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LiNbOj; ground- and excited-state properties from first-principles calculations
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The atomic and electronic structure, zone center phonon frequencies, and optical absorption of LiNbOj5 are
calculated from first principles. The structural and vibrational properties predicted from density functional
theory are in good agreement with experiment and earlier theoretical work. The electronic band-structure and
optical properties are found to be very sensitive to quasiparticle and electron-hole attraction effects, which are
included here using the GW approach and by solving the Bethe-Salpeter equation, respectively. We predict the
fundamental gap to be more than 1 eV larger than the 3.7 eV frequently cited for ferrolectric LiNbO5 and
calculate optical absorption spectra in good agreement with experiment.
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The electro-optic, photorefractive, and nonlinear optical
properties of lithium niobate (LiNbO5, LN) are exploited in a
number of devices such as modulators for fiber-optic com-
munications systems or holographic applications. LN, see
Refs. 1 and 2 for tutorial papers on its physical properties,
occurs in two phases of trigonal symmetry with ten atoms
per unit cell, (see Fig. 1). The ground state is ferroelectric
with space group R3c. The high-symmetric paraelectric
phase with space group R3c is stable above 1480 K.

Given the vast range of LN applications, our knowledge
about its electronic and optical properties is surprisingly lim-
ited. For example, we are not aware of a measured band
structure. The direct band gap of 3.78 eV for the ferroelectric
phase—frequently cited in the literature—is actually con-
cluded from optical experiments.? Therefore, it is affected by
electron-hole attraction effects which may reduce the size of
the actual band gap, i.e., the difference between the ioniza-
tion energy and the electron affinity, substantially.*”” The
situation is additionally complicated by the fact that there are
actually a number of band gap values reported, all concluded
from optical absorption experiments. They range from the
indirect gap of 3.28 eV reported in Ref. 8 to values of 4.0 or
4.3 eV.>19 The optical absorption experiments mentioned
above as well as further studies, e.g., Ref. 11, focus mainly
on the onset of the absorption. We are aware of only two
studies that address the absorption in the vacuum ultraviolet
(VUV) domain.'?!3 The lack of experimental data may par-
tially be related to the fact that the crystal growing process
results in samples that are not stoichiometric, but Li defi-
cient. In fact, many LN applications depend on intentional
impurities of the material. Moreover, the paraelectric phase
is stable in a small temperature window only.

However, the theoretical understanding is also limited.
There are now a number of first-principles studies available
on the LN structural and vibrational properties (see, e.g.,
Refs. 14-16) that basically explain the measured phonon
modes. Also, the phase transition between para- and ferro-
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electric LN was modeled with molecular dynamics.'” Only
few calculations, however, address the optical and electronic
properties. Most first-principles band-structure calculations,
e.g., Refs. 15 and 18, are based on a single-particle picture
and neglect quasiparticle effects that typically widen the
band gap between occupied and empty states by a large frac-
tion of its value.!” The seemingly good agreement between
measured and calculated band gaps for LN may therefore
result from a fortuitous error cancellation between the possi-
bly large exciton binding energy and the electronic self-
energy. An early theoretical study by Ching et al.?® indicated
the importance of self-energy effects: Using the approximate
Sterne-Inkson model,?! they predicted self-energy correc-
tions of the order of 1 eV. However, the single-particle gap
in Ref. 20 is much smaller (2.62 eV for the ferroelectric
phase) than in the more recent studies, (3.69 eV) (Ref. 18)
and (3.48 eV)."> To our knowledge, the influence of exci-
tonic and local-field effects on the optical absorption is com-
pletely unknown. Existing studies on the optical absorption
rest on the single-(quasi)particle approximation and predict
broad (~1-2 eV) absorption peaks centered at or below 5
and 9 or 7 eV, respectively,'®?" i.e., below the measured ab-
sorption peak positions.!>!3

The better understanding of the LN ground- and, in par-
ticular, excited-state properties is the aim of the present
study. Thereby, we proceed in three steps. (i) We use density
functional theory in generalized gradient approximation
(DFT-GGA) to determine the structurally relaxed ground
state of both the ferro- and paraelectric LN phases. The reli-
ability of our scheme is demonstrated by comparing the
structural and vibrational properties with earlier theoretical
data and experiment. The phonon modes and frequencies are
calculated using the frozen-phonon approach.?? This ap-
proach does not include the long-range electric fields that
accompany longitudinal phonons. For this reason, we restrict
ourselves to the transverse modes. DFT-GGA also provides
the Kohn-Sham eigenvalues and eigenfunctions that enter the
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FIG. 1. (Color online) Primitive unit cell of the ferroelectric
phase of LN. Light, small, and dark balls indicate the positions of
Li, O, and Nb, respectively.

single- and two-particle Green’s functions. (ii) The the elec-
tronic quasiparticle spectrum is obtained within the GW ap-
proximation (GWA)?* to the exchange-correlation self-
energy, and finally (iii) the Bethe-Salpeter equation (BSE) is
solved for coupled electron-hole excitations,*°® thereby ac-
counting for the screened electron-hole attraction and the un-
screened electron-hole exchange.?*-26

In detail, we start from first-principles projector aug-
mented wave calculations using the VASP implementation of
the DFT-GGA.?72® A 4X4X4 k-point mesh is used to
sample the Brillouin zone. The electron wave functions are
expanded into plane waves up to an energy cutoff of 400 eV.
The mean-field effects of exchange and correlation in GGA
are modeled using the PW91 functional.? In the second step,
we include electronic self-energy effects, i.e., replace the
GGA exchange and correlation potential by the nonlocal and
energy-dependent self-energy operator 2 (r,r’;E). We calcu-
late 3 in the GW approximation®® from the convolution of
the single-particle propagator G and the dynamically
screened Coulomb interaction W. As a further approxima-
tion, we use a model dielectric function®® to calculate W.
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Thereby, the wave-vector (q) dependence of the dielectric
function is given by

g )2 3 q4 } -1
a0 T o)) |
(1)

where ky and g;p represent the Fermi and Thomas-Fermi
wave vectors, respectively, which depend on the electron
density p. This expression interpolates between the correct
behaviors at high and low q vectors and, by construction,
correctly obtains the dielectric constant for q=0. Using this
model, screening speeds up the calculations substantially and
results in quasiparticle shifts that are typically accurate
within about 10% of the complete calculations.?!'*? The
electron-hole interaction is taken into account in the third
step. The two-particle Hamiltonian,

e(q,p):1+{ ! +<
€.—1

Hyoirencr = (€t = €00 8y Oncr S0 +2 f f drdr’ i, (r)
X (DT = 1) e (), 1 (1)
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describes the interaction of pairs of electrons in conduction
states |ck) and holes in valence states |vk).2*~2° The diagonal
first part is given by the quasiparticle energies obtained in
GW approximation. The second, the electron-hole exchange
term, where the short-range part of the bare Coulomb poten-
tial v enters, reflects the influence of local fields. Finally, the
third part, which describes the screened electron-hole attrac-
tion, is calculated using the same approximations for W as in
the self-energy. For the actual calculation of the polarizabil-
ity, we use the time-evolution implementation described in
Refs. 32 and 33.

The relaxed ground-state geometries for ferro- and
paraelectric LN are the starting points for all further investi-
gations. In paraelectric LN, the Li and Nb atoms are at Wy-
ckoff positions 6a and 6b (hexagonal axes), respectively,
while the O atoms are located at 18e, with internal parameter
x. We determine lattice constants a=5.219 A, ¢=13.756 A,
and x=0.041. The measured values amount to 5.289 10\,
13.848 A, and x=0.06.3* The usage of GGA often leads to a
slight overestimation of lattice constants. The fact that an
underestimation of about 1% occurs here may be related to
the thermal expansion of the sample—the paralelectric phase
is stable for temperatures above 1480 K—which is not in-
cluded in our ground-state calculations. Earlier GGA
results!® are, in fact, quite similar to our findings: a
=5.255 A, ¢=13.791 A, and x=0.048.

In ferroelectric LN, Li and Nb are located at Wyckoff
position 6a (hexagonal axes) with internal parameter zyy;
oxygen atoms are at 18b with parameters u, v, and w. Fol-
lowing the notation in Ref. 15, we determine a=5.161 A, c
=13.901 A, z3,=0.0339, ¥=0.01205, v=0.0278, and w
=0.0191. The deviation from experiment** (a=5.151 A, ¢
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TABLE 1. Calculated phonon frequencies (in cm™) of trans-
verse E and A; as well as A, modes of ferroelectric LN in compari-
son with measured data from Refs. 36—-43.
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TABLE I1. Calculated phonon frequencies (in cm™) of A, A,
Ay, and E, as well as transverse A, and E, modes of paraelectric
LN in comparison with earlier calculations (Ref. 15).

Present Measured Present Earlier theory
Ay 238 251-252 Ajg 406 403
279 273-276 A 83 279
350 331-333 4 435
605 631-634
Agg 92i 115i
A, 212 224 410 405
298 314 268 289
406
443 455 E, 204 175
868 436 425
481 501
E 147 152-155 578 589
216 177-180
260 236-238 Ay 183i 201i
321 321-325 47 94
384 370-371 476 478
421 431-436 E, 18 53
573 579-586 207 177
662 686-670 384 393
443 460
533 532

=13.876 A, z,=0.0329, u=0.00947, v=0.0383, and w
=0.0192) is much smaller than for the paraelectric phase,
corroborating our assumption that thermal expansion may be
responsible for much of the deviation in the paraelectric case.
Again, close agreement with the GGA results of Veithen and
Ghosez is observed.'?

The calculated energy difference between the para- and
ferroelectric LN phases amounts to 0.30 eV and is thus of
similar magnitude as found in full potential linearized aug-
mented plane-wave calculations that predicted 0.25 eV.?

The calculation of phonon frequencies is another sensitive
test for the accuracy of our approach. From calculations with
and without symmetry constraints as well as by using differ-
ent magnitudes for the frozen deformations, we find the nu-
merical accuracy of the frozen-phonon approach used to de-
pend strongly on the specific mode. For most modes,
however, the numerical error bar is below 10 cm™!. There are
a number of experimental studies of the ferroelectric LN dy-
namical properties available. At the I' point, the optical
phonons can be classified according to the irreducible repre-
sentations of the space group R3¢ into A;, A,, and E modes.
In Table I, we assign our results to the experimental findings
for the respective transverse E and A; modes as well as A,
phonons. Within deviations of at most 36, but typically about
10 cm™!, the calculated frequencies match the experimental
findings. The accuracy of our calculations is thus comparable
to earlier frozen-phonon calculations,' but somewhat infe-
rior to linear-response calculations' that are less sensitive to
anharmonicities than the present approach. Two A, modes at
around 400 and 900 cm™! are predicted here as well as in
earlier calculations,'*! but have not been detected yet.

We are not aware of measured phonon frequencies for
paraelectric LN. Therefore, we present in Table II a com-
parison with the linear-response results from Veithen and
Ghosez.!® The data are classified according to the irreducible

representations of the space group R3c. As can be seen,
the agreement is of similar quality as discussed above
for ferroelectric LN. The largest deviation concerns the
lowest E, mode that is unstable according to Ref. 15,
but stable here. We mention that this mode was also iden-
tified as stable by Parlinski et al.'® As discussed in Ref. 15,
the low energy of this mode makes it susceptible to numeri-
cal errors.

The results above indicate good agreement between the
DFT-GGA calculations and experiment concerning the struc-
tural ground state as well as vibrational properties of LN. On
this basis, we can start to analyze the electronic properties. In
Fig. 2, we plot the Kohn-Sham energies along high symme-
try lines of the hexagonal Brillouin zone (cf. Fig. 3) of ferro-
and paraelectric LN. Within the single-particle approxima-
tion, the ferro- and paraelectric phases have indirect band
gaps of 3.48 and 2.47 eV, respectively. These values agree
well with other recent DFT calculations,'> which predict 3.50
and 2.51 eV, respectively. The valence-band maximum
(VBM) occurs at the I' point for both phases, while the
conduction-band minima (CBM) are located at 0.4I'—K and
the K point for the ferro- and paraelectric phases, respec-
tively.

The character of the electronic states forming the VBM
and the CBM is shown in Fig. 4. As can be seen, the VBM is
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FIG. 2. (Color online) Calculated band structures of ferro- (left)
and paraelectric LN (right) calculated within the DFT-GGA (dashed
lines) and the GW approximation (solid lines).

formed by O 2p states, whereas the Nb 4d states form the
CBM. The low lying energy band is formed by O 2s states,
not shown here.

The band gap calculated within DFT-GGA does not cor-
respond to the optical gap measured experimentally, since
neither electronic quasiparticle, i.e., self-energy, effects nor
electron-hole attraction, i.e., excitonic effects, is included. In
order to estimate the size of quasiparticle effects in LN, we
perform GW calculations for both the ferroelectric and
paraelectric phases. The correspondingly corrected energy
bands are shown with solid lines in Fig. 2. Obviously, the
band gap is opened substantially, by about 3 eV. Also, the
dispersion changes slightly. For example, the CBM of the
ferroelectric phase changes from 0.4I'—K to 0.6I'—A. The—
thus still indirect—band gap amounts to 6.53 eV. No change
of the CBM position occurs for the paraelectric phase upon
inclusion of quasiparticle effects. The indirect gap between I"
and K amounts now to 5.37 eV. However, both within DFT-
GGA and the GWA, we find the lowest conduction band to
be very flat around I for both phases. Therefore, the material
can be regarded as having approximately a direct band gap at
the T" point.

The quasiparticle shifts obtained in our study are larger
than previous results based on the Sterne-Inkson approach.?’
This may be related to the different electronic ground states

FIG. 3. (Color online) Notation of high symmetry Brillouin
zone points used in the present work.
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(b)

FIG. 4. (Color online) Orbital character of states of paraelectric
LN near I for the VBM (left) and the CBM (right).

in both studies. Ching et al.?° started from a band gap that is
about 1 eV smaller than in the present work. The Sterne-
Inkson approach itself may be another reason for the differ-
ence. It describes the inherently nonlocal self-energy opera-
tor by a local potential. On the other hand, the present
calculations rest on a model dielectric function and the single
plasmon-pole approximation,® which can also be expected
to impair the accuracy.
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FIG. 5. (Color online) Imaginary part of the dielectric function
of ferro- and paraelectric LN calculated within the DFT-GGA, the
GWA, and from the BSE. Solid and dotted lines indicate the results
if pure electronic screening and electronic screening plus lattice
polarizability, respectively, are taken into account in the GWA and
BSE calcuations (see text).

The single-particle excitations are accompanied by the re-
arrangement of the remaining electrons in the solid, which
screen the excited electrons (above the Fermi level) and ex-
cited holes (missing electrons below the Fermi level). Polar
materials such as LN, however, feature longitudinal optical
phonons that give rise to macroscopic electric fields that
couple to the excited electrons and holes and modify their
motion. It can be expected that the lattice polarizability con-
tributes to the dressing of the quasiparticles. This effect is not
included in the GWA band structures shown in Fig. 2, which
rest on the assumption of a pure electronic screening. To
study the effect of the lattice polarizability on the single-
particle excitation energies, in principle, the electron-phonon
coupling needs to be considered. As discussed by Bechstedt
et al.,** however, the GW approximation in conjunction with
a model dielectric function®® suggests a simple way to esti-
mate the magnitude of possible effects due to the lattice po-
larizability. To this end, one modifies the modeling of the
screening. Rather than using €, for the pure electronic
screening, one considers to some extent also the contribution
of the lattice polarizability ~(€),—€.,). In the case of LN,
where the static dielectric constant €, is nearly 1 order of
magnitude larger than the optical dielectric constant €., (~40
rather than ~5),%46 large effects may be expected. If we
assume a partial lattice contribution to the screening, and
consider a dielectric constant of 20, we obtain quasiparticle
shifts that are about half the size obtained for a pure elec-
tronic screening. Thus, the band gap of ferroelectric LN as-
sumes a value of 5.37 ¢V, while we obtain 4.39 eV for
paraelectric LN. While we are not aware of an experimental
study devoted to the fundamental gap, from the theory point
of view, we would thus expect a band gap between about 5.4
and 6.5 eV for ferroelectric LN and a value for paralectric
LN that will be roughly 1 eV smaller.

In Fig. 5, we show the optical spectra calculated for ferro-
and paraelectric LN according to the three levels of theory:
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i.e., DFT-GGA, GWA, and BSE. Again, it is not clear
whether or not and to which extent the lattice polarizability
plays a role on the time scale of the formation of Coulomb
correlated electron-hole pairs.* In order to estimate the size
of possible lattice effects, we proceed in a similar manner as
discussed above for the GWA (cf. Ref. 44). We present cal-
culations where pure electronic screening is taken into ac-
count (solid lines) as well as calculations where a partial
lattice contribution is allowed for in the quasiparticle ener-
gies and the screened electron-hole attraction entering the
two-particle Hamiltonian (2). The latter results are shown by
dotted lines.

The spectrum obtained within DFT-GGA for ferroelectric
LN agrees roughly with earlier independent-particle
results.'®? There are two main features of the optical ab-
sorption centered at about 5 and 8 eV. They arise from tran-
sitions between O 2p and Nb 4d states see (Fig. 4). The in-
clusion of the many-body electron-electron interaction in
GWA, i.e., the electronic self-energy, leads to a nearly rigid
blueshift of the spectra by about 1.5-3 eV, depending on the
screening. The Coulomb correlation of electrons and holes,
accounted for by solving the BSE, changes the line shape
somewhat. The first peak (or shoulder) of the low-energy
main feature of the optical absorption becomes more pro-
nounced, and the whole feature is redshifted compared to the
GWA spectrum. It is now positioned at about 5.5 or 6.5 eV,
depending whether or not a partial contribution of the lattice
polarization is taken into account. The oscillator strength of
the originally rather broad (~2 eV) high-energy main fea-
ture of the optical absorption is redshifted and transferred
into a single sharp peak at about 9.5 or 10.5 eV, respectively.
Similar changes occur for paraelectric LN.

Compared to the experimental data for the ferroelectric
LN, where absorption peaks at 5.3-6 and 9.2—-10 eV are
observed,'>!3 the inclusion of self-energy and excitonic ef-
fects improves the theoretical description substantially. This
concerns both the peak positions and the line shapes, which
sharpen due to the inclusion of excitonic effects. Interest-
ingly, the experimental observation that the first absorption
peak is broader for € than for €, in ferroelectric material'3 is
reproduced in the calculations that account for electron-hole
interactions much more clearly than on the single-particle
level of theory.

A precise comparison of our calculated spectra with ex-
periment should, in principle, allow conclusions on the ac-
tual role played by the lattice in the screening of the Cou-
lomb correlated electron-hole pairs. Unfortunately, such a
comparison is hindered by the fact that the two existing mea-
surements do not exactly agree on the positions of the ab-
sorption peaks. The more recent data of Mamedov et al.'
indicated excitation energies that are about 0.7 eV larger
than obtained by Wiesendanger and Giinterodt.! The absorp-
tion peaks calculated at the BSE level of theory without lat-
tice polarizability, however, are blueshifted with respect to
both sets of experimental data. In contrast, the calculations
where a partial contribution of the lattice to the screening is
considered result in peak positions that lie within the respec-
tive lower and upper experimental data. This is no strict evi-
dence for an actual influence of the lattice on the screening
because (i) our method of calculation is approximate as dis-
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cussed above and (ii) the experimental data themselves scat-
ter. However, the experiment-theory comparison at least in-
dicates that the lattice polarizability influences, in fact, to
some extent the single- and two-particle electronic excita-
tions in LN. Concerning the fundamental band gap, this
means that a value around 5.3 eV for ferroelectric LN ap-
pears more likely than the 6.5 eV calculated without lattice
contribution to the screening. In order to thoroughly under-
stand the LN electronic and optical properties, detailed mea-
surements of the band structure and the optical absorption of
single, stoichiometric crystals, in particular, in the VUV re-
gion, would be most helpful.

To summarize, we performed first-principles calculations
of the structural, vibrational, electronic, and optical proper-
ties of LiNbO3. The ground-state structures and phonon fre-
quencies calculated in the present work agree well with ex-
periment and earlier ab initio theory. Also, the DFT-GGA
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band structure, i.e., the Kohn-Sham eigenvalues, agrees well
with similar calculations performed earlier. However, our
study indicates that the surprisingly good agreement of the
Kohn-Sham gap with experiment stated often in the literature
is fortuitous. Quasiparticle effects widen the band gap dras-
tically beyond its DFT value. We predict values of 5.4-6.5
and 4.4-5.4 eV for ferro- and paraelectric LN. On the other
hand, strong excitonic effects with exciton binding energies
of the order of 1 eV can be expected.

We thank Wolfgang Sohler and Hubertus Suche for sug-
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