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Ground state properties of crystalline ice Ih are investigated by combining periodic Hartree-Fock

calculations with a many-body expansion for the electron correlation energy using second-order many-

body perturbation theory and coupled-cluster techniques. Very good agreement with experimental data

can already be achieved by considering two-body correlation contributions up to the third coordination

shell in crystalline ice. This hints at the possibility to accurately simulate ab initio water by using periodic

Hartree-Fock calculations together with a parametrized two-body correlation potential.
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Water and ice have been and still are subject to innu-
merable experimental and theoretical studies, due to their
abundance on Earth and their important role in many
chemical, biological, or geological processes, or simply
because of their many unusual properties [1]. Understand-
ing these properties is crucially linked to understanding the
hydrogen bond network that forms in water’s liquid and
solid phase. The accurate quantum theoretical simulation
of water is, however, still a formidable task.

Computationally, a multitude of quantum chemical
methods are routinely used to study water clusters [2–4];
extended systems are usually investigated by (semi-) clas-
sical force field simulations or density-functional-theory
(DFT) based calculations [5–7]. On the ab initio side, it is
highly desirable to go beyond periodic Hartree-Fock (HF)
calculations and include electron correlation for extended
aqueous systems. However, the treatment of electron cor-
relation from first-principle methods constitutes one of the
most fundamental problems in solid-state physics, e.g., it is
currently not known how to treat systems with small band
gaps (e.g., metals) using accurate electron correlation
methods such as coupled cluster, which are standard in
molecular electronic structure theory [8,9].

A major improvement in this direction consists of the
introduction of the incremental correlation method by Stoll
and co-workers [10,11], which was successful even for
metallic systems like mercury [12]. Note, however, that
while this method is a way to systematically obtain corre-
lation energy corrections, it is not a true two-particle theory
that provides correlated wave functions in a periodic sys-
tem. Recently, we showed that the electron correlation
energy of small water clusters converges rapidly with the
order of the many-body decomposition in the interaction
energy, much faster than the total interaction energy [13].
While this illustrates the local nature of electron correla-
tion, it also raises the question whether solid water could be
described by combining periodic boundary condition HF
calculations with localized correlation energy calculations

truncated at the two- or three-body level. If the former is
sufficient, for instance liquid water could be simulated
from ab initiowave-function-based methods by combining
HF calculations and a parametrized dimer correlation po-
tential, in the spirit of a recently presented ab initio water
pair potential [14]. In this Letter, we show that ground state
properties of crystalline ice can indeed be calculated very
accurately by considering two-body correlation contribu-
tions on top of periodic HF calculations.
In the incremental approach the total interaction energy

of ice is separated into a HF term EHF and electron corre-
lation term Ec:

E ¼ EHF þ Ec: (1)

EHF is obtained from periodic HF calculations, whereas Ec

for a N particle system is subjected to a many-body ex-
pansion [15]:

EcðNÞ ¼ X

n

EðnÞ
c ðNÞ

¼ X

i

Eð1Þ
c ðiÞ þX

i<j

Eð2Þ
c ðijÞ þ X

i<j<k

Eð3Þ
c ðijkÞ þ . . . :

(2)

Exploitation of translational symmetry allows us to discard
one summation index in the sums of (2) and also leads to
faster convergence. If the series (2) converges sufficiently
fast, it can be truncated after the two- or three-body terms

Eð2Þ
c ðijÞ or Eð3Þ

c ðijkÞ.
We simulate the most common crystalline phase of ice

under ambient conditions, hexagonal ice Ih. Its hydrogen
bond disorder is considered by using a dipole moment-free
16 molecule super cell [16]. HF total energy calculations
are performed using the CRYSTAL06 [17] program package.
Atom-centered Gaussian basis sets for these (periodic
boundary) calculations have to be chosen carefully: too-
diffuse basis functions cause linear dependencies or pro-
hibit convergence of the self-consistency procedure, while
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too-small basis sets fail to describe correctly the hydrogen
bonds in ice and produce large basis-set superposition
errors (BSSE) [18]. We found several oxygen basis sets
previously used in periodic HF calculations [19,20] as well
as common double-� basis sets [21,22] not to be suitable
for describing ice. Dense, proton-ordered ice phases have
been calculated successfully [23,24] using the Hartree-
Fock optimized split-valence 6–31G** basis sets devel-
oped by Pople et al. [25]. In our work Pople’s 6–311G**
basis sets [26] are used for both oxygen and hydrogen. The
Brillouin zone was sampled using eight special k points
[27]. To calculate the binding energy of ice, the BSSE in

our solid-state HF calculations is corrected for by using the
Boys-Bernardi counterpoise scheme: water’s gas phase
energy is calculated with basis sets on the positions of all
surrounding water molecules. The supercell [16] is gener-
ated by two water molecules in the asymmetric unit. Their
internal coordinates and the unit cell parameters are opti-
mized over a range of fixed unit cell volumes V. The
energy-volume curve EðVÞ was fitted using Vinet’s equa-
tion of state [28].
Localized correlation calculations are performed using

the MOLPRO [29] program package in conjunction with
augmented correlation consistent triple-� basis sets [30].
Both second-order many-body perturbation theory [31]
[MBPT2] and coupled-cluster theory [32,33] [CCSD(T),
including single, double, and perturbative triple excita-
tions] are used to calculate correlation energies. Figure 1
illustrates the two- and three-body terms studied here. Up
to two-body next-nearest-neighbor interactions the sys-
tem’s geometry is optimized with respect to the total
energy E ¼ EHF þ Ec. Correlation contributions from
outer neighbor shells are added as single point energy
corrections; all CCSD(T) energies are computed using
the respective MBPT2 geometries.
Essential results of the HF (plus correlation) calculations

are compiled in Table I and compared to experimental data.
See also Figs. 2 and 3 for the correlation contributions to
the total energy with varying lattice constant. The experi-
mental lattice energy was obtained by Whalley by adjust-
ing ice’s heat of sublimation for zero-point vibrational
energy (ZPVE) corrections [38].
Pure HF calculations underestimate the hydrogen bond

network, yielding too large a lattice constant and too-small
a binding energy. Including one-body MBPT2-correlation

FIG. 1 (color online). Ice Ih crystal structure, depicting water
dimers (dashed lines) and trimers (solid line), used in the two-
body and three-body correlation calculations, respectively.

TABLE I. Ground state properties of ice Ih from ab initio and
DFT calculations, compared to experimental values: equilibrium
lattice constants a0, lattice energies Eb, bulk moduli B0, and
their derivatives B0 ¼ dB=dp. DFT results from Ref. [34]; GGA
functionals used: PW91 [35], PBE [36].

a0 [Å] Eb [eV] B0 [kbar] B0

Experiment 4.497a �0:580b 89.0c

(including ZPVE) �0:490b

HF 4.735 �0:402 100.4 3.97

HFþMBPT2ð1Þ 4.686 �0:401 111.6 5.14

HFþMBPT2ð2;NNÞ 4.549 �0:530 142.9 5.03

HFþMBPT2ð2; 2NNÞ 4.518 �0:556 148.5 5.06

HFþMBPT2ð2; 3NNÞ 4.504 �0:568 151.4 5.12

HFþMBPT2ð2; 5NNÞ 4.501 �0:571 150.4 4.97

(including ZPVE) 4.529 �0:470 135.4 5.27

HFþMBPT2ð3Þ 4.509 �0:569 150.7 5.05

HFþ CCSDðTÞð1Þ 4.687 �0:401 107.9 5.43

HFþ CCSDðTÞð2;NNÞ 4.560 �0:529 141.3 5.44

HFþ CCSDðTÞð2; 2NNÞ 4.522 �0:560 148.3 5.40

HFþ CCSDðTÞð2; 3NNÞ 4.505 �0:574 153.3 5.68

HFþ CCSDðTÞð2; 5NNÞ 4.501 �0:577 152.4 5.54

(including ZPVE) 4.529 �0:476 135.9 5.78

DFT-LDA 4.157 �1:139 263.6 4.56

DFT-GGA (PW91) 4.418 �0:702 157.6 4.71

DFT-GGA (PBE) 4.424 �0:670 149.0 5.01

aFrom Ref. [37]
bFrom Ref. [38]
cFrom Ref. [39]
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FIG. 2 (color online). Lattice energy of ice from HF calcula-
tions and various MBPT2 correlation treatments, compared to
experiment [37,38]. Notation: MP2(2,xNN) denotes periodic HF
calculations plus two-body MBPT2 up to the xth shell in nearest
neighbors.
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terms Eð1Þ
c ðiÞ, i.e., intramolecular correlation energies, does

not improve these results. This is expected as most ground
state properties depend on the correct description of the
inter-molecular hydrogen bonds. However, including two-

body terms Eð2Þ
c ðijÞ leads to close agreement with experi-

mental results, depending on the spatial extent over which
the interactions are considered. Table I illustrates the im-
provement achieved by successively including outer neigh-
bor shells into the two-body energy summation. We find
the two-body interaction energy to be converged after
including the third nearest-neighbor shell, that is, including
the 30 closest dimer correlation contributions for every
molecule in the unit cell, up to a distance of roughly 7 Å
at equilibrium lattice constant. Including the 4th and 5th
nearest neighbors (about 150 additional dimer terms, up to
a distance of roughly 11 Å) sums up to very small energy
contributions of about �2 to �5 meV per molecule. A
similarly rapid convergence behavior was previously found
in rare gas solid-state calculations [40]. The thus obtained
lattice constants of 4.5006 Å [4.5010 Å] from MBPT2
[CCSD(T)] are in excellent agreement with the experimen-
tal result of 4.497 Å. The c=a ratio of 1.627 also agrees
with experiment (1.628, [37]); at HF level, c=a ¼ 1:609 is
significantly smaller. Similarly, the lattice energy of
�0:571 eV [�0:577 eV] per molecule is very close to
the experimental value of �0:580� 0:007 eV per mole-
cule. The experimental value for the bulk modulus was
obtained at T ¼ �16 �C and is thus significantly smaller
than the calculated values of about 150 kbar at absolute
zero. Extrapolating experimental fits for B0ðTÞ to absolute
zero yields values ranging from B0ð0Þ ¼ 107 kbar [41] to
B0ð0Þ ¼ 121 kbar [39], still much smaller than the calcu-
lated value. We conclude, however, that for the two-body
summation of the correlation energy, a cutoff radius of

about 7 Å gives reasonably converged results, and the
bulk modulus calculated at the coupled-cluster level is
the most reliable reference value at 0 K.
In water clusters, the three-body correlation energy

Eð3Þ
c ðijkÞ was previously found to be much smaller than

the two-body term Eð2Þ
c ðijÞ [13]. Moreover, that study

found the three-body correlation to be mostly compensated
by an equally large four-body term of opposite sign. For
crystalline ice, the magnitude of the three-body correlation
is estimated by considering the most important three-body
terms: water trimers within the unit cell with two hydrogen
bonds, i.e., the most closely arranged trimer configurations
that can be constructed, cf. Fig. 1. Their contributions to
the total energy sum up to between�0:4 andþ5 meV per
molecule over the lattice constant range considered; the
changes in the ground state properties are small; see
Table I. Three-body terms from more distantly located
trimer configurations are expected to contribute much

less to the correlation term Eð3Þ
c ðijkÞ. At equilibrium lattice

constant, it holds Eð3Þ
c ðijkÞ ¼ 0:0012Eð2Þ

c ðijÞ, confirming
the rapid convergence of the many-body expansion already
found in water clusters. Thus, it should be reasonable to
truncate the expansion after the two-body term, which in
turn can be spatially restricted to a maximum distance of
about 7 Å between the molecules considered.
DFT calculations [34] give less accurate results. The

local density approximation (LDA) for the electron
exchange-correlation energy overestimates the hydrogen
bond strength severely, resulting in a lattice constant 7.5%
too small. Generalized-gradient-approximation (GGA)
functionals give better crystal parameters and bulk moduli,
but still overestimate the lattice energy by about 100 meV
per molecule. Judging from the HF calculation’s under-
estimation of the hydrogen bond strength, it is expected
and has been found recently [42] that hybrid-density func-
tionals (by mixing in some exact exchange) should be
somewhat better suited to describe solid water or ice.
The optimized effective potential method [43,44] is an-
other promising option to go beyond DFT.
The ZPVE of ice has been estimated to be 90 meV per

molecule from experimental vibrational data [38], and
88 meV per molecule from DFT calculations [34]. Here,
we perform a similar analysis for our calculated ab initio
structures. Lattice vibrations are calculated at MBPT2
level of theory, using an augmented double-� basis set
[30], for the central molecule of a ðH2OÞ5 cluster em-
bedded in the dipole electrostatic field of surrounding ice
[45]. Acoustic (translational and librational) modes are
occupied using the Debye model, optical (intramolecu-
lar) modes using the harmonic Einstein model. Over
the volume range considered, energy shifts range from
110 to 87 meV per molecule, with 102 meV at the equi-
librium lattice constant. The binding energy of
�0:470½�0:476� eV from MBPT2 [CCSD(T)] calcula-
tions compares well to the experimental heat of sublima-
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FIG. 3 (color online). Lattice energy of ice from HF calcula-
tions and various CCSD(T) correlation treatments, compared to
experiment [37,38]. For notation see Fig. 2
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tion of �0:490 eV; see Table I. However, the equilibrium
lattice constants are about 0.7% higher than in experiment.
The simple model employed here most likely overesti-
mates the ZPVE corrections, and a more accurate treat-
ment of the phonon dispersion or the inclusion of
anharmonicity effects should yield better results. The cor-
rected bulk moduli decrease to about 135 kbar, in better
agreement with extrapolated experimental results.

In conclusion, we have presented the first ab initio
many-body decomposition for the total energy of crystal-
line ice. In line with recent water cluster calculations it was
shown that it is sufficient to truncate the correlation energy
expansion after the two-body term. The calculated ground
state properties agree very well with experimental data. We
predict the bulk modulus of ice at very low temperatures to
be higher than extrapolations from high-temperature mea-
surements suggest. The fast convergence of the correlation
energy (both in the many-body expansion and the spatial
extent of the interaction) justifies the combination of peri-
odic HF calculations with a parametrized high-level
ab initio dimer correlation potential, for instance in liquid
water simulations.
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