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Complete basis set limit calculations are carried out for the fcc lattices of solid neon and argon, using
second- to fourth-order Møller-Plesset theory, MP2–MP4, and coupled-cluster calculations, CCSD�T�, to de-
scribe electron correlation within a many-body expansion of the interaction potential up to third order. A
correct description of the three-body Axilrod-Teller-Muto term for the solid state is only obtained from third
order on in the many-body expansion of the correlation energy, correcting the severe underestimation of
long-range three-body effects at the MP2 level of theory. MP4 shows good agreement with the CCSD�T�
results, and the latter are in good agreement with experimental lattice constants, cohesive energies, and bulk
moduli. However, with increasing pressures the convergence of the Møller-Plesset series deteriorates as the
electronic band gap decreases, resulting in rather large deviations for the equation of state �pressure-volume
dependence�. For neon, however, the errors in the MP2 two- and three-body terms almost cancel, i.e., at a
volume of V=3 cm3 /mol the MP2 pressure is underestimated by only 1 GPa compared to the pressure of
P=251 GPa calculated at the CCSD�T� level of theory. In contrast, for argon this is not the case, and at
V=5.5 cm3 /mol the calculated MP2 pressure of 228 GPa deviates substantially from the CCSD�T� result of
252 GPa.
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I. INTRODUCTION

Quantum theoretical methods for electronic-structure
theory have advanced rapidly in the past 20 years. This is
nicely demonstrated by the Fock-spaced coupled cluster cal-
culations for atoms carried out in Kaldor’s group,1,2 which
for ionization potentials and electron affinities reach accura-
cies on the order of a few millielectron volts even for the
heaviest elements in the periodic table where one needs to
include both relativistic and quantum electrodynamic
effects.3,4 High accuracies are also achieved in molecular
structure calculations as demonstrated recently for a set of
small molecules by Helgaker et al.,5 Klopper et al.,6 or Stan-
ton and co-workers.7 The situation changes completely if one
considers the solid state. Here, one mainly relies on density-
functional theory, which, unlike wave-function-based meth-
ods, is difficult to be improved systematically toward the
exact result.8 However, in the last few years post-Hartree-
Fock �HF� and Kohn-Sham methods for electron correlation
based on wave-function theory were introduced in computa-
tional solid-state physics; most noteworthy are the local
second-order Møller-Plesset many-body perturbation theory
�LMP2� by Pisani et al.,9–11 and the random-phase approxi-
mation �RPA� by Kresse, Scuseria, and co-workers.12–14 The
former has the advantage that it is computationally afford-
able but is only applicable to solids with large band gaps
�insulators� to ensure the convergence of the Møller-Plesset
series MPn with increasing order n,10 i.e., it cannot be used
to describe small or zero band-gap materials such as metallic
systems where the energy difference in the denominator of
the many-body series approaches zero. The RPA avoids this
but is computationally far more demanding. A completely
different approach is the use of the incremental method de-

veloped by Stoll and co-workers,15–18 where the correlation
energy of the solid is expanded in terms of localized orbitals
at different atomic centers.17 Stoll’s method of increments, if
carried out at the coupled cluster level of theory, can success-
fully be applied to a variety of electronic systems even for
solids with small band gaps and metallic systems.19–24 More
recent developments include explicitly correlated MP2
�MP2-R12 and MP2-F12� for infinite systems by Shiozaki
and Hirata.25

While dispersion interactions between atoms in small
molecules are well understood and studied, a detailed analy-
sis for the solid state is still missing. Especially if the solid is
put under high pressure, both short- and long-range interac-
tions become important.26 In a previous paper we showed
that the incorrect description of three-body
Axilrod-Teller-Muto27,28 type of interactions by second-order
Møller-Plesset theory for electron correlation leads to signifi-
cant errors for the rare gas solid-state structures.29 The im-
portance of such nonadditive forces is well known and has
already been described in the literature for weakly interacting
molecules,30,31 as well as for the liquid and solid state.32–35

Here we mention the work by Chałasiński and co-workers
who analyzed in detail the many-body contributions in
weakly interacting atoms and molecules.30,36–38 It is however
not clear how well the Møller-Plesset expansion MPn with
increasing order n converges for the solid state, as, for ex-
ample, the number of three-body �Axilrod-Teller-Muto�
terms in the energy decomposition increases quadratically
with increasing number of atoms compared to a linear scal-
ing for the two-body terms, and therefore three-body effects
become quite important.39–41 We point out that the conver-
gence of the Møller-Plesset series has been studied exten-
sively for atomic and molecular systems in the past42–46 in-
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cluding weakly interacting systems,30 and it is well
understood that the convergence radius critically depends on
the band gap �highest occupied molecular orbital-lowest un-
occupied molecular orbital gap in atoms and molecules�.46–48

The rare gas solids represent ideal test cases for the per-
formance of the Møller-Plesset series expansion, as the band
gap is large and the total energy of the lattice can be easily
expanded into a many-body series of the interaction
potential.41 Moreover, one can expect similar results for
other weakly interacting systems found, for example, in mo-
lecular crystals.49 We therefore investigate the convergence
of the Møller-Plesset series for the fcc crystals of neon and
argon up to fourth order in the electron correlation energy,
and compare our results to more accurate coupled cluster
calculations. It is well known that the convergence toward
the basis set limit is much slower for wave-function-based
methods than for density-functional theory, as it is difficult to
correctly describe the electron-electron cusp. Therefore, in
order to avoid basis set effects we estimated the complete
basis set �CBS� limit at each level of theory. Further, the
performance of the Møller-Plesset series was investigated for
the equation of state �pressure-volume relation� at 0 K, as
three-body interactions become very important at high
pressures.50

II. COMPUTATIONAL DETAILS

The cohesive energy per atom, Ecoh, for the face-centered-
cubic structures of solid neon and argon was obtained from a
many-body expansion of the interaction potential utilizing
translational symmetry,41

Ecoh�V� = �
k=2

�

E�k��V�

�
1

2�
i=1

N1

E�2��r0i� +
1

3�
i=1

N1

�
j�i

N2

E�3��r0i,r0j,rij� + ¯ , �1�

where r0i is the distance between the inner most �central�
atom and atom i in the fcc lattice. V is the volume of the fcc
unit cell with Vfcc=a3 /4 and a being the fcc lattice constant.
We truncated the series expansion at k=3, as four-body
forces are rather small around the equilibrium lattice con-
stant, and the errors introduced by this truncation are within
the errors of the other approximations applied. The cluster
size N1 for the fcc lattice was set to 60 000 atoms, suffi-
ciently large to achieve convergence of the optimized lattice
constant to 0.1 mÅ for the two-body interaction �the exact
two-body limit is obtained from the extended Lennard-Jones
form as discussed below�.41,51 As the three-body term is
about one order of magnitude smaller than the corresponding
two-body term and decays faster with increased interatomic
distances, we can restrict N2 to N2=25 000. It was pointed
out before that the �formally exact� many-body expansion
Eq. �1� converges fast for the rare gas crystals, even at higher
pressures.41,50,52

The two-body �E�2�� and three-body �E�3�� interaction en-
ergies in Eq. �1� for neon and argon were obtained pointwise

from nonrelativistic second-�MP2�, third-�MP3�, and com-
plete fourth-order �MP4� Møller-Plesset calculations, as well
as coupled cluster calculations with single and double sub-
stitutions, CCSD, and including perturbative triples,
CCSD�T�,53 utilizing the frozen-core approximation by keep-
ing only the occupied valence nsp-space active. We used a
large range of atomic distances r between 1.7 and 6.0 Å �2.2
and 8.0 Å� to sample the potential-energy surfaces for the
dimers and trimers �in equilateral triangle shape� of neon
�argon�. All-electron augmented correlation consistent aug-
cc-pVnZ basis sets �with cardinal number n=2–5� �Refs.
54–57� were used to study the basis set convergence with
increasing size, and the extrapolation scheme of Halkier et
al.58 for the electron correlation energy Ec was used to obtain
the complete basis set limit from the n=4 and n=5 basis set
results, according to

Ec�n� = Ec�CBS� + �n−3. �2�

We note that the HF energy EHF�n� is practically con-
verged for n=5 and was taken as the HF basis set limit
EHF�CBS�. All calculated interaction energies were corrected
for basis set superposition errors �BSSEs� according to the
Boys-Bernardi method,59

EX
�2��r� = EXX�r� − 2EXG�r� , �3�

EX
�3��r� = EXXX�r� − 3EXXG�r� + 3EXGG�r� . �4�

Here, X denotes the rare gas element and G the presence
of a ghost atom basis set�s� at position�s� otherwise occupied
by atom X. In order to apply these two-body and three-body
interaction energies to the solid state according to Eq. �1�, we
fitted E�2��r� to an extended Lennard-Jones potential as de-
scribed in detail in Ref. 41,

EX
�2��rij� = �

m=6

20

Cmrij
−m, with rij � rmin. �5�

This ansatz has the advantage that the cohesive energy
can be obtained analytically from the Lennard-Jones-Ingham
coefficients.41,60 Furthermore, the fit is usually smooth up to
higher derivatives in EX

�2��rij� for rij �rmin, and the least-
squares fits give root-mean-square errors which are as small
as for the more sophisticated diatomic potential curves used
to describe the whole interaction range.61 E�3��r� is approxi-
mated by an extended Axilrod-Teller-Muto potential that ac-
counts for both the attraction in the overlap region and the
repulsion in the long-range part,50

EX
�3��rij,rjk,rik� = f��CATrg

−9 + e−�rs�
n=0

5

A2nrg
2n� ,

with

f� = �1 + 3 cos �i cos � j cos �k� ,

rg = �rijrjkrik�1/3, and rs = rij + rjk + rik �6�

and we have rij �rmin for each i� j. The adjusted coefficients
from the potential energy fits are listed in Table I. Here we
note that the functional form used is an extension to the
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three-body potential proposed by Bruch and McGee,62 which
has been used successfully by Loubeyre for dense helium63

as well as Freiman and Tretyak for the dense solid rare gases
He, Ne, Ar, Kr, and Xe.64 In the fit procedure we used rmin
=1.7 Å for neon and 2.2 Å for argon, which assures the
applicability of the potential curves up to pressures of about
200 GPa. The power expansions in both Eqs. �5� and �6�

have been extended in comparison to Ref. 50 to achieve best
possible fits at small interatomic distances, i.e., at high pres-
sures. First, we fitted the long-range part of the potential
curve to C6r−6 to correctly describe this region, then by keep-
ing C6 fixed we adjusted all other parameters. This gives
CCSD�T� C6 parameters for neon �−6.74 a.u.� and argon
�−78.1 a.u.� in good agreement with the values listed by

TABLE I. Coefficients for the two- and three-body potentials for neon and argon as defined in Eqs. �5�
and �6�. All distances in Å and energies in atomic units.

Coefficients MP2 MP3 MP4 CCSD CCSD�T�

Neon two-body

C6 −1.41955�10−1 −1.48074�10−1 −1.75480�10−1 −1.45210�10−1 −1.67341�10−1

C8 −4.87134�100 −3.54939�100 −3.46512�100 −5.32456�100 −5.20790�100

C9 9.43441�101 7.80539�101 8.48474�101 9.81993�101 1.00349�102

C10 −4.59290�102 −3.93557�102 −4.46742�102 −4.70897�102 −4.90939�102

C12 3.44798�103 2.93618�103 3.52902�103 3.46444�103 3.67621�103

C14 −1.70325�104 −1.38105�104 −1.78336�104 −1.68745�104 −1.82001�104

C16 4.73043�104 3.57615�104 5.06155�104 4.63325�104 5.09539�104

C18 −6.98364�104 −4.83908�104 −7.65950�104 −6.77537�104 −7.62121�104

C20 4.28769�104 2.67674�104 4.83673�104 4.12736�104 4.76084�104

Neon three-body

CAT 1.47149�10−4 2.90448�10−2 3.26249�10−2 3.37596�10−2 4.06612�10−2

A0 −5.95000�102 −5.67817�102 −5.03308�102 −4.74995�102 −4.80005�102

A2 −4.31498�102 8.31106�101 5.32026�100 3.04482�101 1.91417�101

A4 −2.64281�102 −1.99706�102 −1.54846�102 −1.39810�102 −1.42856�102

A6 −6.95825�101 3.36711�101 2.23213�101 2.40420�101 2.39623�101

A8 6.41023�100 −2.06120�100 −7.55803�10−1 −1.34529�100 −1.10469�100

A10 1.24831�10−1 7.63010�10−2 2.21240�10−2 3.81317�10−2 2.36032�10−2

� 2.69379�100 2.42644�100 2.41860�100 2.38005�100 2.38939�100

Argon two-body

C6 −1.95388�100 −1.54323�100 −1.75567�100 −1.44901�100 −1.71568�100

C8 −8.52074�101 −7.62721�101 −8.24211�101 −7.45489�101 −8.23259�101

C9 2.03725�103 1.86985�103 2.02560�103 1.79898�103 2.02006�103

C10 −1.23063�104 −1.13920�104 −1.23765�104 −1.08935�104 −1.23340�104

C12 1.35546�105 1.24247�105 1.36858�105 1.18323�105 1.36251�105

C14 −9.34500�105 −8.14246�105 −9.37814�105 −7.65316�105 −9.31340�105

C16 3.26447�106 2.49098�106 3.21338�106 2.25294�106 3.17164�106

C18 −4.87508�106 −2.24505�106 −4.51433�106 −1.61706�106 −4.37048�106

C20 1.26291�106 −2.34952�106 5.86474�105 −3.04279�106 3.85056�105

Argon three-body

CAT 3.00245�10−2 2.29722�100 1.56113�100 1.49059�100 1.75277�100

A0 2.52739�103 −2.82581�101 1.36850�103 1.27837�103 1.34605�103

A2 −3.56109�103 −1.56516�103 −2.71001�103 −2.58484�103 −2.61699�103

A4 −1.15254�102 5.44492�101 5.09201�102 4.30313�102 4.95611�102

A6 −1.54501�102 −1.18081�102 −1.90652�102 −1.80012�102 −1.80895�102

A8 −3.55054�101 6.91333�100 1.51729�101 1.28848�101 1.49800�101

A10 3.36983�100 1.56867�10−1 −2.67911�10−1 −1.56480�10−1 −2.87608�10−1

� 2.27521�100 2.10135�100 2.08460�100 2.09698�100 2.07328�100
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Barker in 1976 �−6.43 a.u. and −64.2 a.u., respectively�,65

or the more recent values by Kumar and Thakkar �−6.35 a.u.
and −64.42 a.u., respectively�.31 Note that the other Ci need
to describe both the short and medium to long-range part and
cannot be compared to the long-range dispersion coeffi-
cients. Moreover, for the very high-pressure range �P
�100 GPa� the extended Lennard-Jones fit becomes nu-
merically rather unstable �as do other functional forms be-
cause of the very large energies involved�, and we used a
different set of fit parameters for this range to describe this
region more accurately. We also mention that in order to
describe both the extreme short- and long-range regions cor-
rectly, one could also apply more sophisticated potential
forms like the Tang-Toennies potential function,66 used, for
example, for neon and argon by Vogel and co-workers.67,68

However, the extended Lennard-Jones potential is computa-
tionally more efficient and is sufficient to discuss the conver-
gence of the Møller-Plesset perturbation series here.

Spectroscopic constants for the dimeric neon and argon
molecules were obtained using the numerical Numerov-
Cooley procedure.69,70 Zero-point vibrational effects �E0� to
the cohesive energy of the fcc lattice were obtained from the
Einstein approximation,71 and anharmonicity effects are in-
cluded within this approximation using perturbation theory
as described in detail in Refs. 41 and 72.

III. RESULTS AND DISCUSSION

A. Two-body interactions

The diatomic potential curves are shown in Fig. 1 and the
spectroscopic constants obtained from these curves are listed
in Table II. Figure 1 illustrates that for the rare gas dimers
only MP4 closely resembles the CCSD�T� results, MP2 un-
derestimates the binding energy for Ne2 and overestimates it
for Ar2 �see also discussion in Ref. 77�. The perturbative
triple contributions in the coupled cluster procedure are im-
portant and should not be neglected. This is also reflected in
the spectroscopic constants. At the CCSD�T� level of theory
the spectroscopic constants are in good agreement with ex-
perimental results, despite the fact that, for example, relativ-
istic effects are neglected for argon. Note that the experimen-
tal harmonic frequencies and anharmonicity constants carry

large uncertainties, as only very few vibrational levels fit into
these potential-energy curves. Regarding the hard-sphere ra-
dius rc, defined as the onset of the repulsive wall between
two atoms, for Ne2 the MP2 value is too large by about
0.10 Å, and for Ar2 it is too small by about 0.04 Å com-
pared to our CCSD�T� result. This implies that the repulsion
is overestimated for neon as the repulsive region is entered at
too large interatomic distances but underestimated for argon,
which, as we shall see, has important consequences for the
accurate determination of the pressure-volume relation in the
condensed state. We note that our CCSD�T� results are in
good agreement with the most precise relativistic coupled
cluster calculations for the neon and argon dimers by Vogel
and co-workers, who obtained equilibrium bond distances of
3.089 Å for Ne2 and 3.762 Å for Ar2, and hard sphere radii
of 2.761 Å and 3.357 Å, respectively.67,68

B. Three-body interactions

The three-body potential curves for Ne3 and Ar3, for ideal
D3h symmetry trimers �equilateral triangle�, are shown in
Fig. 2. Similar to HF, MP2 cannot describe the correct long-
range Axilrod-Teller-Muto behavior. In fact, the energy at the
maximum of the three-body potential curve is underesti-
mated by more than two orders of magnitude for neon and
one order of magnitude for argon. This is reflected in the
MP2 values of the long-range three-body coefficients CAT,
which are far too small compared to the CCSD�T� result, as
pointed out before.29 At the CCSD�T� level of theory the CAT
coefficients are in rather good agreement with the estimated
values by Barker,65 their values being CAT=12.0 a.u for
neon and 517.3 a.u. �our results converted to atomic units are
12.6 and 531.1, respectively�. Our values also compare well
with more recent data by Kumar and Thakkar �11.92 a.u. and
519.0 a.u. for Ne and Ar, respectively�.31

A significant improvement toward the more accurate
coupled-cluster results is obtained when using MP3. Here,
we note that the three-body Axilrod-Teller-Muto term arises
from the coupling of all three pair interactions �triple dipole
term� in a perturbation series with a zero-order Hamiltonian
that consists of the exact spectrum of the three noninteracting
atoms.78 Although the Møller-Plesset series starts differently
from the Hartree-Fock operator as the zero-order Hamil-
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FIG. 1. �Color online� Two-body potential curves for Ne2 and Ar2 at various levels of theory from CBS limit calculations.
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tonian, it is clear that the long-range behavior is dominated
by electron correlation, and the Axilrod-Teller-Muto term
can only be described satisfactorily by third-order Møller-
Plesset theory, which couples all double substitutions.79 This
was correctly pointed out by Chałasiński and co-workers
who gave a detailed analysis of weak interactions in terms of
both the order in the Møller-Plesset expansion and the inter-

action potential.80 In fact, Chałasiński et al. pointed out that
the n-body dispersion nonadditivity appears no sooner than
in the nth order in the Rayleigh-Schrödinger perturbation
expansion of the correlation energy.30,81 Nevertheless, Fig. 2
shows that it is by far more difficult to describe the repulsive
part of the three-body interaction correctly, and even the
MP4 curves deviate significantly from CCSD�T� for both

TABLE II. Calculated spectroscopic constants for Ne2 and Ar2 in comparison with experimental results.
Equilibrium bond distances re in Å, binding energy De, dissociation energy D0 �corrected for zero-point
vibration�, harmonic frequency �e, and anharmonicity constant �exe, all in cm−1. The two-body hard-sphere
radius rc �Å� defined by E�2��rc�=0, the three-body potential maximum position rm �Å� and corresponding
energy E�3��rm� �cm−1�, and the radius r0 �Å� where the three-body potential becomes attractive as defined by
E�3��r0�=0 are also listed. Experimental values are taken from Refs. 73–76.

Atom Property MP2 MP3 MP4 CCSD CCSD�T� Expt.

Two-body

Neon re 3.202 3.136 3.107 3.144 3.093 3.094	0.001

rc 2.866 2.807 2.775 2.813 2.763

De 19.1 22.7 28.0 23.0 29.0 29.4	0.012

D0 9.5 11.9 15.9 12.2 16.6 16.8

�e 22.6 25.2 27.9 25.2 28.6 28.9a

�exe 6.9 7.3 7.3 7.2 7.4 7.6a

Argon re 3.729 3.819 3.762 3.861 3.772 3.761�3�
rc 3.323 3.414 3.357 3.454 3.367

De 114.5 83.4 102.1 72.9 98.7 99.2

D0 98.2 69.4 86.7 59.9 83.5 84.8

�e 34.0 29.8 32.6 27.5 32.1 31.4

�exe 3.2 3.5 3.3 3.4 3.4 2.9

Three-body

Neon rm 3.609 2.959 2.943 2.960 2.892

r0 3.455 2.756 2.741 2.755 2.690

E�3��rm� 0.0021 0.406 0.475 0.438 0.647

Argon rm 3.968 3.503 3.640 3.682 3.595

r0 3.756 3.239 3.380 3.419 3.335

E�3��rm� 0.24 6.50 3.01 2.57 3.75

aThese values are based on only two vibrational levels reported in Ref. 73.
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FIG. 2. �Color online� Three-body potential curves for the equilateral triangle of Ne3 and Ar3 at various levels of theory from CBS limit
calculations.
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neon and argon, and perhaps higher order coupled cluster
calculations are also required to obtain more accurate results
in this region, as, for example, done recently by Vogel and
co-workers.67,68 Moreover, as the slopes of the three-body
curves are quite different in the attractive region, with MP2
mostly affected by this, we expect larger deviations in the
high-pressure range �strong overlap region� for the equation
of state �pressure-volume relation�.

To illustrate the importance of correcting for the BSSE in
the three-body potential, we show the uncorrected curves in
Fig. 3 for various aug-ccPVnZ basis sets. For several basis
sets, we obtain an erratic functional behavior for E�3��r�, not
seen in the BSSE-corrected potentials. Moreover, if not cor-
rected for BSSE the smaller basis sets can overestimate long-
range interactions by orders of magnitude. Hence, the BSSE
becomes crucially important for the three-body term, even
more so than for the two-body interaction.

C. Solid-state calculations

The results of our solid-state calculations are summarized
in Table III. The CCSD�T� results are in very good agree-
ment with the experimental values if zero-point vibrational
effects are included in the lattice optimization. Such effects
become quite important for both neon and argon, i.e., with-
out the inclusion of zero-point vibrational effects one cannot

accurately reproduce the experimental values for these solid-
state properties. We note that the anharmonic contribution to
the cohesive energy of neon at the CCSD�T� optimized lat-
tice constant is −4.8 cm−1 compared to the much larger har-
monic term of −48.1 cm−1. The latter in turn is much larger
than the three-body contribution to the cohesive energy of
−5.8 cm−1 �the two-body contribution is 215.7 cm−1�. The
CCSD�T� bulk modulus for neon is in excellent agreement
with experiment. Here, we note that even the anharmonic
vibrational contributions become important, i.e., at the opti-
mized CCSD�T� lattice constant we obtain from the two-
body term B=6.1 kbar; including the three-body contribu-
tion adds 
B=0.4 kbar, the contribution from the harmonic
zero-point vibrations is 
B=4.0 kbar, and the anharmonic
corrections to the zero-point vibrational term add another

B=0.5 kbar. Equally large vibrational effects are calcu-
lated for argon.

As noted earlier, MP2 overestimates the binding strength
for argon but underestimates it for neon. This is partially
compensated at the MP3 level of theory but only MP4 gives
results comparable with experimental data or CCSD�T�. The
convergence behavior of the Møller-Plesset series in the two-
body lattice constants a, cohesive energies Ecoh, and bulk
moduli B for both neon and argon is reflected in the conver-
gence behavior of the corresponding dimer bond distances re,
binding energies De, and vibrational frequencies �e �the lat-
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FIG. 3. �Color online� Basis set dependence of the three-body potential curves for the equilateral triangle of Ne3 �left� and Ar3 �right�
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ter through B��e
2 /re�. These relationships can be derived

from ideal Lennard-Jones type of interactions and were dis-
cussed in detail in Ref. 41. The non-negligible three-body
effects and zero-point vibrational corrections for the bulk
properties significantly change these values but do not
change the overall trend in the MPn convergence with in-
creasing n, which is obviously dominated by the two-body
part.

We briefly discuss four-body effects, which are not in-
cluded here as they are expected to be one order of magni-
tude smaller than the three-body contributions at normal
pressure.81 Rościszewski et al. estimated four-body effects
for the rare gas solids using an incremental scheme for elec-
tron correlation.40 For neon these effects are rather small,
i.e., the lattice constant is increased by only 0.001 Å, the
cohesive energy increases by 0.7 cm−1 and there is basically
no change in the bulk modulus.40 However, for argon four-
body terms in the interaction potential are slightly more im-
portant. Here, the lattice constant is increased by only
0.002 Å, the cohesive energy by 5.5 cm−1 and the bulk
modulus is decreased by 0.5 kbar.40 Nevertheless, these ef-
fects are within all other errors in our approximations ap-
plied, and therefore the neglect of higher order terms in the
interaction potential is justified.

D. Møller-Plesset convergence at high pressures

For neon and argon the pressure-volume curves at differ-
ent temperatures are well known experimentally up to rela-

tively high pressures,81,88–94 and will not be discussed here
�for neon a detailed discussion has been provided in Ref. 50�.
Here, we concentrate on the performance of the Møller-
Plesset perturbation series as compared to the more accurate
coupled cluster results.

It is well known that the MPn series starts to diverge with
decreasing electronic band gap. Figure 4 shows the elec-
tronic 1�g

+→ 3�u
+ transition energy with varying bond dis-

tance for the neon and argon dimers. As the dimers interact
only weakly, the CCSD�T� results for the singlet-triplet gaps
at the respective equilibrium distances of the neon �16.79

TABLE III. Calculated lattice parameters a �Å�, cohesive energies Ecoh �cm−1�, and bulk moduli B �kbar�
for the rare gas fcc solids of neon and argon. Experimental values are taken from Refs. 82–87.

Prop. Method MP2 MP3 MP4 CCSD CCSD�T� Expt.

Neon

a E�2� 4.436 4.346 4.301 4.356 4.286

E�2�+E�3� 4.429 4.357 4.311 4.368 4.300

E�2�+E�3�+E0 4.641 4.553 4.487 4.563 4.474 4.464

Ecoh E�2� 150.6 178.5 221.0 180.5 224.7

E�2�+E�3� 151.2 173.4 214.8 174.9 216.8

E�2�+E�3�+E0 99.7 117.7 152.5 119.2 154.0 161.6

B E�2� 12.2 15.4 19.0 15.4 19.6

E�2�+E�3� 12.1 14.6 18.1 14.6 18.5

E�2�+E�3�+E0 6.5 8.2 10.5 8.2 10.8 11.0

Argon

a E�2� 5.160 5.296 5.212 5.354 5.227

E�2�+E�3� 5.142 5.353 5.234 5.383 5.258

E�2�+E�3�+E0 5.200 5.425 5.298 5.459 5.322 5.300

Ecoh E�2� 898.0 643.7 792.2 562.4 764.5

E�2�+E�3� 901.3 576.0 746.0 526.4 712.0

E�2�+E�3�+E0 818.9 514.8 673.6 466.8 641.9 645.5

B E�2� 43.4 30.5 38.2 26.0 36.7

E�2�+E�3� 42.0 25.7 34.3 23.3 32.6

E�2�+E�3�+E0 36.1 21.2 29.0 19.1 27.4 26.7
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FIG. 4. �Color online� The singlet-triplet gap for Ne2 �upper
curves� and Ar2 �lower curves� obtained from separate SCF calcu-
lations for the two states at various levels of theory using an aug-
ccpVTZ �+three diffuse s functions� basis set.
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eV� and argon dimers �11.60 eV� are not too different from
the 1S0→ 3P2 transitions of atomic neon �our CCSD�T� value
16.55 eV; exp. 16.62 eV �Ref. 95�� and argon �CCSD�T�
11.45 eV; exp. 11.55 eV �Ref. 95��. In fact, this slight in-
crease compared to the atomic values is caused by the per-
turbative triple corrections in the coupled cluster procedure
and might disappear if such contributions are treated varia-
tionally. Nevertheless, at smaller distances the gap between
the antibonding occupied np and the bonding unoccupied
�n+1�s orbitals becomes smaller with decreasing interatomic
distance. Another important fact is that the Møller-Plesset
curves follow closely the CCSD�T� results down to shorter
bond distances �the MP3 and MP4 curves follow closely the
CCSD�T� curve shown in Fig. 4�. At very short distances,
i.e., around 1.01 Å for neon and 1.42 Å for argon, the trip-
let state falls below the singlet state, i.e., there is a curve
crossing between the two states in the repulsive region.
However, such small distances in solid neon and argon trans-
late into volumes of 0.43 cm3 /mol for Ne and
1.21 cm3 /mol for Ar, and therefore into extremely high
pressures beyond the terapascal range. Even though the clo-
sure of the band gap in the solid state is expected to occur at
larger internuclear distances when compared to the dimer, we
do not expect observation of the band gap closure within a
pressure range accessible in laboratory experiments. For ex-
ample, the band-gap closure in solid helium is expected at
around 26 TPa.96 Only for dense helium at temperatures of
60 000 K conductivity has been observed recently using
laser-driven shock wave techniques in a diamond-anvil
cell.97 The optical spectra for neon and argon at high pres-
sures are not known, and a metallic phase transition has yet
to be observed for neon and argon at low temperatures. For
xenon the gap is small enough for the metallic phase transi-
tion to be observed at pressures of 150 GPa.98 Nevertheless,
preliminary gradient-corrected density-functional calcula-
tions show that the single-particle gap for solid argon closes
at a nearest-neighbor distance of 2.15 Å �volume density
4.25 cm3 /mol�, as expected larger than the calculated dimer
distance for singlet-triplet gap closure. We mention that the
experimentally determined band gap in solid neon at normal
pressure is surprisingly high at 21.69 eV,99,100 and that of
solid argon is 14.3 eV.101 Both values are in fact close to the
experimental atomic ionization potentials for neon �21.56

eV� and argon �15.76 eV�,95 which suggests that the band
gap for the solids may require some reevaluation.

As the rare gas solids are wide-gap insulators up to high
pressures, we expect that neon and argon are well described
by Møller-Plesset perturbation theory up to pressures acces-
sible in the laboratory �i.e., to about 250 GPa�. This is indeed
the case as depicted in Fig. 5, i.e., the deviation of the cal-
culated MP4 pressure from CCSD�T� results is rather small
up to relatively small volumes �high pressures of P
	100 GPa�. However, it is also clear that the deviations of
the MPn series from the CCSD�T� calculated pressures be-
come larger with decreasing volume �increasing pressure�,
and at very small volumes we see that the MPn series starts
to diverge. We note however, that even under huge compres-
sion the MP2 pressure deviates by less than 10% from the
CCSD�T� result for both neon and argon. It is also evident
that neon and argon show quite different behavior in the
pressure deviations, which we analyze in more detail.

At a volume of V=3 cm3 /mol for neon, the MP2 result
for the solid underestimates the CCSD�T� calculated total
pressure �approximately 251 GPa� by only 1 GPa, whereas
the deviations are much larger for argon in that pressure
range �
P=24 GPa between MP2 and CCSD�T� at
PCCSD�T�=252 GPa and VCCSD�T�=5.5 cm3 /mol�. This is
due to a fortuitous error cancellation for neon between the
two-body and three-body contributions to the total pressure
as shown in Fig. 6. At V=3 cm3 /mol the MP2 two-body
term overestimates the pressure by 5.8 GPa compared to the
CCSD�T� result but underestimates it by 6.8 GPa in the
three-body term. These cancellation effects �different signs
of 
P= PCCSD�T�− PMPn� for the two-body compared to the
three-body term are seen at all levels of theory.

As pointed out above, for neon both the repulsive region
in the two-body term and the attractive region in the three-
body term are entered at too large interatomic distances,
leading to overestimated pressures in the two-body and un-
derestimated pressures in the three-body term. At small vol-
umes, the interplay of these effects leads to the nonmonoto-
nous behavior of 
P as seen in Fig. 5. Such cancellation
effects do not occur for argon, where, for example, attractive
interactions are underestimated in the two-body term at the
MP2 level of theory, and the onset of the repulsive region
appears at a smaller internuclear distance compared to
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FIG. 5. �Color online� Deviation of the calculated pressure from the CCSD�T� result, i.e., 
P= PCCSD�T�− PM, where M stands for MP2,
MP3, MP4, and CCSD.
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CCSD�T�. Thus, errors in the two-body and three-body con-
tribution to the total pressure are of the same sign; this holds
for all MPn levels of theory for argon.

IV. CONCLUSIONS

We demonstrated that within the Møller-Plesset perturba-
tion series describing electron correlation, only MP4 gives
results for solid neon and argon in good agreement with ex-
periment. Deviations from experimental values can be traced
back mainly to deficiencies in the two-body term, and at the
MP2 level of theory in the underestimation of the repulsive
Axilrod-Teller-Muto three-body term. At the CCSD�T� level
of theory the lattice constants, cohesive energies and bulk
moduli are in good agreement with experiment. Further im-
provements require a better two-body term, for example, by
including relativistic effects and going beyond the CCSD�T�

level of theory �see Refs. 67 and 68�, a full three-
dimensional fit for the three-body term �see, for example,
Refs. 102 and 103�, and consideration of the four-body term.
Moreover, we showed that the MPn convergence deteriorates
at very high pressures as one expects. Thus, the application
of second-order Møller-Plesset theory to study insulators, es-
pecially under very high pressure, has to be taken with some
care.
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