472 1.464 0.033 2.26 6.43 198.6 194.7 21.175 0.17521

78 24109 D3h 1.382 1.398 1.474 1.461 0.029 2.47 8.35 198.6 194.8 20.897 0.17511

80 31924 Ih 1.424 1.401 1.458 1.457 0.027 2.35 8.80 204.0 199.7 20.979 0.17562

92 126409 T 1.387 1.395 1.474 1.460 0.037 2.94 8.72 236.1 229.7 21.681 0.17841

100 285880 C2v 1.376 1.370 1.474 1.468 0.041 3.24 8.08 257.3 249.9 22.121 0.17991

140 (2, 1) I 1.404 1.387 1.461 1.467 0.046 4.31 8.62 364.0 351.0 23.770 0.18432

180 (3, 0) Ih 1.401 1.373 1.457 1.473 0.050 3.89 6.72 470.7 452.8 24.708 0.18686

240 (2, 2) Ih 1.399 1.385 1.452 1.473 0.045 3.64 5.75 630.2 605.3 25.577 0.18895

260 (3, 1) I 1.402 1.384 1.459 1.474 0.045 3.31 5.12 683.5 656.3 25.475 0.18951

320 (4, 0) Ih 1.399 1.385 1.455 1.474 0.043 2.78 4.40 843.1 809.2 25.964 0.19060

380 (3, 2) I 1.399 1.387 1.454 1.472 0.041 2.59 4.12 1002.7 961.9 26.356 0.19131

420 (4, 1) I 1.400 1.388 1.448 1.472 0.039 2.35 3.89 1109.0 1063.9 26.594 0.19177

500 (5, 0) Ih 1.401 1.387 1.447 1.471 0.038 2.07 3.62 1324.4 1267.7 26.800 0.19238

540 (3, 3) Ih 1.400 1.386 1.445 1.470 0.037 2.01 3.52 1428.3 1369.5 27.019 0.19263

560 (4, 2) I 1.401 1.387 1.445 1.470 0.037 1.96 3.45 1481.5 1420.5 27.002 0.19271

620 (5, 1) I 1.401 1.387 1.445 1.469 0.036 1.83 3.35 1641.2 1573.4 27.152 0.19305

720 (6, 0) Ih 1.401 1.386 1.441 1.469 0.035 1.70 3.16 1907.1 1828.2 27.386 0.19341

740 (4, 3) I 1.401 1.385 1.444 1.469 0.035 1.68 3.09 1960.4 1879.1 27.397 0.19346

780 (5, 2) I 1.401 1.385 1.441 1.469 0.035 1.64 3.04 2066.8 1981.0 27.489 0.19359

860 (6, 1) I 1.402 1.384 1.443 1.468 0.035 1.55 2.93 2279.7 2184.9 27.764 0.19382

960 (4, 4) Ih 1.401 1.383 1.440 1.468 0.034 1.49 2.77 2545.7 2439.8 27.718 0.19401

980 (5, 3) I 1.402 1.383 1.443 1.469 0.033 1.48 2.75 2599.0 2490.7 27.712 0.19405

980 (7, 0) Ih 1.401 1.383 1.442 1.468 0.034 1.47 2.77 2599.0 2490.7 27.709 0.19405

1 – – 1.425 1.401 1.425 1.401 0.024 0 0 – – 28.863[a] 0.196[b]

[a] See Table 3 for graphene data. [b] The ZPV energy contribution of graphene is the extrapolated value from the fullerene data. Ideal point group

symmetry IPG, smallest Rmin and largest Rmax bond distances, rms error between the force-field and PBE calculated distances DRrms, bond angles Darms

and torsions between adjacent carbon atoms Dhrms (for the torsions a positive value implies a convex arrangement), surface area A in Å2, the PBE total

energy DEPBE
RFS per carbon atom relative to C60 in kcal/mol, and the force-field zero-point vibrational energy contribution DEEHFF

ZPV per carbon atom in eV.
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of theory is 8.9 6 0.3 kcal/mol which is in the range of values

listed in Table 3). Taking into account the small Van der Waals

interactions between the graphene sheets in graphite (11.5

kcal/mol)[53] and differences in zero-point vibrational energy

between C60 and graphene (20.63 kcal/mol, see discussion

below), and neglecting finite temperature effects, we arrive at

a heat of formation for C60 of 596 6 20 kcal/mol in excellent

agreement with the value by Radom and coworkers or with

the NIST recommended value of 612 6 24 kcal/mol.[54,55] Note

that already in 1996 Dunlap and Boettger discussed the gra-

phene limit for fullerenes by LDA calculations.[19] In another

study, Dunlap and Zope obtained an enthalpy of formation

of 594 kcal/mol for C60 using an Xa approximation (with an

a-value of 0.64190).[20]

Turning to the zero-point vibrational energy DEZPV, which

we obtain from our force-field calculations, we see from Figure

5 that for the larger IPR fullerenes, DEEHFF
ZPV follows an almost

perfect linear trend with respect to N21 for C60 onwards. In

fact, the fullerenes with adjacent pentagons also follow a lin-

ear trend, but different to the isolated pentagon fullerenes.

From the latter we can extrapolate the harmonic zero-point

vibrational energy contribution for graphene as 0.196 eV

per carbon atom. This value should be rather accurate as the

Figure 3. Force-field (left) and PBE optimized (right) structures of C980-I (top) and C980-Ih (bottom). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 4. DEPBE
RFS for the fullerenes as listed in Tables 1 and 2 plotted against

N21. For the PBE functional the graphene limit is shown (see Table 3), and

for C60 onwards B3LYP results are also shown.
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DEEHFF
ZPV values for C50, C60, and C70 were in good agreement

with the PBE results as already discussed. This value is of the

right order and can also be deduced from calculated phonon

dispersion curves and experimental Raman frequencies for gra-

phene.[56] Even though the phonon dispersion curves are

known rather accurately,[56–58] we only found one publication

using a semiempirical approach for the zero-point vibrational

energy including anharmonicity effects, which gave a value

of 0.165 eV per carbon atom somewhat below our extrapo-

lated value.[59] Another value (0.181 eV) comes from PBE cal-

culations of graphite,[60] which should be close to the

graphene value.

Summary and Conclusions

We have implemented a general force field as part of the pro-

gram Fullerene,[21] which works for all fullerenes. Structure opti-

mizations show that geometries obtained from this force field

are in excellent agreement with those obtained from DFT. This

force field is easily extendable to more general polyhedral

structures. Isodesmic reaction energies DERFS compared with

C60-Ih for Goldberg–Coxeter fullerenes were used to extrapo-

late to the graphene limit. The extrapolated DERFS graphene

value was used to obtain the heat of formation of C60, which

is in very good agreement with the more accurate value pub-

lished by Radom and coworkers.[52] The force constants of the

general force field were adjusted to the vibrational spectrum

of three selected fullerenes, which gives rather accurate values

for the zero-point vibrational contribution DEEHFF
ZPV . Extrapola-

tion to the graphene limit allows to obtain the DEEHFF
ZPV value

for graphene, which is in reasonable agreement with estimates

from phonon dispersion calculations.
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