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Various single elements form incommensurate crystal structures
under pressure, where a zeolite-type “host” sublattice surrounds
a “guest” sublattice comprising 1D chains of atoms. On “chain
melting,” diffraction peaks from the guest sublattice vanish, while
those from the host remain. Diffusion of the guest atoms is
expected to be confined to the channels in the host sublattice,
which suggests 1D melting. Here, we present atomistic simula-
tions of potassium to investigate this phenomenon and demon-
strate that the chain-melted phase has no long-ranged order
either along or between the chains. This 3D disorder provides
the extensive entropy necessary to make the chain melt a true
thermodynamic phase of matter, yet with the unique property
that diffusion remains confined to 1D only. Calculations necessi-
tated the development of an interatomic forcefield using machine
learning, which we show fully reproduces potassium’s phase dia-
gram, including the chain-melted state and 14 known phase
transitions.

potassium | high pressure | incommensurate | chain melting |
machine learning

Melting can be defined in many ways: inability to sustain
shear, disappearance of long-range order, internal flow

of particles, or transition to a condensed state with lower free
energy than any crystal. The molten state can coexist with
the solid, normally by spatial separation, but in some unusual
states of matter, interpenetration of two macroscopic compo-
nents occurs, creating a single phase. Superfluid He is one
example, with a Bose condensate coexisting with “normal” liq-
uid. Another example is the superionic state (1–4), where the
lighter sublattice of a solid loses long-range order and diffuses
freely in three dimensions like a charged liquid, while the heavier
sublattice remains crystalline. In the high-pressure phases of
many metals, a subset of certain Bragg peaks disappear on
heating: a phenomenon described as “chain melting,” the
inverted commas indicating ongoing uncertainty as to whether
this is a transition to another new phase of matter (5–7); a
similar phenomenon is seen in some compounds at ambient
pressure (8, 9).

The elemental phases that show this behavior are incommen-
surate host–guest (HG) structures—perhaps the most striking
manifestation of the alkali elements’ departure from the sim-
ple metal picture under compression (5, 10–22), and also seen
in various other elements under pressure (23–27). HG structures
(see Fig. 1) consist of two sublattices with 1D atomic “guest”
chains located in channels within a zeolite-type “host” structure.
They have been observed for sodium (>125 GPa), potassium
(20 GPa), and rubidium (17 GPa), with further complex phases
appearing at higher pressure. The host structure is identical in
all three, but the guest lattices are different: sodium’s is mono-
clinic, whereas potassium’s and rubidium’s are tetragonal, with
different symmetries. Common features of HG structures are
the formation of relatively large crystals through recrystallization
and a drop in reflectivity (14, 28, 29).

When HG structures are heated, diffraction peaks from the
guest sublattice can disappear, the signature of chain melting.
The conventional melting line also has a minimum around the
pressures where the HG and other electride phases (with valence

electrons localized in interstitial space) exist. Exactly how the
atoms move in the chain-melted phase is unclear. The diffrac-
tion data could be explained by chains losing long-range 1D
order along their length, by 2D disorder with chains sliding
independently along the c direction, by 3D disorder with both
these processes occurring, or even by superionic diffusion of the
former guest atoms between chains in 3D.

Although the chain melting has been described as low-
dimensional (6), potassium occupies all three dimensions, so the
thermodynamic situation is different from 1D and 2D model
systems. Purely 2D melting (30, 31), such as the XY model
or 1D transitions, which tend to be nonequilibrium (32), bal-
ance energy and entropy, which are both extensive. For the
HG structures, however, if only correlation between chains is
lost, the per-atom energy cost will always outweigh the per-
chain entropic term in the thermodynamic limit. Similarly, if
order is only lost along chains, the 3D per-atom energy cost
will outweigh the 1D entropy. So the chain melt can only
be a thermodynamic phase of matter if order is lost both
along and between chains simultaneously. This cannot be unam-
biguously determined from the loss of diffraction peaks, and
accurate calorimetry is impossible at these temperatures and
pressures.

Thus, it remains unclear whether the chain-melted phase is
thermodynamically stable. In this work, we address this issue
by using a variety of simulation methods to investigate the

Significance

Several elements form host–guest structures under pres-
sure. Upon heating, the guest atoms can “melt,” while the
host atoms remain crystalline. In this partially molten state,
the “molten” guest atoms remain confined to 1D chan-
nels, which suggests thermodynamically impossible 1D melt-
ing. The complicated crystal structures, with incommensurate
ratios between host and guest atoms, prohibit simulations
with electronic structure methods. We develop here a clas-
sical interatomic forcefield for the element potassium using
machine-learning techniques and simulate the chain-melted
state with up to 20,000 atoms. We show that in the chain-
melted state, guest-atom correlations are lost in three dimen-
sions, providing the entropy necessary for its thermodynamic
stability.

Author contributions: G.J.A. and A.H. designed research; V.N.R., H.Z., and G.W. per-
formed research; H.Z. contributed new reagents/analytic tools; V.N.R., H.Z., G.J.A., G.W.,
and A.H. analyzed data; and V.N.R., H.Z., G.J.A., G.W., and A.H. wrote the paper.y

The authors declare no conflict of interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y

Data deposition: Data reported in this paper have been deposited on The University of
Edinburgh repository, https://datashare.is.ed.ac.uk/handle/10283/3300.y
1 V.N.R. and H.Z. contributed equally to this work.y
2 To whom correspondence may be addressed. Email: a.hermann@ed.ac.uk or zonghust@
mail.xjtu.edu.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1900985116/-/DCSupplemental.y

www.pnas.org/cgi/doi/10.1073/pnas.1900985116 PNAS Latest Articles | 1 of 6

https://www.pnas.org/site/aboutpnas/licenses.xhtml
https://datashare.is.ed.ac.uk/handle/10283/3300
mailto:a.hermann@ed.ac.uk
mailto:zonghust@mail.xjtu.edu
mailto:zonghust@mail.xjtu.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900985116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900985116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1900985116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1900985116&domain=pdf&date_stamp=2019-04-11


Fig. 1. (Upper) Top view of the incommensurate HG structure K-III. Yel-
low (cyan) spheres denote the host (guest) atoms. (Lower) Guest symmetries
for the IIIa, IIIb, and Rb-IV structures labeled a, b, and IV, respectively. Cyan
(purple) guest atoms are at z = 0 (z = cg/2).

dimensionality of chain melting in the HG phases with respect
to the atomic motion, correlation, and disorder. The nontrivial
electronic structure of the HG phases, with their partial electride
nature, suggests that first-principles descriptions are required.
These, however, severely limit the size of the melting simulations.
To overcome the finite size effects, we use machine learning to
train a classical atomic interaction potential, which we then use
to study the chain-melted state, but which also describes the rest
of potassium’s phase diagram very well. Recent developments
in X-ray diagnostics of dynamic compression experiments allow
confirmation of HG phase formation on the nanosecond time
scale; (7) atomistic simulations of the shock propagation through
such a material rely on a potential that is transferrable across all
relevant phases (33–37).

Potassium as an Exemplar System
In diamond anvil cell experiments, potassium under compres-
sion transforms, like other simple metals, from body-centered
cubic (BCC) to face-centered cubic (FCC). Above 19 GPa,
these simple structures become unstable against highly com-
plex structures. The first of these, K-III, is the HG phase. At
higher pressures, potassium transforms further to a sequence
of electride structures (17, 38). The HG structure K-III itself
has two phase transformations (K-IIIa → K-IIIb → K-IIIa)
within the guest structure alone (19). Potassium enters the
tetragonal K-IIIa structure at 20 GPa at room temperature,
with all guest chains perfectly aligned along the c axis, forming
the simplest of the HG structures. At 30 GPa, K-IIIa trans-
forms to K-IIIb, where every other chain along the a axis is
shifted by half the guest atom spacing, in a striped formation,
thus doubling the guest unit cell. A related structure, Rb-IV,
shifts the chains in a checkerboard fashion, also doubling the
unit cell. Fig. 1 sketches the chain alignments in the differ-
ent structures. At 38 GPa, the K-IIIa structure reenters the

phase diagram and at 54 GPa K-III is succeeded by the oP8
structure (38).

At room temperature, the relative guest-chain positions are
well correlated throughout the crystal, evidenced by the diffrac-
tion spots for the guest structures IIIa and IIIb. Upon heating,
the guest X-ray diffraction peaks have been observed to become
diffuse (6), signaling a loss of long-range order. The loss of the
guest diffraction peaks has been mapped out experimentally on
heating and cooling and associated with so-called chain melting
where the interchain position becomes uncorrelated. However,
the atomic-level nature of the higher-temperature phase is not
fully understood. The full melt line for the HG structure has also
not yet been determined either in experiment or calculation.

The ground-state energetics of potassium’s phases is well
described by density functional theory (DFT). The delicate fea-
tures of the K-III phases in particular have been discussed
in detail recently (22), with the incommensurability treated
by interpolation between rational approximant models for the
HG axial ratio. The energetics showed incommensurate HG
c-axis ratios ch/cg between 1.60 and 1.67 for the most sta-
ble forms of the HG structure and reproduced its pressure
dependence, including a turnover of the HG axial ratio and
the reentrant stability of K-IIIa (19). Static calculations imply
that at intermediate pressures, the Rb-IV structure, and not
K-IIIb, is most stable. However, including vibrational zero-
point energies and entropies within the harmonic approxima-
tion reverses their energetic order and stabilizes K-IIIb, in
agreement with the experimental situation (see SI Appendix
for details).

This work provides a suitable starting point for molecular-
dynamics (MD) simulations, with a particular focus on phase
transitions in the HG structure’s sublattices. However, although
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Fig. 2. Forcefield simulated phase diagram of potassium. Each datapoint
represents an MLMD NVT calculation initialized in the shown phase at 200
K and the corresponding DFT density and then heated. Symbols distinguish
the various phases: Each simulation was repeated several times, and dou-
ble symbols indicate where the final phase was ambiguous. Colored regions
refer to the simulated region of stability for each phase; a solid black line
is the melting line obtained from the simulations. Chain melting was deter-
mined by the loss of correlation between chains (text). Experimental phase
boundaries for melting (dashed line), chain-melting (dotted), and solid–solid
phase transitions (dash-dotted) are taken from ref. 6.
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Fig. 3. DFT potential energy surface for sliding adjacent guest chains in K-
III, anchored at z1 and z2, respectively, by one unit of cg, in appropriately
doubled unit cells. Both the transitions from K-IIIa to the stripe pattern of
K-IIIb and the checkerboard pattern of Rb-IV were calculated—these struc-
tures correspond to relative displacements (z1− z2)/cg of 0.5, while K-IIIa
corresponds to 0.0 or 1.0. For incommensurate structures, the actual value
of z1 is irrelevant. The forcefield model produces similar results.

DFT describes the energetics correctly, it is too computation-
ally demanding to reliably study long-range correlations, longer
timescales, and thermodynamic phase stability. These challenges
can be overcome with model forcefields of sufficient accuracy.
Since HG phases appear at high pressures and temperatures, the
demands on the forcefield are considerable: to capture the full
phase diagram of potassium up to 60 GPa, reproducing phase
stabilities (of phases with quite different electronic characters),
phase transitions, HG chain dynamics and melting, and the melt
line. However, these are all structural transitions defined by the
atomic positions, and so an interatomic forcefield is well suited
for this task. We therefore first produced a set of ab-initio MD
(AIMD) trajectories in the constant number of particles, vol-
ume, and temperature (NVT) ensemble up to P ≈ 60 GPa and
T = 1,500 K—see the SI Appendix for details of the calculations
and the resulting phase diagram. We then used this database to
develop a machine-learned interatomic forcefield (Methods and
SI Appendix). This allowed for machine-learned MD (MLMD)
with fully converged statistics (39). The forcefield was validated
by using MLMD in the NVT ensemble to calculate the (P, T)
phase diagram of potassium up to 50 GPa and 1,000 K. The
agreement with experiment, including all observed phases and
the melting-curve maximum and minimum (40), is remarkable
(Fig. 2).

Between 0 and 20 GPa, we use the forcefield to find the solid–
solid phase transition between BCC and FCC, by starting from
FCC and heating in MD. The model also reproduces the melting
line’s distinct features, with a maximum and subsequent mini-
mum, at very similar pressures to those seen in experiment, and
slightly higher temperatures. Such slight superheating is typical
of our method of heat-until-it-melts.

Above 20 GPa, the K-IIIa phase is stable and the melting line
steeply increases, in line with experimental data. Single-phase
simulations started in FCC or K-IIIa remained in their initial
structure, indicating that this transformation is kinetically dif-
ficult; however, the phase boundary can be mapped by using
phase-coexistence calculations.

Between 20 and 44 GPa, the simulations found either the
K-IIIa or -IIIb structure at low temperatures, although the
IIIa→IIIb→IIIa transition pressures (26, 34 GPa) are slightly
lower than seen in the room-temperature experiment (30, 38
GPa). This pressure difference is also observed in static DFT
(22) and may represent experimental hysteresis since the exper-

iments were done by increasing pressure. Curiously, the AIMD
simulations in the intermediate-pressure range (28 GPa in par-
ticular) settle into the Rb-IV guest structure, likely due to finite
size effects and limited simulation time, whereas the MLMD
simulations, trained on these AIMD data, instead produce the
K-IIIb structure—in agreement with experiment and vibrational
entropy considerations. At higher temperatures, simulations
starting in IIIa or IIIb exhibit chain melting, closely following the
experimental situation. It is possible that varying the HG ratio
may alter this transition pressure and chain-melting temperature.
Further heating produces a fully molten liquid at ∼780 K at 36
GPa. The initially very steep melting line of K-III flattens out
considerably at pressures >32 GPa, so much so that our data
cannot rule out a second melting maximum, before the melting
line of the oP8 structure increases again.

Above 40 GPa, simulations settled in the stable phase of IIIa
or oP8, with a transition pressure between the two at∼45 GPa at
T = 300 K. The direct transformation between IIIa and oP8 was
observed in MLMD. This is again slightly lower than the experi-
mental pressure of between 50 and 55 GPa (41) and higher than
the static calculation result of 39 GPa; however, the simulated
data achieve the correct Clapeyron slope, calculated from the
latent heat and volume differences in the ground state.

The guest-structure transitions can be probed by sliding adja-
cent guest chains against each other to produce the K-IIIa, -IIIb,
or Rb-IV structures. Fig. 3 shows the energy cost (or gain)
involved in transforming IIIa to either IIIb or Rb-IV, and back,
as determined from DFT. This shows that the K-IIIa struc-
ture is preferred at both low and high pressures. The Rb-IV
structure becomes favored at ∼25 GPa and remains thus until
∼33 GPa. The K-IIIb structure, meanwhile, is almost ener-
getically degenerate with K-IIIa at ∼30 GPa. If chain melting
were related to loss of order between chains only, the chain-
melting temperature should correlate with the energy barriers
shown in Fig. 3. In particular, chain melting should happen
at very low temperatures at ∼26–30 GPa, where the energy
cost to slide chains against each other almost vanishes. This
is not what is seen in experiment or in our calculations, and
we will explore the nature of the chain-melted phase in more
detail now.

The Chain-Melted Phase
We simulated the HG phase with MD using both AIMD and
MLMD forces, with a particular focus on flow and decorrelation
within the guest structure. At low temperatures, guest chains are
ordered with a certain pressure-dependent symmetry (IIIa and
IIIb). However, the guest lattices in K-III are incommensurate
with the host, so they should be able to move relative to the
host lattice with no energy penalty, producing a zero-frequency
phonon mode (42). In Fig. 4, we show that, even at 200 K, well
below the chain-melting temperature at 40 GPa, the guest atoms
do indeed slide freely along the c direction. However, both host
and guest structures remain solid; the guest lattice in particular

Fig. 4. Side view of K-IIIa at 40 GPa and T = 200 K. (A) The initial AIMD
setup. (B) The final positions after 5.9 ps.
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Fig. 5. Normalized chain-correlation function σxy (r, z) from MLMD simula-
tions at 28 GPa, for the solid at T = 200 K (Upper) and the chain melt at 500
K (Lower), where r and z refer to separation in the xy plane and along the
z axis, respectively. See legends on the sides for color scheme, which ranges
from σxy = 0 (red) to σxy = 1 (purple). The solid has well-defined peaks and
thus long-range order both in-plane and along the chains; the peak pattern
has the signature of K-IIIb (compare SI Appendix, Table S2 and Fig. S3).

retains intrachain and interchain correlations (see also Movie
S1). A standard measure of melting, the mean squared displace-
ment of atoms, already diverges well below the chain-melting
line. Instead, to detect and describe the chain-melting transi-
tion, and to discern between K-IIIa, -IIIb, and Rb-IV, we define
spatial-correlation functions along chains, σz (z ), and between
chains, σxy(r , z ); see Methods for details.

For a solid guest lattice, both σz and σxy should show
long-range order along z and perpendicular, along r . Above
the chain-melting transition, σxy will detect loss of order
between chains and σz loss of order along chains. More-
over, σxy(r , z ) can distinguish between the solid K-IIIa phase
on one hand (where peaks appear at z =n · cg) and the K-
IIIb or Rb-IV structure on the other hand [where peaks are
also at z =(n + 1

2
)cg ].

In Fig. 5, we show σxy(r , z ) from MLMD simulations at 28
GPa and two different temperatures. At 200 K, the guest struc-
ture is solid, and the peak positions in σxy are consistent with
the K-IIIb structure (see SI Appendix for simulations of σxy for
the different guest structures). At 500 K, the peaks along z have
vanished, indicating loss of correlation between guest chains.
Lines along r remain, as chain atoms remain confined to their
respective host channels.

In Fig. 6, we show the radially integrated correlation func-
tion 〈σxy(z )〉=

∫∞
0
σxy(r , z )dr at 22, 28, and 40 GPa, and the

intrachain correlation function σz (z ) at 40 GPa. The former
illustrates how the chain melt can be clearly seen in the loss of
interchain correlation. For σz , any practical ab-initio simulation
shows order throughout the supercell. However, the MLMD sim-
ulation allowed us to simulate chains of lengths up to 100 atoms.

Fig. 6 shows long-range oscillatory order for σz at low temper-
atures, but exponentially decaying short-range order above the
chain-melting temperature. This shows that, in the chain-melted
state, there is short-ranged order along the chains with a range
greater than any ab-initio supercell size, and also much longer
than the interchain correlation length, but that the long-range
behavior is uncorrelated disorder. The simulations have a fixed
number of atoms per chain, but a variable number would only
enhance the disorder.

One characteristic of a normal liquid is the loss of shear
rigidity. In MD, this can be measured from the stress–strain
relation, from stress fluctuations, or from strain fluctuations. In
the chain-melted phase, the first two methods give the com-
bined rigidity of the host and guest; however, strain can be
defined and measured independently on each sublattice. We
find divergent strain fluctuations, as measured by mean-squared
atomic displacement in the z direction. The shear rigidity within
the guest lattice is lost, but only along the z direction. Thus,
atoms can flow freely through the chain melt, but only in one
direction.

Conclusions
We investigated chain melting in potassium as an exemplar for
other chain-melted materials and for behavior of other HG
materials under pressure. We demonstrate that the chain melt is
a novel phase of matter. The chain-melt phase is unlike a normal
liquid since one sublattice remains ordered. It is unlike superi-
onic matter because of the unique property that, while liquid-like

Fig. 6. (Upper) Interchain correlation 〈σxy (z)〉 at various T and P. Phase
IIIa is indicated by peaks at integer multiples of cg. Phase IIIb (or Rb-IV)
has additional peaks at half-integer values. The chain melt has no peaks in
the correlation function. (Lower) Correlation σz(z) along the chains, show-
ing long-range oscillatory order at 250 K (blue) and exponentially decaying
short-ranged order at 750 K (red).
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atomic diffusion occurs, exchange of particles between chains is
impossible.

The phase diagram of potassium was investigated up to 60
GPa and 1,000 K by using AIMD and MLMD methods. As
expected, the ab-initio results reproduce the experimental low-
temperature stability and for the incommensurate HG phase
showed free motion and disordering of the guest chains in
2D in small cells at finite temperature. The classical forcefield
has only atomic degrees of freedom, while the electride phases
have non-atom-centered electrons. Nevertheless, the forcefield
was also able to describe the entire phase diagram, including
multiple phases, melting, and chain melting across the entire
relevant phase space. Moreover, it enabled large enough sim-
ulations, which proved the intrachain disorder and thus the
thermodynamic stability of the chain-melt phase.

The agreement with known experimental phase behavior
means that the simulations can reliably extend the existing exper-
imental data. They suggest a considerable flattening of potas-
sium’s melting line at high pressure about the HG phases and
a transformation from K-IIIb to the Rb-IV structure at low tem-
perature. The MLMD simulations enabled us to eliminate finite
size effects and to detect diffusion and loss of long-range order
of periodicity in any direction in the chain-melt phase. We have
thus proved that the chain melt involves fully 3D disorder of the
guest sublattice and is therefore a true thermodynamic phase and
a unique state of matter.

Methods
DFT calculations used the CASTEP code (43). We used generalized-gradient
approximated exchange correlation (44) and a nine-electron ultrasoft pseu-
dopotential with 1.7-Å inner-core radius and 400-eV plane wave cutoff with
k points sampled at the Γ point only in AIMD and with a grid density of
0.02 Å−1 in structure optimization.

Constrained Guest-Structure Optimizations. The calculations of the guest-
lattice potential energy surface involve energy minimization under the
constraint of fixing the positions of two guest atoms in neighboring chains
at z1 and z2. We then varied the offset (δ : 0→ 1 = (z1− z2)/cg), relaxing all
other (host and guest) atoms for each value of δ.

AIMD. Simulations ran at fixed density with a Nose–Hoover thermostat,
using up to 192 atoms for K-IIIa with a 0.75-fs timestep, Berendsen equi-
libration for 1 ps, and up to 10-ps sampling. To simulate the entire (P, T)
phase space, AIMD simulations of potassium were performed by using 128-
atom supercells for BCC (1, 3, and 6 GPa), 108-atom FCC (9 and 12 GPa),
116-atom K-III using a 15 h-9 g (1.67) approximant (20, 22, 24, 40, and 50
GPa) and 8 h-5 g (1.60) approximant at 28 GPa, and 96-atom oP8 (40, 44, 50,
and 56 GPa). AIMDs were run from T = 200 K in steps of at most 200 K up to
T = 1,500 K.

Machine Learning the Forces. In practice, interatomic forcefields are based
on some functional form appropriate to the bonding, which may vary from
phase to phase. This makes it very unusual for a single forcefield to cor-
rectly describe multiple phases. Here, the forcefield is trained by using
the AIMD forces from four phases and atom-centered symmetry function
descriptors (or fingerprints) of the local chemical environment (45, 46).
Three types of descriptors are used: pairwise, three body, and local density.

These descriptors are mapped into the corresponding atomic forces with the
kernel ridge regression (KRR) method, capable of handling complex nonlin-
ear relationships (47). KRR works on the principle of similarity, wherein the
µ component of the atomic force on atom i is given by an average over
the reference configurations (t), weighted by their similarity to i. We use a
Gaussian kernel

Fµ
i =

N∑
t

αt·e
(−
‖Vµ

i −Vµ
t ‖

2∗σ2 )
, [1]

where t labels each reference atomic environment and Vµ
t is its corre-

sponding fingerprint. αt and σ are the weight coefficients and length-scale
parameter, respectively. The optimal values for αt and σ are determined
during a training process involving cross-validation and regularization meth-
ods, using the full set of AIMD data. The forcefield (Eq. 1) was then
integrated into the LAMMPS code (48) for the MLMD simulations.

MLMD. The simulations were performed by using periodic boundary condi-
tions and a time step of 1 fs. To reproduce the entire temperature–pressure
phase diagram, the MLMD simulations of K were conducted by including
16,000-atom supercells for BCC (1–10 GPa), 16,384-atom FCC (12–20 GPa),
1,536-atom K-III using a 15 h-9 g (1.67) approximant (20–24 and 34–44 GPa)
and 8 h-5 g (1.60) at 26–32 GPa, and 360-atom oP8 (44–50 GPa) and were
run from T = 200 K to T = 900 K.

As for the correlation-function calculation, the interchain correlation
〈σxy〉was calculated based on 1,536-atom K-III supercells; the intrachain cor-
relation σz at 40 GPa (Fig. 6) used 2,320-atom supercells with two chains; and
the 2D chain correlation function σxy at 28 GPa (Fig. 5) was obtained from a
supercell with 20,736 atoms and 144 chains.

For each simulation, the K sample was generated at the appropriate den-
sity and held at selected temperatures with NVT annealing for up to 50,000
steps.

The chain structure can be monitored by using the chain correlation
functions σz(z) and σxy (r, z).

σz(∆z)≡
〈∑

n

∑
i 6=j

δ(zni − znj −∆z)

〉
,

is the correlation function between the z coordinates of atoms within the
same chain (n numbers the chain in the simulation box, and i, j atoms within
the n-th chain). Likewise,

σxy (∆r, ∆z)≡
〈∑

n 6=m

∑
i,j

δ(zni − zmj −∆z)

δ

(√
(xni − xmj)2 + (yni − ymj)2−∆r

)〉
,

is the correlation function between atoms in different chains: n and m are
indices of the chains, and i and j label the guest atoms within the n-th and
m-th chain.
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