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Two-state model for critical points and the negative slope of the melting curve
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We present a thermodynamic model which explains the presence of a negative slope in the melt curve, as
observed in systems as diverse as the alkali metals and molecular hydrogen at high pressure. We assume that
components of the system can be in one of two well defined states—one associated with low energy, the other
with low volume. The model exhibits a number of measurable features which are also observed in these systems
and are therefore expected to be associated with all negative Clapeyron-slope systems: first order phase transi-
tions and thermodynamic anomalies along Widom lines. The melt curve maximum is a feature of the model, but
appears well below the pressures where the change in state occurs in the solid: the solid-solid transition is related
to the melt line minimum. An example of the model fitted to the electride transition in potassium is discussed.
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I. INTRODUCTION

Improvements in high-pressure and high-temperature ex-
periments mean that the topic of liquid-liquid phase transi-
tions has attracted significant attention recently. In particular,
there are debates about whether a change in liquid struc-
ture can be regarded as a true phase transition, or a gradual
crossover.

Determining this is challenging for either experiment or
simulation. In a diamond anvil cell experiment it is near im-
possible to observe phase coexistence and be confident that
the system has reached thermodynamic equilibrium. Indeed,
many if not most high pressure experiments report phase
coexistence across a range of pressures—something which
is forbidden in equilibrium thermodynamics. The situation
is no different in simulations—typical electronic structure
calculations are done at a given pressure and temperature
and “discontinuities” are inferred by extrapolation or, at best,
hysteresis.

The melt curve for most materials has a positive slope on
a PT phase diagram. This means that the liquid is less dense
than the solid. There are exceptions, notably water is denser
than ice, and other examples among elements include silicon,
gallium, and carbon. These textbook exceptions at ambient
pressure can generally be understood as due to the partial
breakdown of a network of well defined covalent or hydrogen
bonds causing the atoms or molecules in the liquid to have a
higher coordination than the solid.

Another group of materials which have a negative Clapey-
ron slope at high pressure are the alkali metals [1–20]. Here
the slope is typically positive at ambient pressure, reaching
a maximum, then becoming negative in a pressure region
where the solid phase is typically close packed. At still higher
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pressures, there is a minimum in the melt curve before the
slope becomes positive again. The solid phase in the region of
negative slope is close packed, so the densification on melting
cannot come from a collapsing open network. Curiously, hy-
drogen has a remarkably similar phase diagram to the alkalis
which can be explained by competition between free rotors
and quadrupole interactions [21–23].

Density functional theory can reproduce the negative slope
[24–26]. It also shows some anomalous behavior in liquid heat
capacity, compressibility, viscosity, and thermal expansion
[27]. This implies that there is some significant change in the
liquid binding, though whether it is a true transformation or a
crossover remains unclear. As a consequence, there is renewed
interest in analytic equations of state which can be fitted to
data. For single phases, functional forms such as the Vinet
equation of state work well, but many interesting phenomena
occur where the equation of state is concave or discontinuous.

The thermodynamically stable state is the one with the
lowest Gibbs free energy:

G(P, T ) = U + PV − T S

taking P and T as the independent variables. Evidently G
depends on three quantities, energy, density, and entropy. Any
attempt to relate microscopic to macroscopic properties needs
to consider all three, and how they vary between phases.

There are a wide range of approaches to describe complex
high pressure structures. Those based on electronic-structure
include electride [5], two band [28,29], Fermi surface
[30–32], s-p [33] or s-d [34] transfer, Mott transitions [35] or
pairing [36], molecularization [37–39], high-low spin transi-
tion [40–42], polymerization [43], and “simple-complex” [44]
transition types. Other approaches based on interatomic forces
include soft-core [45,46] and associating particles [47,48].

Despite this huge variety of microscopic models, simple,
analytic thermodynamic models for the melting point maxima
[49–51] and liquid-liquid transformation are missing [52,53].
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Rapoport [54] implies that Klement built such a model,
but it was never published—Rapoport’s own analysis of
Klement’s model does not show a melting point maximum.
A number of lattice-based approaches have been tried [55],
but for obvious reasons their applicability to the fluid state is
debatable. Makov has introduced a thermodynamic approach
for continuous and discontinuous liquid transitions based on
different heat capacities and compressibility, which also gives
a negative melting line [56,57].

We note that most of the microscopic models are based
on a trade-off between two types of interaction, one which
has lower energy, the other lower volume. The purpose of this
paper is to lay out the minimal requirements for an analytic
model of a discontinuous liquid-liquid transformation and a
melting point maximum based only on the idea that a material
can adopt two different states.

The paper is structured as follows—we start by deriv-
ing thermodynamic results for heat capacity, expansivity, and
compressibility in a convenient analytic form. We then present
a mixing model between two thermodynamic states, demon-
strating the Widom lines. A microscopic model inspired by
the electride transition [5–11,58–68], where the states differ
only in volumes, is worked through in detail for both solid and
liquid cases. It is shown that this model is sufficient to obtain
the melt curve maximum, and can support a discontinuous
phase transition in the liquid. A parametrization for potassium
is presented.

II. THERMODYNAMIC MODEL

The theory derived here is of very general applicability.
However, we found it helpful to have a concrete microscopic
model in mind as it is developed.

A. Motivation from simple metals at pressure

We propose that the structure of the high-pressure alkali
metals can be modeled as a mixture of two distinct elec-
tronic states: a low-pressure s-type free electron state, and
a high-pressure “electride” state, with electrons localized in
interstitial pockets, referred to as pseudoanions. In the case
of fcc, we can imagine that the octahedral site is the pseu-
doanion, so the electride has a rocksalt structure. This should
not be taken too literally because in reality, the electride tran-
sition is accompanied by a crystal structural transformation.
Similar evolution happens in a liquid, but here the transition
is continuous because differently sized pseudoanion sites are
available, and there is no symmetry. This microscopic picture
can be related to a macroscopic one by considering the energy,
volume, and entropy of the two states:

(1) The electride has higher energy because the electron is
confined away from the positively charged ion.

(2) The electride has small volume, because it can occupy
the interstitial site between ions, leading to more efficient
packing.

(3) A mixture of the two states gives higher entropy.
In addition to the electride transition, we may also compare

solid and liquid phases for which the solid has lower entropy
and enthalpy, independent of the electride fraction.

In the specific case of electrides, the entropy difference
between the free-electron and electride state is negligible [27]:
in more general applications, one could consider different
entropy in the two states, in addition to entropy of mixing and
entropy of melting.

The need to describe U , T S, and PV for each phase
means that even the simplest model inevitably has several
parameters.

B. Thermodynamics

In a general two-state model, a Gibbs free energy is written
as G(x, P, T ) where x is the fraction of one of the two states.
The equilibrium value for G(P, T ) is obtained by minimizing
G(x, P, T ) with respect to x. So for all P, T we have

G(P, T ) = min
x

G(x, P, T ). (1)

Thus x is a dependent variable whose value at equilibrium
varies with the independent variables pressure and tempera-
ture. Values of x which do not minimize G(x, P, T ) represent
nonequilibrium states. A necessary, but not sufficient require-
ment for equilibrium is(

∂G

∂x

)
P,T

=
(

∂H

∂x

)
P,T

− T

(
∂S

∂x

)
P,T

= 0, (2)

where H = U + PV is the enthalpy. Simply solving that
equation will also generate unphysical free energy maxima
and metastable states.

Thermodynamic properties are obtained as derivatives of
the free energy. Although the calculus is routine, we present
the results here because of the additional terms which arise
due to the x factor, and the fact that some derivatives can-
not be written analytically because of the requirement to
minimize x.

1. Heat capacity Cp

The standard thermodynamic definitions of the heat capac-
ity are

Cp =
(

∂H

∂T

)
P

= T

(
∂S

∂T

)
P

= T

(
∂2

∂T 2
min

x
[G(x, P, T )]

)
P

.

(3)

Note that x is not an independent variable, and changes in
x contribute to the heat capacity

CP =
(

∂H

∂T

)
P,x

+
(

∂H

∂x

)
P

(
∂x

∂T

)
P

. (4)

The quantity ∂T
∂x can be awkward to evaluate, so to elimi-

nate it, we consider(
∂

∂T

)(
∂G

∂x

)
= −

(
∂S

∂x

)
+

(
∂x

∂T

)[(
∂2G

∂x2

)]
, (5)

dropping the subscripts for clarity. Using the equilibrium
condition [Eq. (2)], this gives

(
∂T

∂x

)
P

= T

(
∂2G

∂x2

)
P

/(
∂H

∂x

)
P

. (6)
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From which the expression for the heat capacity becomes

CP =
(

∂H

∂T

)
P

=
(

∂H

∂T

)
P,x

+ 1

T

(
∂H

∂x

)2

P

/(
∂2G

∂x2

)
P

. (7)

2. Isothermal compressibility

The standard thermodynamic definitions of compressibility
are

κT = − 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂2G

∂P2

)
T

, (8)

including the internal variable x,(
∂2G

∂P2

)
T

=
(

∂2G

∂P2

)
T,x

+ 2

(
∂2G

∂P∂x

)
T

(
∂x

∂P

)
T

. (9)

The equilibrium condition ensures that the ( ∂G
∂x )T ( ∂2x

∂P2 )T

term is zero.
Again, there is no convenient relationship between P and

x, but following a similar argument to Eq. (6) we find(
∂x

∂P

)
T

= −
(

∂2G

∂P∂x

)
T

/(
∂2G

∂x2

)
T

(10)

and (
∂2x

∂P2

)
T

=
(

∂3G

∂P2∂x

)
T

/(
∂2G

∂x2

)
T

−
(

∂3G

∂P∂x2

)2

T

/(
∂2G

∂x2

)2

T

. (11)

3. Thermal expansion

The standard thermodynamic definitions of thermal expan-
sion are

α = 1

V

(
∂V

∂T

)
T

= 1

V

(
∂2G

∂T ∂P

)
, (12)

∂2G

∂T ∂P
=

(
∂2G

∂T ∂P

)
x

+
(

∂2G

∂P∂x

)
T

(
∂x

∂T

)
P

+
(

∂2G

∂T ∂x

)
P

(
∂x

∂P

)
T

. (13)

Again, using the equilibrium condition ( ∂G
∂x )T = 0.

C. Linear combination model with ideal solution

In a slightly more specific model, a system is described by
particles in two possible thermodynamic states A (x = 1) and
B (x = 0). When mixed in an ideal solution, the Gibbs free
energy is given by

G(P, T ) = xG(1, P, T ) + (1 − x)G(0, P, T )

+ RT [x ln x + (1 − x) ln (1 − x)], (14)

where x is the fraction of particles in state A, GA = G(1, P, T )
and GB = G(0, P, T ) are the Gibbs free energies of pure A and
B states. The equilibrium value for x is found by minimizing
G(P, T ):

x(P, T ) = e−GA/RT

e−GA/RT + e−GB/RT
= 1

1 + e−�G/RT
, (15)

with �G = GB − GA.

We can find the volume

V (P, T ) =
(

∂G

∂P

)
T

= xVA(P, T ) + (1 − x)VB(P, T ) (16)

and entropy

S(P, T ) = −
(

∂G

∂T

)
P

= xSA(P, T ) + (1 − x)SB(P, T )

+ R[x ln x + (1 − x) ln (1 − x)] (17)

always remembering that x = x(P, T ). We further derive ana-
lytic expressions for compressibility

κT = − 1

V

(
∂V

∂P

)
T

= xκT,A + (1 − x)κT,B + �V

V

(
∂x

∂P

)
T

,

(18)

with �V = VB − VA and thermal expansion

α = 1

V

(
∂V

∂T

)
P

= xαT,A + (1 − x)αT,B + �V

V

(
∂x

∂T

)
P

.

(19)

Both of which have an anomalous component arising from
the conversion of material between the two states, in addition
to the weighted average. For the heat capacity there is an
additional anomalous term from the mixing entropy

CP = T

(
∂S

∂T

)
P

= xCP,A + (1 − x)CP,B +
(
�S + R ln

x

1 − x

)(
∂x

∂T

)
P

,

(20)

with �S = SB − SA.
From Eq. (15) we immediately see that there is no dis-

continuity in x, from which it follows that this model cannot
describe a phase transition, only a crossover. We also observe
that the ideal solution entropy ensures that mathematically, as
well as intuitively, 0 < x < 1.

D. Nonideal solution solid model

A small rephrasing of the Bragg-Williams (BW) [69]
model can be used to extend the model from Sec. II C to
describe a discontinuous transition within a single solid phase.
BW is a mean field approximation to the Ising model, where
for high-pressure applications the spins are mapped to “elec-
tride” and “free electron” states, and the “field” is mapped
to the enthalpy difference between the two states. Although
the model has wider applicability, e.g., the high-spin/low-
spin transition in ferrous minerals, we will use the electride
terminology here.

The enthalpy difference with respect to the x = 0 free
electron state is

H = x(�Ue + P�Ve) + Jx(1 − x), (21)

where x is the electride fraction, �Ue and �Ve are the change
in energy and volume with respect to the free electron values
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when an electron moves to an electride pseudoanion site, both
assumed positive, and J is a local coupling between electride
and free electron. A high pressure phase transition at T = 0
occurs when the field/enthalpy difference changes sign (PT =
�U/�V ).

Including entropy, the Gibbs free energy relative to the free
electron state is

GBW = x(�Ue − P�Ve − T �Se) + Jx(1 − x)

+ RT [x ln x + (1 − x) ln(1 − x)]. (22)

We find that the x-dependent contributions to relative vol-
ume, internal energy, and entropy are

V = −x�Ve, (23)

U = x�Ue + Jx(1 − x), (24)

S = R[x ln x + (1 − x) ln(1 − x)] + �Se. (25)

We obtain these results by differentiating G. This is not com-
pletely trivial, as they rely on the stationary property of G(x)
at equilibrium [Eq. (2)].

We now find

∂H

∂x
= (�Ue − P�Ve) + J (1 − 2x), (26)

∂G

∂x
= (�Ue − P�Ve − T �Se)

+ RT ln[x/(1 − x)] + J (1 − 2x), (27)

∂2G

∂x2
= RT

x(1 − x)
− 2J, (28)

CP(x) = 1

T

[�Ue − P�Ve + J (1 − 2x)]2

RT
x(1−x) − 2J

. (29)

We can see immediately that the heat capacity has a dis-
continuity if RT/2J = x(1 − x), and since x(1 − x) must lie
between 0 and 1/4, a discontinuous phase transition occurs
for any T < J/2R at P = �Ue/�Ve. Interestingly, along a line
above the critical point, the contribution to CP goes to zero.

If it seems odd that V and U go to zero, at high and low
pressures, remember that the full free energy of the system
will include terms independent of x, representing the equation
of state of a reference (x = 0) material. To compare with a
real system, one needs to add an x-independent free energy
Gref(P, T ) to Eq. (22) which adds a smoothly varying addi-
tional term to all quantities.

Bragg and Williams considered an atomic level system
[69], and so assumed that the two sites have equal entropy;
in applications such as polymerization or atomic-molecular
transitions where the number of independent objects changes
a further term T �Se could be added to relax this assumption.
This introduces a slope to the phase boundary and additional
tilt to the Widom line, but does not change the general picture.

Bragg-Williams’ solid-solid model is conceived for alloy
order-disorder rather than pressure. However, a similar con-
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FIG. 1. (Top) Variation of free energy with x for the liquid model
with �Ve = 1, �Ue = 1, J = 1.25 at T = 0.1. Lines correspond
to different pressures with selected values around the transition at
P = 1 highlighted. The equilibrium value of x corresponds to the
free energy minimum. These conditions permit a first order transfor-
mation, and a metastable state can be seen for P = 0.98. (Bottom)
Variation of fraction of two states (x) for solid and liquid models,
with identical energy and volume differences. At reduced T = 0.4
the solid already exhibits a discontinuous phase transition, while the
liquid does not (T = 0.1 shown). If J is increased from 1.0 to 1.25,
the liquid model also exhibits a phase transition. The chosen values
of �Ue = 1; �Ve = 1 mean that the transition pressure is at P = 1 in
either model. Inset: Schematic showing the different volume changes
available in liquid (orange) compared with unique value in solid
(blue, delta function).

cept can be applied to the high-spin low-spin crossover in iron
oxides [40,70]. The present model allows for an isostructural
phase transition at low temperature, as well as a crossover:
such a true phase transition, an associated critical point, would
require a coupling J between sites which disfavored mixing.
This coupling may come from short ranged strain [41,42],
magnetic spin coupling or from phonons [71], or be calculated
directly from first principles [70], and may vary with pressure
[72]. Magnetowüstite (Mg,Fe)O and perovskite (Mg,Fe)SiO3

in the iron rich regime are prime candidates. They are known
to pronounced anomalies in heat capacity, and compressibil-
ity, but from experiment and DFT calculations these system
appear to exhibit a crossover [73–76], suggesting the spin
coupling either favors mixing or is so weak that the transition
is below the studied temperatures.
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FIG. 2. Thermodynamic anomalies due to Bragg-Williams-type solid model (top) and liquid model (bottom) for T = 0.4 and T = 0.6.
With parameters set to unity, so that the solid critical temperature is 0.5 and the phase line is vertical at P = 1.

E. Two-site electride liquid model

Our liquid model differs from the solid in just one detail:
we assume there are a range of different possible electride
sites, each entailing different volume changes �V (see Fig. 1,
inset). This contrasts with the crystal model, in which the
available electride sites are equivalent by symmetry.

For simplicity we assume that the electride sites are such
that the change in volume entailed in occupying them is lin-
early distributed and range from −2�Ve to +2�Ve. Note that
a positive �V implies that the electride would increase the
volume, so such sites will never be occupied.

With finite electride fraction x, those sites offering the
largest volume reduction will be occupied. The total volume
change is calculated by integrating over the volumes changes
of the individual occupied sites:

�V =
∫ x

0
2�Ve(x′ − 1)dx′ = �Ve(x2 − 2x), (30)

where the upper bound on the integral indicates that sites
which would increase the overall volume are not occupied.

The excess Gibbs free energy, relative to the free electron
liquid, is thus

GEL(x) = x�Ue − x(2 − x)P�Ve + Jx(1 − x)

+ kBT [x ln x + (1 − x) ln(1 − x)]. (31)

There are now nonlinearities in relative energy, entropy,
and density:

V = −x(2 − x)�Ve,

U = x�U + Jx(1 − x),

S = R[x ln x + (1 − x) ln(1 − x)]. (32)

We now find

∂H

∂x
= [�Ue − (2 − 2x)P�Ve] + J (1 − 2x), (33)

∂G

∂x
= [�Ue − (2 − 2x)P�Ve]

+ RT ln[x/(1 − x)] + J (1 − 2x), (34)

∂2G

∂x2
= 2P�Ve + RT

x(1 − x)
− 2J, (35)

CP = 1

T

[�Ue − (2 − 2x)P�Ve + J (1 − 2x)]2

RT
x(1−x) − 2J + 2P�Ve

. (36)

This model does not necessarily have a critical point: the
entropic and volume terms are always convex, so only the
demixing J term can drive phase separation. Whether this
happens depends on the value of P at the putative phase
boundary x = 1

2 , giving P = �Ue/�Ve.
These quantities are plotted in Fig. 2, where it is again

clear that the model predicts a peak in specific heat and
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namic anomalies in compressibility, expansivity, and heat capacity.
The first order transition between low- and high-x liquids ends in a
critical point: in application of the model to real materials, this criti-
cal point may lie below the melt line. Above the critical temperature,
the extrema of the thermodynamic properties trace out the Widom
lines which converge and end at the critical point.

compressibility, along with a dip in the thermal expansivity.
These extrema trace out the Widom lines of the phase diagram
(Fig. 3). It is important to note that this phase diagram includes
only the two-site Hamiltonian: the underlying free energy of
the x = 1 and x = 0 states is ignored.

Free energy variation with x is shown in Fig. 1, for a
range of pressures around the phase transition. Below Tc there
are two minima, degenerate at P = �Ue/�Ve, indicating a
first order phase transition. An analytic estimate of Tc can be
obtained from ∂2G

∂x2 = 0 or from setting x = 1/2. Note that the
existence of the critical point requires two nonlinear terms in
G, coming here from the entropy and the interaction energy.
Figure 1 (lower) shows that x changes discontinuously along
an isotherm at the transformation, in either the solid or liq-
uid model. Notice that, for equivalent parameters, the critical
point in the liquid falls at a lower Tc than for the solid.

If the liquid structure cannot accommodate enough poten-
tial electride sites, the model can be extended to a maximum
electride fraction f . This would result in a change of the P�Ve

prefactor from x(2 − x) to x(2 − x/ f ), but this additional
complication makes no difference to the general argument, so
hereinafter we take f = 1.

Positive J generates a first order transition with a critical
point. The phase line is vertical (at P = �Ue/�Ve) and ends
at the critical temperature Tc. Note that the high pressure phase
transition we are describing corresponds to the Ising spin-up
→ spin-down transition, not the usual BW paramagnetic one.

Above the critical temperature there are anomalies in sev-
eral observables, as shown in Fig. 2. The extreme values
(Widom lines) for various properties do not fall in the same
place: any definition of the supercritical transition pressure
depends on which property is considered.
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FIG. 4. Thermodynamic anomalies in the heat capacity for solid
model with �Ve = 1, �Ue = 1, J = 1, �S = 2. Inset shows ex-
panded view of low pressure region, with the same colors and heat
capacity extending to 0.4 as shown.

F. Entropy-driven transformation

So far we have considered models where the difference
between the two phases is in the enthalpy. In other cases,
such as the molecular-atomic transition in hydrogen, there is
a significant change in entropy between the two states—in the
hydrogen case because the number of particles doubles.

The addition of an x-dependent entropy term gives a slope
to the phase boundary, and a similar change of slope to the
Widom lines: some of which can even have the opposite slope
to the phase boundary. From the Clausius-Clapeyron equation,
the slope of the phase boundary is dP

dT = �S/�V . Exactly
similar to the volume change, a linear dependence of entropy
with x does not create a first order transition, the lowest order
term which can do so is x(1 − x)�S. Such entropic demixing
occurs in models with hard-core cubes and spheres [55,77,78],
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FIG. 5. Phase diagram for the combined solid-liquid two-site
model with �Ve = 1, �Ue = 1, �S = 0, J = 1 in both phases, and
a linear free energy difference �Gsl = 0.02 + 0.04P − 0.05T for
the nonanomalous contributions. Data were collected by scanning a
dense grid in P-T space and plotting points where the free energy
difference was less than 0.0005, in reduced units. Variation of x
across the phase diagram is shown as a color map, from blue (x = 0)
to red (x = 1).
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2 , 1
2 , 1

2 ) position—center of the figure. The “liquid”
image is a slice from a molecular dynamics snapshot [27] cutting through several atomic sites (red circles at 0 GPa—not all lie in the plane),
and then rerun at several densities using the same fractional atomic positions. The interstitial regions, initially green (free electronlike) become
increasingly red and blue as the electrons localize.

and has been claimed experimentally in supercooled water
[79].

The heat capacity model with �S = 2 is illustrated in
Fig. 4, showing the lambda profile of the discontinuous tran-
sition changing to the broad peak above the critical point. The
gradient of the Clapeyron slope is evident from the shift of the
lambda peak to higher pressure. The inset shows the peak in
heat capacity in the low-x phase.

G. Two-site model for liquid-solid transformation

We can extend the two-site model to compare liquid and
solid phases and calculate a melt line. This requires us to

consider the x-independent contributions to the free energy.
A full equation of state is required for the nonanomalous
contributions to Cp, α, and κT , however, to calculate the phase
boundary, we need only know the free energy difference of
x-independent contributions to the solid-liquid free energy
�Gsl .

Thus we have an equation for the phase boundary

�Gsl (P, T ) = Gl (xl , P, T ) − Gs(xs, P, T ), (37)

where xl (P, T ) and xs(P, T ) are the equilibrium values of x
in liquid and solid, respectively, calculated by minimizing the
free energy G(P, T ) at each P, T point.
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In Fig. 5 we show an illustrative example with a zero
pressure melting point at T = 0.4 and a positive Clapeyron
slope of 0.8, in reduced units.

To illustrate the model, we use the same x-dependent pa-
rameters �V = 1, �U = 1, �S = 0, J = 1 in both liquid and
solid. This means that x-dependent terms in free energy for
solid and liquid models are equal in the x → 0 and x → 1
limits. For the x-independent terms, we assume that energy,
entropy, and density differences between solid and liquid are
constant.

This choice of parameters means that the solid-solid phase
line is vertical (�S = 0) and there is no discontinuous liquid-
liquid transition. This is similar to the case of the simple
metals. A significantly larger value of J would be needed to
extend the phase boundary into the liquid region, as shown in
Fig. 3. A nonzero �S leads to a slope in the phase boundary,
but does not change the general picture.

The figure also shows how x varies across the phase
diagram—gradually in the liquid, but discontinuously in the
solid.

H. Example: Application to potassium

The high pressure crystallography and reentrant melt curve
of potassium have been determined experimentally [4,80,81].
DFT calculations show an electride transition in potassium
as in other simple metals [5–10,82]. Liquid potassium cal-
culations suggest a number of irregularities [27] in the
thermodynamic properties which cannot be fitted by smoothly
varying models [83].

Figure 6 shows an ab oculo parametrization of the liquid-
solid transformation model to this data, with a simple linear
model for x-independent terms. The reduced units of the
model correspond to 20 GPa and 1000 K for potassium.
While the overall shape is reproduced with a linear fit, the
low pressure melt curve appears parabolic and the high pres-
sure line is not sufficiently steep. The fit can be significantly
improved by introducing a nonlinear equation of state, such
that P∗ → P3/2, and is reduced by a factor of 5 above the
transition.

Curiously, the unadjusted high-pressure melt line of the
linear model follows the chain-melting line, in which the guest
atoms in the solid phase III melt [4,26].

It is notable that the melting line minimum is coincident
with the triple point of the solid-solid transformation from fcc
to host-guest structure, which has been associated with the
electride transition [5,7,26]. The melting point maximum has
no such association, which casts doubt on the extrapolation
of the fcc-bcc line to the melt curve maximum, which has
been drawn and copied without evidence in, e.g., lithium
[13,14,84–86]. In fact, the 180◦ rule means that it is thermody-
namically impossible for a solid-solid phase line to intercept

the melt curve at a point of negative curvature such as a
maximum.

III. DISCUSSION

We have presented a simple analytic model which explains
the anomalous shape of the melt line observed in many high
pressure systems. The key features required are

(1) A microscopic mechanism by which the atoms can
reduce their volume, at the expense of increasing their energy.

(2) Disorder in the liquid leading to wider range of possi-
ble atomic environments compared to the solid.

We have shown that a discontinuous phase transformation
can be driven by a repulsion between the two states, anal-
ogous to the Jx(1 − x) term in the Bragg-Williams model.
This repulsion may be either enthalpic or entropic, but must
introduce negative curvature to G(x): terms linear in x cannot
result in a discontinuous transition.

The discontinuous transitions in the model do not depend
on changes in crystal symmetry. In reality, it is likely that
a discontinuous change in the type of electronic binding of
a solid will also be accompanied by a symmetry change.
Thus even in principle the solid-solid critical point can occur
only for isostructural transitions such as hydrogen and cerium
[35,87,88].

Above the critical point, the model predicts a series of
experimentally measurable “Widom lines” associated with
anomalies of thermodynamic properties. These occur for all
parametrizations, even where there is no critical point, or there
is a liquid-liquid critical point which lies below the melt line.

By comparing free energy models for crystal and liquid
phases, we constructed a melt line from this model. This has
a characteristic minimum at the point where the two-state
mixing entropy is maximized (x = 1

2 ), coincident with the
solid-solid phase transformation. Combined with a positive
slope at low pressures, this means that there must also be a
melting temperature maximum which, curiously, does not ap-
pear to be coincident with other features in the phase diagram.

The model has been applied to the melt curve of potassium,
using a very simple linear fitting scheme. More accurate fitting
to other materials would be straightforward, and the model
framework has broad application for producing equations of
state for any material with a complex liquid-liquid transfor-
mation.
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