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The many-body expansion of the interaction potential between atoms and molecules is analyzed in detail for
different types of interactions involving up to seven atoms. Elementary clusters of Ar, Na, Si, and, in particular,
Au are studied, using first-principles wave-function- and density-functional-based methods to obtain the indi-
vidual n-body contributions to the interaction energies. With increasing atom number the many-body expansion
converges rapidly only for long-range weak interactions. Large oscillatory behavior is observed for other types
of interactions. This is consistent with the fact that Au clusters up to a certain size prefer planar structures over
the more compact three-dimensional Lennard-Jones-type structures. Several Au model potentials and semi-
empirical PM6 theory are investigated for their ability to reproduce the quantum results. We further investigate
small water clusters as prototypes of hydrogen-bonded systems. Here, the many-body expansion converges
rapidly, reflecting the localized nature of the hydrogen bond and justifying the use of two-body potentials to
describe water-water interactions. The question of whether electron correlation contributions can be success-
fully modeled by a many-body interaction potential is also addressed.
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I. INTRODUCTION

A wide variety of analytical two-body potentials is avail-
able for the interaction between atoms or molecules �1,2�, the
most successful and widely used being the Lennard-Jones
�LJ� potential �3�. Despite the success of the LJ potential in
simulating clusters, liquids, solids, and corresponding phase
transitions, the question always arises whether higher-order
energy contributions can be neglected—that is, whether the
many-body expansion

E�N� = �
n

En�N� = �
i�j

Eij�2� + �
i�j�k

Eijk�3� + ¯ �1�

converges rapidly. Here En�N� are the individual n-body con-
tributions in a cluster of N interacting subsystems.

It is well known that for interactions between rare gas
atoms, the three-body term is relatively small—i.e., a few
percent of the two-body term around the equilibrium dis-
tance for the rare gas trimer �4�. However, the number of
three-body terms scales as N3 whereas the two-body contri-
butions scale as N2. This implies that, for large clusters or
solids, three-body contributions may be significant. For ex-
ample, for the fcc solid phase of Ar, the cohesive energy
changes from 692 to 645 cm−1 upon inclusion of the three-
body term in Eq. �1� �5�. Three-body forces in rare-gas solids
become especially important at short distances as in the high-
pressure regime �6�. The scaling behavior also implies that

each nth-order term in Eq. �1� should be at least one order of
magnitude smaller than the corresponding �nth-1�-order term
to assure convergence. While this is largely fulfilled for rare-
gas atoms, it is highly questionable for other systems �4�.

Two-body interactions like the LJ or Morse potential �7�
favor compact cluster structures; i.e., they optimize the num-
ber of connections or bonds between atoms. For any physi-
cally sensible potential one therefore obtains an ideal triangle
for the interaction between three atoms and an ideal tetrahe-
dron for the interaction between four atoms. Jahn-Teller dis-
tortions, such as those found for Na3, Au3, and Au4 �8�, are
direct evidence for the importance of three- or higher-body
forces. Also, it is well known that for small Au clusters pla-
nar structures are energetically favored over the more com-
pact three-dimensional �3D� structures �9�. This raises the
question whether Au clusters can be adequately described by
an n-body expansion with low n. An alternative would be to
include all n-body forces in an effective many-body potential
depending only on the pairwise atomic distances rij as in the
Sutton-Chen �10,11� or Gupta �12� potential. However, while
these potentials are commonly used for large clusters, their
accuracy has so far not been addressed in detail.

This study is mainly concerned with Au clusters as the
chemistry of gold has recently received increasing interest
�13,14� due to the unexpected catalytic activity of Au nano-
clusters �15–20� and, for example, its application to fuel cells
�21,22� and biological �23–26� systems. Furthermore, Au
shows remarkable differences compared to the lighter
group-11 elements �27–29� due to large relativistic effects.
Au atoms assemble in extraordinary structures, such as gold*p.a.schwerdtfeger@massey.ac.nz
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nanorods �30� and gold pyramids �31,32�, and their correct
description poses a formidable computational task. In order
to efficiently predict the energetically favored structures, ef-
fective many-body potentials for Au have been developed
�33–36�. It has been pointed out, however, that the conver-
gence of the n-body expansion for gold is rather slow �8�.

In this paper we analyze in detail the convergence of
n-body expansions of the interaction potential for elementary
Au clusters and address the performance of effective many-
body potentials and a recently developed semiempirical pa-
rametrization. For comparison, we study elementary Ar, Na,
and Si clusters as prototypes for van der Waals, metallic, and
covalently bonded systems, as well as small water clusters as
exemplary hydrogen-bonded systems. Water clusters are of
specific interest due to the unique significance of water as a
solvent, its inherent anomalous properties, and its generally
important role in chemistry, biology, and physics. For both
atomic and molecular clusters, we investigate the contribu-
tion of n-body terms to the total energy and also to the elec-
tron correlation energy.

II. COMPUTATIONAL DETAILS

The decomposition of the interaction energy is done fol-
lowing Kaplan et al. �37�. The total energy of a system of N
atomic or molecular units can be represented as a finite sum

E�N� = �
n=1

N

En�N� . �2�

The terms En�N� are the n-body energy term of the N-particle
system with max�n�=N. In a recursive definition they are
given by

E1�N� = �
a=1

N

E�a� �3�

and

E2�N� = �
a�b

�N�

�ab, �4�

where

�ab = E�ab� − �E�a� + E�b�� = E�ab� − E1�ab� . �5�

The sum in Eq. �3� is taken over the energies of all N units of
the system, and the sum in Eq. �4� is taken over the two-body

interaction energies �ab of all
N�N−1�

2 different pairs of par-
ticles. For the definition of the higher-order terms see Kaplan
et al. �37�. A closed formula can be derived which can be
implemented in a more convenient form. Here the n-body
energies are written as �37�

E2�N� = �
a�b

�N�

E�ab� − a2N
1 E1�N� , �6a�

E3�N� = �
a�b�c

�N�

E�abc� − a3N
1 E1�N� − a3N

2 E2�N� , �6b�

E4�N� = �
a�b�c�d

�N�

E�abcd� − a4N
1 E1�N�

− a4N
2 E2�N� − a4N

3 E3�N� , �6c�

where

amn
k = � n − k

m − k
	 =

�n − k�!
�n − m� ! �m − k�!

. �7�

A program for the automatic n-body decomposition of
arbitrary structures has been developed in our group.

We consider clusters of up to seven atoms. This cluster
size allows us to observe the importance of higher than three-
body effects and, for 3D clusters, goes beyond the compact
octahedral structure. Three- and partly four-body contribu-
tions have already been discussed to some extent in the lit-
erature �4�. We choose three prototype cluster structures: a
linear structure, a planar structure, and the well-known LJ
type structure. These structures permit us to observe the con-
vergence of the many-body expansion for 1D, 2D, and 3D
clusters �the corresponding point groups are D�h for the 1D,
Cs for the 2D, and, for N=7, D5h for the 3D structure�.
Literature-known LJ and gold-cluster geometries �9,38–41�
were chosen as starting points, and all geometries were op-
timized for the linear, planar, and LJ-type cases. The geom-
etry optimizations were performed �42� at the ab initio level
using second-order many-body perturbation theory �MP2�
and coupled-cluster singles-doubles �triple� �CCSD�T��
theory and at the density functional theory �DFT� level using
the local density approximation �LDA� �43�. However, for
some specific examples we also used the �hybrid� general-
ized gradient approximation �GGA� functionals Becke three-

(a) Au3: 2D (C2v) (b) Au4: 2D (D2h) (c) Au4: 3D (C2v)

(d) Au5: 2D (C2v) (e) Au5: 3D (D3h) (f) Au6: 2D (Cs)

(g) Au6: 3D (D4h) (h) Au7: 2D (Cs) (i) Au7: 3D (D5h)

FIG. 1. Geometries of optimized 2D and 3D AuN clusters
�N=3, . . . ,7� used for many-body decomposition.
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parameter Lee-Yang-Parr �B3LYP� �44� and PW91 �45�. In
particular, water clusters were optimized at the DFT-PW91/
augmented correlation-consistent polarization, valence triple
zeta �aug-cc-pVTZ� level, as this functional reasonably de-
scribes hydrogen-bonded systems �46�.

To describe the weak interactions in the Ar clusters an
aug-cc-pVTZ basis set was used �47�. For Na and Si, we

used the scalar relativistic pseudopotentials �PPs� of Hay and
Wadt �48� with the accompanying double-zeta basis sets.
Tests with a cc-pVTZ basis set gave only small deviations
for the n-body terms. For Au we used a small-core scalar
relativistic PP from the Stuttgart group �49� together with a
contracted �7s5p5d3f� / �5s3p3d1f� basis set. Selected geom-
etries of optimized AuN clusters �N=3, . . . ,7� are shown in

TABLE I. �Ar,Au,Na,Si,H2O�7 clusters: binding energies and many-body energy contributions. The binding energies Eb are given in
eV/atom; the n-body contributions En�N� are normalized to the largest contribution. D�h: 1D linear chain. Cs: planar geometry �2D�. D5h: 3D
geometry. See text and Figs. 1 and 2 for a detailed description of geometries.

Geometry Method Eb E2 E3 E4 E5 E6 E7

Ar

1D �D�h� LDA 0.031 −1.0000 −0.5914 0.7510 −0.5229 0.1812 −0.0205

MP2 0.012 −1.0000 −0.0245 −0.0041 −0.0006 −0.0001 0.0000

2D �Cs� LDA 0.050 −1.0000 −0.0811 0.2040 −0.1349 0.0676 −0.0253

MP2 0.023 −1.0000 −0.0128 0.0021 0.0028 −0.0005 −0.0000

3D �D5h� LDA 0.067 −1.0000 0.1552 −0.1078 0.1644 −0.1016 0.0255

MP2 0.033 −1.0000 −0.0018 −0.0206 0.0105 −0.0049 0.0008

Au

1D �D�h� LDA 1.770 −0.0683 −0.0503 0.4180 −0.9586 1.0000 −0.4023

MP2 1.146 −0.3532 −0.1229 0.6553 −1.0000 0.7565 −0.1908

2D �Cs� LDA 2.405 −0.5824 0.5782 −0.2728 −0.6908 1.0000 −0.3684

MP2 2.040 −0.1725 −0.3025 0.8541 −1.0000 0.5220 −0.0865

3D �D5h� LDA 2.407 −0.4565 0.7468 −1.0000 0.8312 −0.3961 0.0891

MP2 2.128 −0.6549 0.7517 −0.9623 1.0000 −0.7179 0.2308

Na

1D �D�h� LDA 0.411 0.0170 −0.1911 0.5891 −1.0000 0.8165 −0.2503

MP2 0.133 −0.1386 0.5460 −1.0000 0.7886 −0.1871 −0.0392

2D �Cs� LDA 0.556 −0.0753 −0.1741 0.6369 −1.0000 0.7389 −0.2071

MP2 0.276 0.0553 −0.3723 0.8314 −1.0000 0.6078 −0.1454

3D �D5h� LDA 0.645 −0.7013 0.9920 −1.0000 0.1901 0.3596 −0.1927

MP2 0.376 0.0035 −0.3733 0.8045 −1.0000 0.6185 −0.1547

Si

1D �D�h� LDA 2.808 −0.0091 0.2153 −0.7715 1.0000 −0.5484 0.1023

MP2 1.734 −0.0795 0.0750 0.3960 −1.0000 0.8368 −0.2416

2D �Cs� LDA 3.397 −0.4440 0.1433 0.4156 −1.0000 0.8624 −0.2694

MP2 2.212 −0.1250 0.3228 −0.8067 1.0000 −0.6004 0.1369

3D �D5h� LDA 3.486 −0.6601 0.6942 −0.7044 0.9952 −1.0000 0.3739

MP2 2.295 −0.4178 0.3283 −0.5534 1.0000 −0.9672 0.3454

H2O

1D �chain� LDA 0.394 −1.0000 −0.0999 −0.1312 0.0873 −0.0115 −0.0041

PW91 0.250 −1.0000 −0.1849 −0.0450 0.0296 −0.0157 0.0112

MP2 0.241 −1.0000 −0.2198 −0.0155 −0.0005 −0.0001 0.0000

2D �R5� LDA 0.635 −1.0000 −0.2031 −0.1712 0.1933 −0.0925 0.0135

PW91 0.419 −1.0000 −0.3247 −0.0399 −0.0389 0.0194 0.0007

MP2 0.400 −1.0000 −0.3753 −0.0502 0.0019 −0.0002 0.0001

3D �C� LDA 0.655 −1.0000 −0.1771 −0.0641 0.0936 −0.0531 0.0076

PW91 0.418 −1.0000 −0.1679 −0.0996 −0.0073 0.0260 −0.0077

MP2 0.413 −1.0000 −0.3085 −0.0317 0.0046 −0.0012 0.0002
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Fig. 1. The geometries of the optimized Na7 and Si7 clusters
are very similar to those of Au7. For the Si clusters, the spin
triplet states have been chosen.

III. DECOMPOSITION OF THE CLUSTER ENERGIES

The binding energies and the many-body decomposition
of the interaction energies for the elementary clusters of
seven atoms �or molecules in the case of H2O� are listed in
Table I. For better comparison, the n-body contributions are
normalized to the largest respective component.

The minimum geometry of the Ar cluster is known to be
the compact 3D �LJ-type� structure �5�. The planar and linear
structures represent only local minima on the potential hy-
persurface and lie much higher in energy. Both LDA and
MP2 calculations confirm this trend. They also demonstrate
clearly that Ar tries to maximize the interaction between
single atoms: the two-body terms are generally dominant and
the n-body decomposition converges fast. The sole exception
is the linear Ar7 chain calculated in the LDA, which has
significant many-body contributions En up to n=5. However,
it is well known that, for example, three-body forces become
important if solid Ar is put under pressure—that is, if one
enters the repulsive region of the energy hypersurface �50�.
Thus, we also performed a n-body decomposition for com-
pressed Ar7 clusters, obtained by scaling the optimized Au7
structures by the ratio aAr/aAu of the solid-state lattice con-
stants for Ar and Au. These clusters’ bond lengths are on
average about 10% smaller than in the optimized structures,
and the n-body decompositions �see Table II� contain much
larger higher contributions. LDA results especially show an
erratic behavior, highlighting the question of its applicability
in the high-pressure regime. The successful development of
density functionals for long-range interactions such as dis-
persion forces could be rigorously tested by comparing the
n-body contributions to those of more accurate wave-
function-based theories.

The question arises whether electron correlation can be
treated by a many-body decomposition, as has been sug-
gested for the rare gases and mercury �51�. We therefore
separate the interaction energy in our MP2 calculation into a
Hartree-Fock �HF� part EHF and an electron correlation part
Ec. Table III shows the very smooth and fast convergence of
the correlation energy in the case of Ar7 clusters. For such
van der Waals–bonded systems the n-body decomposition of
the correlation energy converges even faster than the total
interaction energy �see Table I�. Hence, for an accurate simu-
lation of larger rare-gas clusters or the solid state one may
take the HF total electronic energy and add the two-body
electron correlation term �52�. It would be of interest to test
if this technique is also applicable to the high-pressure
regime of solid Ar.

For Si7, Na7, and Au7 the compact 3D structure is most
stable; see Table I. For example, the Si cluster with the low-
est energy is the pentagonal bipyramid in agreement with
literature �53–55�. However, for Au the 3D structure is low-
est in energy only by a very small margin, especially for the
LDA calculation. This is in contrast to earlier findings of
Bonacić-Koutecký et al. �56� but in agreement with Wang et
al. �40�. The energetic order of the structures depends
strongly on the functional used. For example, using the
B3LYP �or PW91� functional and our basis set, the optimized
planar Au7 structure is 0.739 eV �0.717 eV� lower in energy
than the D5h 3D structure. Similar results were also obtained
by Walker �38�. It is clear that the LDA is not capable of
describing the relative energetic order in Au clusters. In con-
trast to Ar the strong binding in the other elementary clusters
shows comparable results for both the DFT and MP2 calcu-
lations. However, there are still deviations in the individual
energy contributions in the n-body expansion; see Fig. 4 for
a graphical representation of the Au cluster n-body terms. In
general, the convergence behavior is very poor for Si, Na,
and Au and large oscillations are found both in the DFT and
MP2 results. Note that the most important contribution for

TABLE II. Compressed Ar7 clusters �see text�: binding energies and many-body energy contributions. The binding energies Eb are given
in eV/atom; the n-body contributions En�N� are normalized to the largest contribution.

Geometry Method Eb E2 E3 E4 E5 E6 E7

1D �D�h� LDA 0.028 −0.8581 −0.0212 0.4492 −1.0000 0.8008 −0.2227

MP2 −0.006 1.0000 −0.0644 −0.0072 0.0013 0.0009 0.0001

2D �Cs� LDA 0.050 −1.0000 0.1860 −0.0375 −0.1953 0.2479 −0.0902

MP2 0.006 −1.0000 −0.2359 0.0056 0.0281 −0.0079 0.0002

3D �D5h� LDA 0.066 −1.0000 0.3443 −0.4618 0.4624 −0.2276 0.0453

MP2 0.024 −1.0000 −0.0452 −0.0466 0.0291 −0.0124 0.0020

TABLE III. Ar7 clusters: correlation energies and their many-body expansion. Ec given in eV/atom, En�N�
normalized to the largest component.

Geometry Ec E2 E3 E4 E5 E6 E7

1D �D�h� 0.022 −1.0000 −0.0121 −0.0010 0.0001 0.0001 0.0000

2D �Cs� 0.040 −1.0000 −0.0010 0.0008 0.0012 −0.0003 0.0000

3D �D5h� 0.058 −1.0000 0.0100 −0.0086 0.0044 −0.0021 0.0004
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many structures is the five-body term. The three-body terms,
which were of minor importance for Ar, are here of similar
size as the two-body terms. Interestingly, the Na clusters
have much in common with the Au clusters. They have the
smallest two-body contribution �with the single exception of
the LDA result for the 3D cluster�. The five-body terms usu-
ally provide the highest contribution to the total cluster en-
ergy. Similar to Na, the linear Si7 cluster has the lowest
two-body contribution and large five-body terms. The six-
body terms are also very large, and in the case of the LDA
calculations they are even larger than the five-body terms.
The seven-body terms are mostly repulsive. Only two clus-
ters �the planar cluster at the LDA level and the linear cluster
at the MP2 level� have negative seven-body contributions to
the cluster energy. Interestingly, for Si7, the energy difference
between the global minimum and the planar structure is be-
tween 0.47 eV and 0.62 eV �PW91, 0.47 eV; MP2, 0.58 eV;
LDA, 0.62 eV�. This is quite low in comparison to other
published Si minimum-energy structures; e.g., a capped tet-
rahedron lies 0.65 eV above the global minimum �54�. The
results clearly demonstrate that the convergence behavior of
the n-body expansion is very poor as well.

IV. MOLECULAR TEST CASE: WATER

The preceding section has shown that bound atomic sys-
tems can have significant higher-order terms in the n-body
expansion. The question remains whether molecular systems
show similar behavior. This is of special interest since many
calculations of molecular systems are performed using model
potentials to describe molecular interactions �57�. Many of
these potentials fit a model two-body interaction to experi-

mental or accurate ab initio data such as, for example, for
H2O clusters. Therefore, an analogous many-body decompo-
sition has been performed for �H2O�N clusters for N=7. Pre-
vious studies have used water clusters up to N=5 to compare
the performance of several model potentials with MP2/aug-
cc-pVDZ calculations �58� and found a rapid decrease of
higher-order contributions, in generally satisfactory agree-
ment with ab initio and model potential calculations.

Structures for water heptamer clusters were thoroughly
investigated by Kim et al. �59�. Selected geometries of opti-
mized �H2O�7 clusters are shown in Fig. 2. We chose the
lowest-energy compact structures �cagelike C and D� and the
lowest-energy planar structure �R5�. Additionally, we inves-
tigated a linear chain of seven water molecules and a planar
three-ring structure �R3�. All geometries except for the linear
chain were optimized prior to the many-body decomposition.
The latter would upon optimization change towards the R3
structure.

Table I lists the n-body energy decomposition for exem-
plary 1D �chain geometry�, 2D �R5�, and 3D water clusters
�C�. Additionally, Fig. 3 compares the n-body decomposition
of all clusters and the binding energy Eb per molecule for
each structure, calculated at the DFT-PW91 level.

We first note the generally good agreement between the
DFT-PW91 and MP2 calculations �see Table I�, illustrating
the usefulness of the PW91 functional for such hydrogen-
bonded systems. DFT-LDA calculations, as expected, tend to
overbind, but are in basically good agreement with the other
methods. In contrast to Au, Na, and Si, the n-body decom-
position converges quickly for water, although not as quickly
as for Ar. The three-body terms are only about 20% of the

TABLE IV. �H2O�7 clusters: correlation energies and their many-body expansion. Ec given in eV/
molecule, En�N� normalized to the largest component.

Geometry Ec E2 E3 E4 E5 E6 E7

1D �chain� 0.087 −1.0000 0.0000 −0.0045 −0.0001 −0.0002 0.0000

2D �R5� 0.133 −1.0000 0.0253 −0.0201 0.0050 −0.0009 0.0002

3D �C� 0.146 −1.0000 0.0195 −0.0223 0.0100 −0.0026 0.0004

(a) C (b) D (c) R5

(d) R3 (e) Chain

FIG. 2. Selected geometries of optimized �H2O�7 clusters.
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FIG. 3. �H2O�7 clusters: normalized n-body expansion of inter-
action energies from DFT-PW91 calculations. Eb is the binding en-
ergy per molecule. See text and Fig. 2 for a description of
structures.
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two-body terms, and higher-order terms are even less impor-
tant. Interestingly, the two-, three-, and four-body terms are
all attractive. For some clusters even the five-body terms are
attractive. Furthermore, there is no strong dependence on the
cluster geometry; 1D, 2D, and 3D structures show very simi-
lar behavior. This illustrates the local nature of the hydrogen
bond in water.

Using our MP2 calculations, we decomposed the total en-
ergy into the Hartree-Fock part EHF and the correlation part
Ec in the same way as for the Ar clusters. We then studied the
many-body decomposition of Ec only, as shown in Table IV.
For all water clusters, the correlation energy Ec converges at
least one order of magnitude faster than the total energy.
Thus, it should be possible to describe Ec in aqueous systems
by adding a two-body model potential to the Hartree-Fock
energy EHF. Once parametrized, this should pave the way to
affordable yet accurate cluster or solid-state calculations.
However, from Table I it can be concluded that a decompo-
sition of the total energy in n-body terms is also meaningful
and can be truncated even after the two-body term without
large error. This justifies the construction of empirical model
potentials and explains their success in modeling aqueous
systems at ambient conditions.

V. SPECIAL CASE OF GOLD

Since the simulation of large Au clusters is our main in-
terest, we further investigated the convergence behavior of
the n-body expansion in these systems. Figures 4�a� and 4�b�
show the decomposition of the interaction energy for Au7
clusters using MP2 and LDA calculations, respectively. It
can be seen that the LJ-type 3D cluster shows a different
decomposition behavior than the planar and linear structures.
The former has alternating signs for all n-body terms,
whereas for the latter both three- and four-body terms have
the same sign in the MP2 calculation. For the planar and
linear structures, the LDA results are quite different. Never-
theless, we observe a large oscillatory behavior and the con-
vergence is extremely slow. Hence, for simulating large Au
clusters, a many-body atomic decomposition of the total
electronic energy is not advisable.

As expected, the situation is very similar for the smaller
Au clusters as the n-body decomposition for the AuN �N
=3, . . . ,6� shows �see Table V�. For N=4 the largest energy
contributions stem from the two-body interactions. In con-
trast, for the larger clusters higher-order n-body terms be-
come important. Again the LDA and MP2 give quite differ-
ent results. The n-body decomposition of the planar Au
structures with three to seven gold atoms at the MP2 level of
theory is given in Fig. 5. It can be seen that even for the
smallest Au clusters, the n-body expansion does not con-
verge smoothly. The planar Au4 rhombus �Fig. 1�b�� and the
planar Au5 �Fig. 1�d�� structures have the same magnitude
for the three- and four-body terms, but opposite signs.

In Table VI, the many-body expansion of the electron
correlation energy of AuN clusters �N=3, . . . ,7� is given. It
clearly shows that the correlation energy does not converge
smoothly. On the contrary, except for the smallest clusters
�N=3�, the �N−2�-body correlation term EN−2

c �N� generally

has the largest magnitude. An oscillatory behavior for En
c�N�

has been found earlier in studies of the metal clusters BeN
and LiN �60�. In contrast to the expansion of the interaction
energy �see Fig. 4�, where large differences for the different
structure types were found, the behavior of the correlation
energy is nearly independent of the structure, as shown in
Fig. 6 for the Au7 clusters. This suggests that a different
decomposition scheme—for example, into molecular Au2
units as suggested recently by Stoll �61�—might be faster
converging. The two-body terms are the only exception as
these show only slight variations in the cluster structure: the
more compact the structure, the greater the relative impor-
tance of the two-body terms.

The question arises whether other schemes could cor-
rectly model Au clusters �and eventually solid states�. As the
many-body expansion can be applied to all common model
potentials which may include higher-order contributions, we
investigated the performance of the following known Au po-
tentials: the two- and three-body Murrell-Mottram potentials
as parametrized by Cox et al. �36,62� for the coinage metals,
the Gupta potential with parameters taken from Wilson et al.
�63,64�, the Sutton-Chen potential as parametrized by Doye
and Wales �35�, and the Glue potential, defined and param-
etrized by Ercolessi et al. �33�. The Lennard-Jones potential
parametrized by Erkoç and Katircioğlu �65� is also used for
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FIG. 4. Au7 clusters: n-body expansion of the interaction en-
ergy. �a� MP2 results, �b� LDA results. Solid line: D5h �3D�. Dotted
line: Cs �2D�. Dashed line: D�h �1D�. Energy terms are normalized
to the largest respective component.
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comparison but this represents a trivial case because only
two-body forces are active and only compact LJ-type struc-
tures are obtained. In addition, the semiempirical PM6
method of Stewart �66�, as implemented very recently in the
MOPAC program package �67�, was included in our investiga-
tion.

Figure 7 shows the many-body decomposition of a 3D
compact, a 2D planar, and a 1D linear Au7 cluster in com-
parison to the MP2 results. As anticipated, the Lennard-Jones
and the Murrell-Mottram potential only have two- and three-
body terms, respectively, and as a trivial consequence both
methods fail to reproduce the many-body expansion of the
reference MP2 calculation. Moreover, the three-body term
for the planar structure is incorrectly described by the
Murrell-Mottram potential. The Sutton-Chen and Gupta po-
tentials show slightly improved performance for the 3D case,
but both potentials converge too quickly with increasing n.
Even more disturbingly, the performance of these potentials
is less than satisfactory for the 2D and 1D cases. There is
also a strong correlation of the convergence behavior with
the dimensionality of the structure; i.e., going from 3D to 2D
and finally to 1D improves the convergence. A comparison of
the formulae of the Sutton-Chen potential

V = ��
i=1

N �1

2�
j�i

N

Vij + c
�i	 , �8a�

Vij = � �

rij
	n

, �8b�

�i = �
j�i

� �

rij
	m

, �8c�

and the Gupta potential

V = �
i=1

N ��
j�i

N

Vij�rij� +
�
j�i

N

Wij�rij�	 , �9a�
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FIG. 5. Planar AuN clusters �N=3, . . . ,7�: MP2 n-body expan-
sion of interaction energies. Energy terms are normalized to the
largest component. Solid line: Au3 triangle. Long-dashed line: Au4

rhombus. Short-dashed line: Au5 planar C2v. Dotted line: planar
Au6 triangle. Dash-dotted line: planar Au7 structure.

TABLE V. AuN clusters �N=3, . . . ,6�: binding energies Eb and many-body energy contributions. Eb given in eV/atom; n-body contri-
butions En�N� are normalized to the largest respective component. For N�7 see Table I. See text and Fig. 1 for details.

N Geometry Method Eb E2 E3 E4 E5 E6

3 1D �D�h� LDA 1.487 −1.0000 −0.1960

MP2 0.314 0.3727 −1.0000

2D �C2v� LDA 1.526 −1.0000 0.1947

MP2 1.131 −1.0000 0.0927

4 1D �D�h� LDA 1.652 −1.0000 0.1675 0.0011

MP2 0.351 0.3721 −1.0000 0.5248

2D �D2h� LDA 1.980 −1.0000 0.7053 −0.2862

MP2 1.620 −1.0000 0.6401 0.3013

3D �C2v� LDA 1.679 −1.0000 0.7855 −0.2515

MP2 0.228 −1.0000 0.3520 0.2496

5 1D �D�h� LDA 1.631 −1.0000 0.0300 0.2591 −0.0831

MP2 1.253 −0.3247 −0.7180 1.0000 −0.4018

2D �C2v� LDA 2.160 −1.0000 0.9073 −0.7801 0.3027

MP2 1.777 −1.0000 0.5047 −0.5042 0.2650

3D �D3h� LDA 1.927 −0.9128 1.0000 −0.5284 0.0590

MP2 1.581 −0.9663 1.0000 −0.6255 0.1354

6 1D �D�h� LDA 1.749 −0.5058 0.1549 0.8224 −1.0000 0.3939

MP2 1.343 −0.2165 −0.4586 1.0000 −0.8710 0.2823

2D �Cs� LDA 2.433 −1.0000 0.9426 −0.7285 0.1173 0.0642

MP2 2.109 −0.9594 −0.3192 1.0000 −0.7233 0.0761

3D �D4h� LDA 2.171 −0.7499 1.0000 −0.7752 0.1795 0.0290

MP2 1.511 −0.8489 1.0000 −0.9392 0.6418 −0.2076
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Vij = A exp�− p�rij/r0 − 1�� , �9b�

Wij = �2 exp�− 2q�rij/r0 − 1�� , �9c�

shows their similarity and explains the analogous results of
their n-body expansions as seen in Fig. 7. The Glue potential
has slower convergence and shows the same behavior re-
gardless of the structure of the cluster. Although this is in
better agreement with the reference results for the linear and
planar structures, it fails completely in describing the com-
pact 3D LJ-type structure. We therefore conclude that none
of the empirical many-body potentials is capable of produc-
ing accurate cluster structures, which is a rather unsatisfying
situation.

Finally, let us move to the recently developed semiempir-
ical PM6 approximation which should include all major
many-body contributions if correctly parametrized. Indeed,
the PM6 method gives the best overall agreement with the
reference calculations. The expansions for the linear and pla-

TABLE VI. AuN clusters �N=3, . . . ,7�: correlation energies and their many-body expansion from MP2 calculations. Ec given in eV/atom.
The n-body contributions are normalized to the largest respective component. See text and Fig. 1 for details.

N Geometry Ec E2 E3 E4 E5 E6 E7

3 1D �D�h� 0.770 −1.0000 0.3892

2D �C2v� 0.894 −1.0000 0.3018

4 1D �D�h� 0.920 −0.8798 1.0000 −0.5013

2D �D2h� 1.230 −1.0000 0.6817 −0.3265

3D �C2v� 1.070 −1.0000 0.6913 −0.3482

5 1D �D�h� 1.031 −0.4852 0.9478 −1.0000 0.3867

2D �C2v� 1.307 −0.9147 1.0000 −0.9683 0.3869

3D �D3h� 1.368 −0.9740 1.0000 −0.9691 0.3793

6 1D �D�h� 1.074 −0.1965 0.5996 −1.0000 0.8165 −0.2626

2D �Cs� 1.488 −0.3816 0.6387 −1.0000 0.8272 −0.2797

3D �D4h� 1.637 −0.4514 0.6582 −1.0000 0.8316 −0.2978

7 1D �D�h� 1.151 −0.0876 0.3571 −0.8043 1.0000 −0.6563 0.1765

2D �Cs� 1.485 −0.1654 0.3917 −0.8209 1.0000 −0.6626 0.1867

3D �D5h� 1.736 −0.2274 0.4161 −0.8240 1.0000 −0.6793 0.1965
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FIG. 6. Au7 clusters: n-body expansion of the correlation energy
Ec. Energy terms are normalized to the largest respective compo-
nent. Solid line: D5h. Dotted line: Cs. Dashed line: D�h.
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FIG. 7. Au7 clusters: n-body expansion of interaction energies
from different model potentials. From top to bottom: 1D �D�h�, 2D
�Cs�, 3D �D5h�. Energy terms are normalized to the largest respec-
tive component. Reference calculation: MP2 �thick solid line�.
Model potentials used: Lennard-Jones �dashed line�, Murrell-
Mottram �dash-dotted line�, Gupta �dotted line�, Sutton-Chen
�double-dash–dotted line�, Glue �solid line�; PM6 method �thick
dashed line�.
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nar structures are both in very good agreement with the MP2
results, and the expansion for the LJ-type structure agrees
extremely well up to the four-body term with small devia-
tions for the higher-order terms. Hence, this method could
become very useful for �pre�optimizing larger Au clusters
and in the search for candidates for their global minima.

VI. SUMMARY AND CONCLUSION

It has been shown that the n-body decomposition scheme
works very well for the interaction and electron correlation
energy of van der Waals–and hydrogen-bonded clusters. In
the case of metallic or covalent interactions, the n-body de-
composition converges very slowly. In particular, the 1D and
2D structures show large higher-order contributions, as the
number of close neighbor two-body interactions is smaller,
making it difficult to develop reliable many-body potentials.

The investigation of available interaction potentials for
Au clearly shows that these have fast-converging character-
istics, thus failing to reproduce the ab initio data: in the case
of 1D and 2D structures, the potentials �with the exception of
the Glue potential� favor lower-order interactions, whereas
the n-body decomposition of the density functional and ab
initio calculations show that the higher-order interactions are
more important. The Glue potential exhibits very similar
many-body characteristics for all different clusters, thereby
giving good agreement for the low-dimensional structures
but very poor agreement for the 3D structure. Empirical po-

tentials often use parameters solely optimized to reproduce
certain bulk material properties. Applying these potentials to
small cluster systems appears at least doubtful. We question
the validity of locating the global minimum for Au clusters
using any of the investigated interaction potentials; see, e.g.,
Garzón et al. �68�. Including quantum mechanics at some
stage becomes necessary for the description of Au clusters.
The recent PM6 parametrization for the semiempirical
MNDO method performs much better for all clusters inves-
tigated. This method should provide a computationally af-
fordable way to obtain reliable cluster energies for Au and
thus may constitute an efficient means of producing relevant
structures for global minima searches.

The large contribution of higher-order many-body contri-
butions is known for other systems such as HF oligomers
�69�, and this will make the development of accurate inter-
action potentials very difficult, if not impossible. We suggest
that any new model developed for the simulation of larger
clusters should be analyzed carefully using the n-body ex-
pansion.
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