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Abstract

First principles calculations, usually in the shape of density functional theory, are an indispensable component of modern
day solid-state inorganic chemistry. Over the past 15 years, those types of calculations have successfully evolved from
explanatory to predictive tools. At the heart of this development is the now widely recognized ability of density functional
theory to predict, without any input from experiment or recourse to chemical intuition, the crystal structures of inorganic
compounds. In this chapter, we begin by presenting arguments why crystal structure prediction works, seemingly against the
combinatorial odds, due to the shapes of the potential energy landscapes in crystalline configuration space. We then review
the modern approaches used in the field that sample this space, either on a global scale aimed at finding global and
metastable minima, or on a local scale aimed at finding nearby minima and transition states. We include an overview of
attempts to tailor searches toward desired materials properties, and discuss ongoing work to make structure prediction faster
and more efficient. Finally, we give examples from fields where crystal structure prediction is, or could be, a successful driving
force for new research avenues, and conclude by pointing toward some of the remaining challenges.

3.12.1 Introduction

Determining the structure of a material has been a problem faced by computational scientists for decades. Without this information,
it is difficult to predict or explain material properties. As the rise in computational resources matched the development of accurate
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first principles calculation methods, high-throughput approaches have become more feasible routes to material design and can be
used to study a wider variety of systems. This approach allows efficient screening of material properties, particularly in unusual
chemical environments.

The study of a material by experiment is a labor intensive process. To use a trial-and-error approach experimentally to design and
study new materials is prohibitively slow. Whereas, a computer d by its nature d can perform repetitive tasks and screen large
numbers of potential compounds quite straightforwardly. Scientists who previously spent years studying a handful of materials,
can now uncover insights into novel materials with relative ease using crystal structure prediction (CSP). That is not to say that
high-throughput experiments are not possible. For instance, brilliant x-ray radiation from x-ray free electron lasers can be used
in ‘high-throughput’ approaches to crystal structure determination.1

Even if such high-throughput experiments were more common, the results are not as definitive as those obtained in calculations.
Typically, the crystal structure is inferred from diffraction based methods. Due to restrictions caused by noise, low symmetry, and
sample synthesis, diffraction may only provide partial or inconclusive information about the crystal structure. This process can be
helped significantly if guided by initial calculations which can provide likely stable stoichiometries, material properties, and diffrac-
tion patterns.

It would have been difficult to conceive of a novel high-Tc superconducting sulfur hydride as a decomposition product of H2 S,
without CSP.2 Recent machine learned high-throughput methods can be used to quickly estimate superconducting temperatures3 of
a wide variety of hydrides, extending the predictive power of CSP; promising metastable polymorphs with desirable Tc’s can be
quickly identified.

It would also be difficult to sample a wide range of complex stoichiometric environments without CSP. Cathode materials can
consist of a wide variety of quaternary or even quinary stoichiometries. The space associated with conceivable structures of these
types is very large, but CSP can help identify low energy polymorphs4,5 with promising properties.

However, the methods used to obtain total energies and material properties are always approximate solutions to the problem,
typically a trade-off between speed and accuracy. For example, in some cases, an ionic pair potential or force field is sufficient to
calculate energies and is computationally very fast. In other cases, e.g. where electronic properties are relevant, such a potential
might be insufficient to describe the behavior. The latter typically employs a density functional based approach, which in turn might
be problematic for instance for strongly correlated materials. In either case, the search results should not be considered the final
answer; temperature effects are difficult to consider in structure searches, and the choice of level of theory can influence the results.
For these reasons, both experimental and theoretical methods should be used together to uncover the accurate picture; CSP should
motivate experiments and vice versa.

This chapter will introduce the methods used to perform effective structure prediction from first principles. To appreciate the
power of CSP, we begin by discussing historical approaches to determine molecular and crystal structures before introducing
modern approaches to the global minimization problem.

An early example of theoretical structure prediction preceding an experimental discovery is that of van’t Hoff, who postulatedd

to account for the optical activity of carbon-containing compoundsd that a central carbon atom should be bonded to its neighbors
such as to form a tetrahedron.6 Van’t Hoff’s idea of this asymmetric carbon atom led to the idea that an allene d which takes the
form of RR’C ¼ C ¼ CRR’ where R represents a functional group d should be chiral. Many years later, this was confirmed
experimentally.7

Following the development of x-ray diffraction and the discovery of atom-level periodicity in crystals,more systematic predictions
were sought.One approach is topredict the likely coordination number for a given stoichiometry based on ionic radii ratios; a concept
first applied to extended lattices by Victor Goldschmidt in 19268 and 1927.9 For example, a 1:1 ionic binary compoundwith an ionic
ratio of around 0.3 will likely be tetrahedrally coordinated in a cubic sphalerite structure or hexagonal wurtzite structure. For ratios
around 0.6, it will likely form octahedrally coordinated structures such as rock-salt, and if it is close to 1 (i.e. the ions are similar in
size), it will likely be 8-fold coordinated like CsCl. Similar arguments can be made for the stability of perovskite structures (ABO3).
Intuition about the expected coordination of the atoms and the stoichiometryd in otherwords, to appeal to conventional wisdomd

maybe enough to generate some likely candidates frompreviously known structures.However, there aremanyways to stack structures
tetrahedrally or to stack perovskite units, and the conventional behavior of chemical bonding is different when pressure is applied.
Additionally, stoichiometric variability is a concern. The ionic radii rules will not generate stable structures of the type Na3Cl, Na2Cl,
Na3Cl2, NaCl3 forming under pressure,2 or the aforementioned H3 S

10 forming from the decomposition of H2 S.
With the advancement of density functional theory techniques, it became feasible to calculate the stable configurations of crystal

structures, including the predictions mentioned in the previous paragraph. While computational limitations would mean initially
limiting the candidates to small primitive unit cells with high symmetry, computational resources sufficient for unrestricted (and
importantly, unsupervised) structure searches have been available for close to 20 years now.

While the determination of the global energy minima is a daunting task, the nature of the potential energy surface means it is
surmountable. There are many crystal structure prediction methods, including evolutionary algorithms11,12 and machine learning
methods,13 all of which have been successful in predicting novel crystal structures, particularly at high pressures14–21 including the
structure of phase III of solid hydrogen,16 a transparent phase of sodium,22 and superhard tungsten nitride.23,24

3.12.2 Crystalline configuration space

We begin by making a case for why crystal structure prediction works, despite the apparently overwhelming number of degrees of
freedom on offer.
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Long-range translational symmetry sets crystals apart from localized or extended amorphous systems. This symmetry is captured
by defining three lattice vectors (a1,a2,a3) (in three-dimensional space) such that the crystal is invariant under any translation vector
R ¼ n1a1 þ n2a2 þ n3a3 that is a linear combination of the lattice vectors. The atomic basis, the set of atomic positions within the
parallelepiped spanned by the lattice vectors (the unit cell), completes the definition of a specific crystal structure. The unit cell is
not uniquely defined; an infinite number of choices of lattice vectors are possible that describe the same crystal. A primitive unit
cell is the smallest possible unit cell (by volume or number of atoms), but is also not uniquely defined; several approaches exist
that construct uniquely defined reduced cells for a given lattice, which involve finding the shortest possible primitive unit cell
edges.25–28

Every lattice (in real space) has a corresponding reciprocal lattice (in reciprocal space), with lattice vectors (b1,b2,b3) defined via
the identities ai $ bj ¼ 2pdij. The reciprocal lattice (with units of inverse length) is important whenever phenomena are studied that
are modulated by the crystal lattice, such as harmonic lattice vibrations, phonons, with specific wave vectors q that reside in the
reciprocal unit cell; see Section 3.12.4.5.4. More importantly, Bloch’s theorem shows that single-electron states in a periodic poten-
tial have wave functions of the type jk(r) ¼ uk(r) exp ikr, with a lattice-periodic component uk(r) and a phase factor determined by
wave vector k, which resides in the first Brillouin zone, the region of reciprocal space closer to the origin than to any other reciprocal
lattice vector; this is important in any electronic structure calculation, see Section 3.12.3.

The configurational space for an N-atom primitive unit cell is 3 N þ 3 dimensional (3 N – 3 dimensions for atomic positions, 6
dimensions for the unit cell). A specific unit cell volume V ¼ NVat or, equivalently, number density n ¼ 1/Vat, which introduce
a characteristic atomic volume Vat, reduces the dimension by one. A combinatorial approach shows29,30 that the remaining space
for atomic positions alone is incredibly vast. If atoms are placed within the unit cell on a discretized grid with spacing d, i.e. S ¼ Vat/
d3 sites per atom, the number of configurations C is

C ¼
 
NS

N

!
zð2pNÞ�1=2eNSN ;

utilizing Stirling’s approximation. The exponential growth of the number of possible configurations makes exhaustive exploration
of the space impossible. For compounds, where not all atom types are equal, an additional binomial factor increases C even further,
but the largest contribution remains the freedom of placing atoms in space.

However, since the potential energy surface (PES), the energy associated with any point in the configurational space, is the result
of physical interactions, it is, in most cases, smooth. Unphysical configurations, such as those with overlapping atoms, can be
considered irrelevant for materials synthesis processes and ruled out altogether from detailed exploration. Most other configurations
do not correspond to energy minima. Nonetheless, the number of local minima Cmin still scales exponentially with system size,31,32

Cmin � eaN. However, the topology of the potential energy surface and the energy spectrum of these local minima have been subject
to several studies that yield promising insights.

Doye and co-workers noted that lower energy minima on the PES tend to have larger basins of attraction.33,34 They show that
topologically, the PES resembles an Apollonian packing of spheres, in that the largest (and deepest) basins have the highest number
of connections to adjacent basins, just like the largest Apollonian spheres have themost touching neighbors,35 see Fig. 1. One conse-
quence is that by performing geometry optimizations to find the localminimum from a given starting configuration, the likelihood
of finding the global minimum is significantly increased. In fact, taken to its extreme, this basin size distribution implies that the
global minimum has the highest probability of any minimum to be found with a random starting structure; however, due to the
sheer number of local minima the absolute probability can still be very low, requiring many initial attempts. Another consequence of
the expected high connectivity of the global minimum basin is that local exploration of the PES from some initial local minimum is
a reasonable strategy to find more favorable minima.

The Bell-Evans-Polanyi principle provides some arguments for the basin size distribution and correlation with the minimum
energy. It states that the smaller the energy barrier from one basin to a neighboring basin, the lower the neighboring basin’s energy.
In other words, low energy minima are close together. In a similar manner to the Marcus equation for electron transfer, this principle
can be shown by assuming identical quadratic forms for neighboring basins with minima A and B, along a reaction coordinate x, at
x ¼ 0 and x ¼ 1. The result is that the transition coordinate is x ¼ 1

2 for a thermoneutral reaction (that is to say both minima are
equal) and that the transition coordinate and energy barrier is lower if minimum B is lower in energy than minimum A.36 An alter-
native schematic is shown in Fig. 1: lowering the minimum energy of the central basin will both lower the transition barriers to
access it from its neighbors, and increase its size.

The Bell-Evans-Polanyi principle relies on the assumption that basins have comparable shape; we assume equal curvatures in the
previous paragraph. This is not unreasonable: a reaction coordinate connecting two local minima across a transition state represents
coupled atomic displacements and lattice strains, and the restoring forces and stresses, in the harmonic/linear elastic regime, can be
expected to be similar, if comparable bond breaking and bond formation processes occur around both minima.

Another assist for CSP is symmetry. Crystal structures can be highly symmetric, and high symmetry atomic configurations are
often very low or very high energy minima.37 In organic crystals, the uneven distribution of space groups (the 230 symmetry groups
for three-dimensional crystals) has been documented for a long time38,39 and is related to close-packing of unevenly shaped
objects.40–42 That restriction means space groups that combine inversion centers, 2-fold screw axes, and glide planes, are preferred43

and indeed the six most dominant space groups in the Cambridge Structural Database (CSD), which are of that type, make up
almost 83% of the over 1.1 m organic crystal structures in the CSD.44 (Note that Kitaigorodskii41,42 built and described amechanical
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‘structure seeker’ to explore and in effect predict close packed molecular crystals). In inorganic systems, the symmetry requirements
and therefore their statistical distribution are markedly different. Fig. 1 shows crystal system and space group frequencies extracted
from the over 200,000 entries of the Inorganic Crystal Structure Database (ICSD).45 The different crystal systems are relatively evenly
distributed, but within them particular space groups stand out. Those tend to be of the highest symmetries that each crystal system
offers and suggest a symmetry principle in the formation of inorganic crystals.39 The 20 most prominent space group account for
just over 63% of all ICSD crystal structures. For structure prediction, this could mean that symmetry-constraint searches, or at least
initial guesses, could be a fruitful avenue to explore. But note that four of the 20 most relevant space groups are triclinic or mono-
clinic; insisting on high symmetry for a particular compound might lead only to metastable states.

3.12.3 First principles calculations in solids

The exploration of the crystalline configurational space can, in principle, be done with any type of interatomic potential that
attaches total energies to specific configurations and generates forces to optimize said configurations. Using off-the-shelf interatomic
potentials or force fields is problematic if one aims to explore different conditions, e.g. high pressure, but even at ambient condi-
tions every structure prediction approach (see next section for details) involves creating structural candidates that are initially far
from structural equilibrium (database mining approaches would be an exception), where force field parameterization might be
poor. Even so, in organic crystal structure prediction the use of force fields remains common, due to otherwise prohibitive compu-
tational cost,46 but is most often combined with very sophisticated and specialized algorithms to generate structural candidates that
avoid unphysical configurations. For inorganic systems, an additional challenge is their potentially non-trivial electronic structure,
so metallic and insulating configurations need to be described with similar accuracy. Taken together, using parameter free ab initio
methods has therefore become the default approach in inorganic crystal structure prediction, helped by advances in computational
power that have made high-throughput first-principles calculations feasible about 20 years ago. However, note that recent advances
in machine learning of interatomic potentials has meant that computationally cheap, transferrable potentials can be generated for
a wide variety of systems, and we will discuss further below how this is used in crystal structure prediction.

Here, we give a very brief overview of total energy calculations for crystalline systems in conjunction with density functional
theory, the standard method for first-principles calculations in extended systems. A wide selection of textbooks is available for
more detailed reading in this area, see for example Refs. 47–50.

For any independent particle approach to electronic structure in crystals, Bloch’s theorem means that the many-electron
problem only needs to be solved for the number of electrons Ne per unit cell, instead of the whole crystal. For every wave

(A) (B)

(C)

(D)

Fig. 1 Crystalline PES characteristics. (A) Basin size distribution as Apollonian sphere packing, energy axis indicated; (B) Bell-Evans-Polanyi
principle connecting a basin’s energy minimum to its size (black dotted bars) and transition barriers to adjacent basins (blue dots); (C) crystal system
distribution in the ICSD database; (D) space group frequency of the most prominent space groups in the ICSD database.
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vector k, the single-electron wavefunctions jnk and their eigenvalues εnk are labelled by a band index n; in an insulator, the lowestNe/
2 bands are occupied, all others unoccupied. In a macroscopic crystal, electrons occupy states on a dense mesh of k-vectors; the
mutual orthogonality of states at two wave vectors k1 and k2 satisfies Pauli’s exclusion principle.

Many properties, such as total electronic energy, or electron density, need to be added up or averaged over all occupied electronic
states. It turns out that the dense mesh of k-vectors (with on the order of Avogadro’s number of so-called k-points) can be replaced
for those purposes by a much coarser regular grid of k-vectors, with on the order of 10–1000 k-points.51 This, then, makes electronic
structure calculations for crystals feasible: a relatively small number (10�1000) of eigenvalue problems of order Ne needs to be
solved to obtain the electronic structure and hence information about total energy, Coulombic forces on the atoms, etc.

In standard density functional theory (DFT), the eigenvalue problems can be solved independently for different k-vectors, which
is ideal for numerical parallelization. In those flavors of DFT, the exchange-correlation energy is approximated by local or semilocal
density functionals.52,53 The Hamiltonian, as in standard SCF (Hartree-Fock) theory, depends via the density on its own solutions,
and is solved self-consistently.

Due to Bloch’s theorem it is advantageous to use plane waves as basis functions to expand all electronic states. The lattice-
periodic component uk(r) of any Bloch state can be expanded in a Fourier series of plane waves with periodic lattice wave vectors,
unk(r) ¼

P
Gcnk(G) exp iGr, where all G ¼ m1b1 þ m2b2 þ m3b3. The basis set quality can be captured by a single quantity, the

cutoff radius kGmaxk of the G-vector expansion; most commonly expressed in terms of the “plane wave [kinetic] energy cutoff”,

Ech1
2kGmaxk2. In plane wave representation, solving the DFT eigenvalue equations then becomes a matrix diagonalization problem

for the coefficients cnk(G), replicated over the finite set of k-vectors.
However, the choice of a plane-wave basis set is not well suited to the core regions of atoms where the spatial variation in the

wavefunction is rapid and would require a very high value of Ec d and hence a prohibitively slow calculation d to give accurate
results. However, core electron orbitals are unlikely to depend on the atomic environment and so electrons within a given cut-off
radius of the nucleus are pre-calculated such that electronic structure calculations need only consider the remaining valence elec-
trons. This is akin to the “effective core potential” approach, which in plane-wave DFT is extended to the whole periodic table.

The pseudopotential replaces the hard divergent potential close to the core with a softer potential. This is typically done by
solving the radial Schrödinger equation as an ‘all-electron’ problem and generating a pseudo-wavefunction that satisfies a number
of constraints.54,55 First principles structure prediction relies on robust pseudopotentials that deliver accurate results with relatively
low values of Ec.

Note that including the Fock operator explicitly in the exchange-correlation energy expression severely increases computational
cost of plane wave calculations (unlike those based on localized basis sets). Hartree-Fock or hybrid functional DFT calculations for
crystal structure prediction are therefore prohibitively expensive, as are any other wave-function based approaches for CSP. This can
be a challenge in systems where so-called exact exchange is crucial to obtain the correct electronic structure.

Once the electronic structure is obtained, forces on all atoms and stresses on the unit cell are obtained using the Hellmann-
Feynman approach. Those forces and stresses are then minimized using standard iterative techniques, until residuals are below
acceptable thresholds; at which stage the final crystal structure (lattice and atomic positions) together with its energy and, option-
ally, other observables, are available for further processing. An efficient implementation of the geometry optimization is key for
CSP, and the DFT packages typically chosen for CSP are those that have fast yet robust algorithms to minimize forces and stresses.

3.12.4 Modern approaches

A variety of different algorithms have been implemented inmodern CSP approaches, and are described in detail below. They univer-
sally employ local geometry optimizations as described above. This distinguishes them from one of the most intuitive early struc-
ture searching approaches, simulated annealing.56 In that method, Monte Carlo or molecular dynamics steps are applied to modify
an initial structure, with an initially very high temperature that is continuously reduced during the simulation, leading ideally to the
global minimum. No local geometry optimizations are involved during the individual simulation steps, which arguably restricts the
method’s efficiency.

3.12.4.1 Random structure searching

As we will discuss, all approaches in ab inito structure searching necessarily utilize some level of randomness. The AIRSS code (Ab
initio Random Structure Searching)57 uses random structure search exclusively. While this approach may seem simplistic, it is
remarkably effective thanks to the generation of sensible random structures, an emphasis on trivial parallelism and effective post-
processing tools.

The speed of ab initio crystal structure searches depends on how many geometry optimization steps are required. This can be
reduced by generating ‘sensible’ starting structures. This means the geometry optimization spends less time in unphysical configu-
rations, far from the local minima. AIRSS incorporates a powerful set of keywords to generate sensible random structures by invoking
a useful program, buildcell.

Important structure features such as the target volume and minimum atomic separations can be chosen manually or automat-
ically based on initial searches. Symmetry can be imposed by specifying a range of symmetry operations or a specific space group.
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For molecular crystals, buildcell can place molecules in random positions in the cell while applying symmetry operations.
Constraints can be placed on the unit cell, and on positions of sets of atoms. This is useful when only partial information about
the crystal structure is available.

A technique used in AIRSS is ‘relax and shake’ (RASH), which generates new structures by shaking structures around a local
minimum. This can result in new structures with lower symmetry, or similar structures in distorted super-cells. This process can
be performed recursively as a minimal input ‘learning’ approach.

Unlike more sophisticated approaches, random structure searching does not require any communication between different
computations. This means calculations can be trivially parallelized so that thousands of structures can be generated and calculated
simultaneously. For the same reason, AIRSS does not require special treatment for variable stoichiometry searching. The user can
specify an arbitrarily complex composition space over which AIRSS can sample.

AIRSS uses the SHELX58 .res file format for crystal structures, supplemented with metadata. These files can be read by visualization
tools such as Vesta59 and directly by AIRSS’ analysis tool, cryan, which can rank structures, build convex hulls and provide geometrical
analyses.

3.12.4.2 Particle swarm optimization

A general approach to go beyond purely random structure generation is to use information from already completed geometry opti-
mizations to map the configurational space and build new structures. Particle swarm optimization (PSO) is a global minimization
technique used in a wide range of applications with non-convex minimization problems, such as modelling the electrical power
market.60

The technique allows individual agents to move around configurational space (where particle i has coordinate xij
t at timestep t

with velocity vij
t). The positions and velocities are initialized randomly and allowed to relax to a global minimum with position yij

t.
The new velocities are calculated from a weighted sum of;

• the difference between the initial and relaxed geometry,
• the difference between the starting configuration,
• the best known minimum energy configuration, zij

t,
• and the velocity at the previous timestep.

The update equation used by the CALYPSO code61 is given by,

vtþ1
ij ¼ A1

�
ytij � xtij

�
þA2

�
ztij � xtij

�
þuvtij: (1)

Where A1 and A2 are randomly generated numbers between 0 and some value A1
max and A2

max. The ‘memory’ factor u decreases
linearly between generations. A schematic of the algorithm and its traversal of the potential energy surface is shown in Fig. 2.

Several extra constraints are required to avoid stagnating in local minima: a penalty function is applied such that high energy
structures are not used in the PSO, further exploiting the Bell-Evans-Polanyi principle; and each generation includes a certain
(user-specified) percentage of new randomly generated structures to retain the population diversity.

3.12.4.3 Genetic and evolutionary algorithms

An alternative approach to exploit information during a structure search is to use genetic algorithms (GA’s) or evolutionary algo-
rithms (EA’s). These borrow ideas from biological evolution, of mutation, breeding and natural selection, to build upon promising
intermediate structural candidates. Ideally, that allows the search to focus on the relevant sections of the PES, generate more compet-
itive guesses faster, and find the global minimum with less attempts. Their use for structure prediction was pioneered in the early
1990s for clusters and nanoparticles62–64 and shortly thereafter for inorganic solids.65

GA’s encode all properties of a particular structure in a one-dimensional alphanumeric or binary string, the “genome”. All modi-
fications (described below) are done by direct manipulation of “genes”. The projection from structure to genome (and vice versa)
removes GA’s from the structure prediction realm, into the wider area where GA’s are applied. The advantage is that a large set of GA
operators developed in different research fields can be applied straightforwardly; the disadvantage, that any links to crystalline
configurational space, and to physico-chemical intuition as relates to structure formation, are severed. EA’s on the other hand
describe algorithms where structural information (lattice vectors and atomic positions) is stored and manipulated directly, typically
with the use of evolutionary operators that are designed for structural modifications. The majority of software packages in the field
(see Table 1) are of the EA type.

Evolution of the Darwinian type implies that changes to the genome only occur in the procreation process, combining parental
features with a small amount of random changes (mutations). For structure prediction this implies generating a new structure and
determining the enthalpy for its given (fixed) geometry. This often has a very low success rate. However, allowing local optimization
of the structure (i.e., relaxing to the bottom of its local basin in the PES) results in a much more relevant structural candidate for
further consideration. This local optimization corresponds to changes to the genome during the “lifetime” of the structure, and
allowing those changes to be passed on to later generations follows the Lamarckian view of evolution, that traits acquired during
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an organism’s lifetime can be passed on to offspring. Such is the success of this approach, that local structural optimization has been
identified as a key ingredient of GA or EA structure prediction.11

The typical workflow of a GA/EA structure search is shown in Fig. 3. Often a “generation” of structures is optimized, followed by
a selection process of the best candidates, which influence the next generation of structures. The latter features various genetic or
evolutionary operators. In another (incidental) nod to biology, EA implementations show great diversity in choice and weighting
of particular evolutionary operators, but the following operations are commonly used:

• Mutation: manipulating lattice vectors and/or atomic positions of a single structure. Can include lattice strains, atom exchanges
between sites, individual or collective atomic displacements.

• Breeding: combining two “parent” structures into one “offspring”. Most often a real-space ‘cut and splice’ operation.
• Random generation: adding completely random new structures to the dataset to retain diversity of the “gene pool” and avoid

premature focus on particular parts of the PES.

Structural candidates, whether created at random or via specific operations, might occupy the same basin within the PES, and are
then (within numerical noise) identical following the geometry optimizations. This is not an issue for random structure searching –
re-discovering the same structure several times in fact contains information about relative basin sizes – but is a challenge for algo-
rithms with built-in memory: GA/EA and also PSO implementations need to be able to identify identical structures to remove dupli-
cates from the pool of structures considered for the next generation. Given that crystal lattices and atomic positions are not uniquely
defined, this is a non-trivial task. Duplicates are usually identified by having very similar enthalpies, and by either matching finger-
prints based on local atomic connectivity,76 pairwise separations of atoms77 or successful mapping of suitably normalized unit
cells.75 Lyakhov et al.78 show that fingerprints, and the ‘distance’ between these fingerprints, can be used to perform more effective
EA structure prediction. To maintain diversity, structures with ‘nearby’ and hence similar fingerprints are identified and only the

Fig. 2 Flow chart (left) outlining the particle swarm optimization technique (equation is specific to CALYPSO) to find the global minimum of a potential
energy surface (right).

Table 1 A selection of CSP packages for inorganic systems available for
academic use (possibly following registration), and the
methodology they are based on. Equivalent packages that
specialize on organic CSP include DMACRYS, GAtor, GRACE,
MOLPACK, and UPACK.66–70

Package Method References

AIRSS Random structure searching 17,57
CALYPSO Particle Swarm Optimization 61
CRYSPY Bayesian Optimization 71
GASP Genetic Algorithm 72,73
MAISE Evolutionary Algorithm 74
USPEX Evolutionary Algorithm 11
XTALOPT Evolutionary Algorithm 75
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lower energy structure is carried forward. They also note that structures which are very dissimilar should not ‘breed’ as the
“offspring” structures will often be high energy.

3.12.4.4 Database informed methods

Yet another approach is closer to the aforementioned ‘appeal to conventional wisdom’ approach. With high-throughput calcula-
tions easily accessible, it is feasible to build all candidate structures using many geometrically valid structures or structures from
an extensive database (typically 1000s of structures) of known geometries.

The ICSD has over 200,000 experimental inorganic structures. The majority of these fall into a given structure type; a set of struc-
tures with identical lattice shapes and (relative) atomic positions.79 For example, the cubic ZnS wurtzite structure type (labelled B4
in Strukturbericht notation) is shared by AgI, BeO, ZnO, GaN and many others. This suggests that a lot can be learned from these
known structure types with different stoichiometries. As more new structures are discovered, new structure types may also emerge.

Before global optimization-based CSP methods, some effort had been applied to combine ab initio calculations with high-
throughput approaches, building new structures from known structure types80 and generating databases of electronic structure
information. Since then, tools have been developed to assist these types of calculations such as high-throughput pseudopotentials81

and band structures.82 This technique has been applied to otherwise compositionally complex systems such as ternary and quater-
nary oxide compounds.83,84 This method is similar to, but distinct from, database screening methods which aim to screen for mate-
rial properties based on data from a database, without input from ab initio calculations.85,86

A related approach has an emphasis on local connectivity, or bond network topology, achieved by representing crystal structures
as graphs. A graph is a set of nodes connected by edges. Just as a crystal, a graph can be infinite. Placing nodes in space (such as
a plane or 3-dimensional space) is called embedding. A crystal can be considered a three-dimensional embedding of a graph where
nodes are atoms and edges are bonds (or connections between nearest neighbors). The infinite graph of a crystal will have the same
3-periodicity. This can be simplified to a finite labelled graph by a process called the vector method.87 In short, this involves drawing
N nodes for theN atoms in the unit cell. An edge can be drawn between the nodes for bonded atoms where both are within the unit
cell. Where atom i is inside the unit cell and is bonded to an atom j in the neighboring unit cell, an edge can be drawn from atom i to
atom j’s image in the unit cell and labelled with the lattice vector describing the shift in unit cell.

Fig. 3 Top: sketch outlining the evolutionary algorithms technique to find competitive minima of a potential energy surface. Bottom: visualizations
of typical EA operations: mutations that involve lattice strain, collective displacements, or atom swapping; and hereditary ‘cut and splice’ operation.
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Some examples of this method include considering all possible three-fold coordinated structures to find sp2 carbon polymorphs
(restricted by the number of atoms in the unit cell),88,89 or tetrahedral networks to find sp3 carbon polymorphs.90,91 Further sp3

carbon polymorphs have been generated by using databases of zeolite structures.92 A similar approach has been used to great effect
to reproduce a priori all known phases of ice.93 Structures generated using these methods may have much larger primitive unit cells
and require more computational resources per structure, however each optimization starts from a chemically sensible configuration.

Graph theoretical methods have also been invoked in the study of alumino-silicates94,95 where particular care can be taken to
build structures obeying the Löwenstein avoidance rule,94,96 which suggests alumino-silicates will be unlikely to have AleOeAl
bonds, an assertion that has kinetic97 and thermodynamic arguments.98

Topological methods can be extremely efficient, if the underlying assumptions about relevant bond network topologies hold
true. Conversely, they quickly fail if those assumptions break down. For instance, studying silica polymorphs based on connected
SiO4 tetrahedra will fail to identify the high-pressure stishovite phase, which is based on SiO6 octahedra.

99

3.12.4.5 Local approaches

The prediction methods discussed so far are “global” approaches in the sense that they survey, at least initially, the full crystalline
configuration space. Approaches that retain memories during the searches, such as the PSO and GA/EA algorithms, should eventu-
ally focus on themost relevant sections of this space. However, the location of this section can not be directed by the user, nor do the
results give any indications about the local connectivity of the PES, i.e. which local minima are connected by transition states and
the size of transition barriers. Further below we shall introduce recent approaches to extract such connectivity information from
global structure prediction surveys, but in this section want to briefly discuss “local” approaches to predict crystal structures. By
this we mean approaches that explore the local topology and connectivity of the PES, usually starting from a single user-defined
configuration, and not always concerned with identifying the global minimum. There are a multitude of scenarios where such infor-
mation is relevant. Fig. 4 depicts an idealized potential energy surface of carbon, which is dominated by graphite and diamond but
features a myriad of other local minima that can be seen as intermediates in the sense that they combine sp2- and sp3-hybridized
carbon (the x-axis in the figure should not be taken too literally; there are multitudes of purely sp2- and sp3-bonded carbon poly-
morphs other than graphite and diamond100). At ambient conditions graphite has the lowest free energy of all carbon poly-
morphs101 but diamond is stabilized at moderate pressures. However, the cold (i.e., non-heated) compression of graphite does
not result in diamond102–107 because the potential barrier toward its formation can not be overcome, at least not on the experi-
ments’ time scale. Instead, another metastable carbon allotrope forms that is configurationally “closer” to graphite but features
sp3-bonded carbon. Various crystal structure prediction approaches have yielded a variety of candidate allotropes very close in
enthalpy, such as M-, bct-C4-, W-, and Z-carbon.29,108–112 Of those, M-carbon seems the most likely candidate due to the lowest
kinetic barriers to transformation from graphite.113 Hence, knowledge of the local topology of the crystalline PES can be invaluable
to interpret experimental findings or explore whether new materials are accessible from specific precursors.

Most of the approaches described below are not exclusive or tailored for crystal structure prediction, they instead represent quite
general methods for sampling free energy surfaces, often aiming to accelerate rare events such as phase transitions where substantial
energy barriers need to be overcome.

3.12.4.5.1 Metadynamics
In metadynamics,114–116 a molecular dynamics simulation is performed, beginning from a local minimum on the PES. During the
simulation, a bias potential is constructed that penalizes previously visited configurations, thus driving the system away from the
initial and toward new metastable or stable configurations, see Fig. 5. One key ingredient is the concept of “collective variables”

Fig. 4 Schematic of carbon’s potential energy surface at some moderate pressure where diamond (“dia”) has a lower enthalpy than graphite (“gra”)
but other metastable structures are more readily accessed.
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(CV’s) {s(R, a)}, a set of coarse-grained order parameters much smaller than the full set of atomic positions R and lattice vectors a,
that can distinguish the different metastable states. The bias potential V(s) is built successively as a series of Gaussians G(s,s’) ¼
W exp � (s � s’)2 in s-space that are centered around the CV’s present at regular intervals during the simulation, si

Vn sð Þ ¼ Vn�1 sð ÞþG s; snÞexp
�
� 1
g� 1

bVn�1ðsnÞ
�
:

�

The exponential scaling term, introduced as well-tempered metadynamics,115 ensures that the changes to the bias potential
decay over time, and features the inverse temperature b ¼ 1/kBT and a positive constant g > 1. Those, together with the width of
the Gaussians W are the main computational variables in a metadynamics simulation. The x-axis of the metadynamics schematics
in Fig. 5A should therefore be considered as one of these CV’s.

Ongoing efforts in developing CV-based approaches are often centered around building better iterative bias potentials, to further
accelerate rates of transitions between metastable minima.117–121 However, the main physical choice is around appropriate CV’s
themselves. For proteins, these might be certain torsional angles that distinguish relevant foldings. For crystal structures (and
many other systems) there are no obvious choices. Moreover, in exploratory searches, where the target structure is not known, it
is nigh on impossible to guess the most efficient CV’s that link initial and target structure. However, noting that space group
symmetry and more generally the crystal lattice often sufficiently distinguish different polymorphs within a given system, metady-
namics simulations in inorganic solids most often use the lattice vectors as CV’s, s ¼ (a1,a2,a3).

122,123 Strictly speaking, the six inde-
pendent lattice lengths and angles are used.

3.12.4.5.2 Minima hopping
Minima hopping124,125 is another approach to survey metastable minima around an initial configuration that are accessible via
increasingly larger energy barriers. It also uses molecular dynamics to explore the PES, but uses more explicit bookkeeping to retain
memory of the explorations. After a relatively short MD run a full geometry optimization is performed, see Fig. 5. If the system has
reached a new configuration, it will be added to the list of known configurations if it is less than a threshold Ediff higher in energy
than the previous configuration. The threshold Ediff and the MD temperature T are then decreased. On the other hand, if the energy
of a newly found configuration is more than Ediff above the previous configuration, Ediff will be increased; and if the optimization
ended in a previously visited configuration, T will be raised. With those adjustments, repeated visits to known configurations are
penalized, the exploration will always escape from local trappings, while locating new relevant minima slows the exploration down.

3.12.4.5.3 Basin hopping
The basin hopping approach was first introduced for clusters and is still mostly applied to localized systems126; it is similar to a prior
“Monte Carlo minimization method” suggested to explore protein folding.127 In this method, changes to the current configuration
are made discontinuously, using random update steps such as moving or swapping atoms. Importantly, those updates are followed
by full geometry optimizations, and the optimized configuration is accepted or rejected based on a Metropolis criterion, see Fig. 5.

(A)

(B) (C)

Fig. 5 Local approaches’ explorations of potential energy surfaces (red) with structural candidates (blue). (A) Metadynamics simulation early on
(left) and at a later stage (right). Green indicates the bias potential. (B) Basin hopping. (C) Minima hopping.
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By attempting to sample the space of local energy minima rather than the full PES, a high-dimensional problem is vastly reduced.
But not only is the information from each PES basin reduced to its minimum energy value, this approach also loses information
about barriers between adjacent basins. By scaling the overall update step size the method can be tuned to explore configurationally
close to or farther away from the initial structure; if it is too large, the method essentially becomes random structure searching.

3.12.4.5.4 Following soft modes
A method specific for crystal structure prediction is to “follow” soft phonons. Phonons are the elementary quasiparticles of lattice
vibrations and span the space of all possible atomic displacements within a crystalline system. They are harmonic and monochro-
matic, characterized by a wave vector q, frequency ui(q), and displacement vector ei(q) (index i labels the phonon “branch”, of
which there are 3 N � 3 forN atoms in the unit cell). Phonon frequencies and displacement vectors are the eigenvalues and -vectors
of the dynamical matrix D(q), which itself is the Fourier transform of the real-space force constant matrix. The appearance of non-
zero q is due to translational symmetry in the crystal; in molecular systems, the equivalent of the dynamical matrix is the Hessian.
Solving for phonon frequencies is equivalent to diagonalizing the Hessian many times over, at each q-vector of interest.

More precisely, the eigenvalues of D(q) are the squared phonon frequencies ui
2(q), proportional to the curvature of the PES

along the displacement vector ei(q). A dynamical instability is characterized by a negative curvature, and therefore ui
2(q) < 0.

This is referred to as an “imaginary phononmode”, though it isn’t actually a phonon (there is no lattice vibration without a restoring
force), rather a saddle point on the PES. When plotting the phonon dispersion relations ui(q) along special directions of q, imag-
inary modes are commonly drawn as negative frequencies, as sketched in Fig. 6. The corresponding atomic displacement vector
ei(q) points toward a lower-energy structure on the PES, and this can be exploited to find low-lying minima in configurational
space. This method is similar in principle to the RASH technique used in AIRSS.

The entire procedure is sketched in Fig. 6. Starting from simple, high-symmetry initial structures for the system of interest (e.g.,
known structure types), geometries are relaxed and phonon dispersions calculated. If clear imaginary modes appear, the displace-
ment vector is added to the atomic positions. Note that for non-zero q vector, the displacement always has a wave length that spans
multiple crystalline unit cells; it needs to be applied to the atomic positions in a suitable supercell. That can make the resulting
structures very large, and it is usually advisable to follow imaginary modes at q ¼ 0 (the G-point in the Brillouin zone), or otherwise
modes at special points at the Brillouin zone boundary. Once a suitably scaled displacement is added, structures are relaxed, and the
process repeated until dynamically stable structures have been generated. The absence of any imaginary modes means a minimum
on the PES has been reached.

This approach has been used to predict new perovskite compounds129–131 (starting from the ideal cubic perovskite structure),
and new transition metal monoxides128,132 (starting from the rocksalt structure). There are no limits to its applicability, but it will
only discover structures that are connected to the initial guess via a series of saddle points on the PES.

A somewhat flipped approach that acknowledges the spirit of dynamical instabilities has been used in random structure search-
ing to explicitly discover high-symmetry structures with one or two imaginary modes.133 Just like many perovskites have a high-
temperature phase with the cubic structure,134 those saddle point structures are candidates for high-temperature phases of materials,
where thermal excitations result in the averaged high-symmetry structure.

3.12.5 Fitness functions

So far, discussions have implicitly focused on the target to minimize the total energy (or enthalpy) during the structure prediction
process. This is reasonable, as the global minimum on the potential energy surface for a given chemical composition is surely

(A) (B) (C)

(D)

Fig. 6 (A) Illustration of following soft phonon modes. (B) Phonon dispersion curve of rocksalt HgO, as per reference 128. Points indicated by
crosses are explicitly calculated phonon frequencies, red lines are Fourier interpolations. (C) Primitive unit cell of HgO in a rock-salt structure. (D)
Imaginary phonon mode with wave vector q ¼ (0.5, 0.5, 0.5) of rock-salt HgO described in a 2 � 2 � 2 supercell of the primitive cell. Blue atoms
are moved along the displacement vector. The perturbed structure is lower in energy.
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the most likely to be synthesized. However, local search approaches have already been motivated by the need to identify low-barrier
transitions from given initial structures to competitive metastable alternatives, rather than the global minimum. Furthermore, it is
often desirable to identify and rank crystal structures by specific physical or electronic properties. Finally, compounds are often
compared across composition ranges, so the total energy needs to be evaluated against all possible ‘escape’ or decomposition reac-
tions. All these considerations have led to the development of more generalized ‘fitness functions’ F to attach to a given crystal struc-
ture S,

F Sð Þ ¼ ð1�aÞE Sð Þþa
X
i

biPi Sð Þ;

where Pi are appropriately normalized properties other than the compound’s total energy/enthalpy E, with weights
P

ibi ¼ 1 chosen
to reflect the user’s priorities. The properties Pi can reflect a desirable absolute maximization or minimization of a property (e.g.
hardness or mass density) or closeness to a target value (e.g. optical band gap or lattice constant). Once F is chosen, structural
candidates can be ranked according to this more general criterion, which influences (in search approaches with memory) choice of
future structural candidates accordingly.

To be fully utilizable, the properties Pi must be calculable with little effort; any property calculations that are computationally
more demanding than a structure’s geometry optimization are unsuitable for unsupervised structure prediction. Some properties are
trivially derived from a crystal structure, such as density or atomic coordination numbers; for others, for example Vickers hardness,
estimators exist based on atomic configurations; yet others, such as electronic band gap or electride character, come at the cost of
a single SCF calculation – which is a defensible cost if the structure prediction is done at DFT level of theory.

For structure-property relationships that are hard or impossible to calculate, correlations can be explored using machine-learning
techniques.135 Originally used to mine materials database information, machine-learned models can also be used in crystal struc-
ture prediction, provided the structural candidates are not too far removed from the model’s training dataset.

Pareto analysis is an economics-inspired alternative to specifying a fixedmulti-component fitness function. It produces solutions
that as best as possible optimize all desired properties (E, Pi) simultaneously, ranking as best structures that are optimal in at least
one property, and where every alternative includes a trade-off of properties.136–138

The Pareto analysis is an example of how desirable properties can be included in a structure prediction without designing
a specific fitness function. A possible workflow could be to determine a full set of structural candidates, e.g. by random structure
searching, then determine all properties of interest either for the full set or a sub-set of low-enthalpy candidates, depending on
computational cost. The latter, in particular, is a very popular approach to find materials with specific properties among low-
enthalpy (and therefore presumably synthesizable) structural candidates.

Below, we discuss some of the property estimators that can be employed directly as part of a fitness function. Before that, we
introduce the Maxwell stability criteria for multi-component systems, also known as convex hull or tieline constructions.

3.12.5.1 Compositional stability

Where the system of interest contains a range of possible compositions or stoichiometries, the thermodynamic stability of each
structure against a decomposition into amixture of other stoichiometries should be calculated. AMaxwell, or convex hull, or tieline,
construction can determine this.

IfH(F) is the enthalpy of a structure with composition F comprising a set of species, {Ai}¼{A,B,...,X}, the relative enthalpy of an
n-species mixture containing elements A, B to X compared against decomposition is

DH xð Þ ¼ H
�
Ax1Bx2.Xn

xn

�
�
Xn
i¼1

H
�
Ai�xi: (2)

An n-species composition space can be described by normalized barycentric coordinates in n � 1 dimensions by imposing the
constraint

Xn
i¼1

xi ¼ 1; (3)

where xi are the composition weights. The mechanism for calculating stability against decomposition to any composition is to
construct the n-dimensional convex hull of points in a composition-enthalpy space. Points that form the (lower portion of the)
convex hull are stable against decomposition.

In a binary system this looks like

DH xð Þ ¼ HðAxB1�xÞ�H Að Þx�H Bð Þð1� xÞ: (4)

The composition can be described by one parameter, x, and the convex hull is a polygon where each corner represents a stable
composition, as in Fig. 7A).

In a ternary system this looks like

DH xð Þ ¼ HðAx1Bx2C1�x1�x2Þ�H Að Þx1 �H Bð Þx2 �H Cð Þð1� x1 � x2Þ (5)
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where the pure A, B, C endmembers are corners of an equilateral triangle. Explicitly describing the ternary convex hull in Fig. 7B, the
composition space is divided into irregular triangles, each of which represents a linear mixture of the surrounding stable structures.
Points on the ridges connecting points represent binary mixtures of the two endpoints.

In a quaternary system, with a fourth species, D, this looks like

DH xð Þ ¼ HðAx1Bx2Cx3D1�x1�x2�x3Þ
�H Að Þx1 �H Bð Þx2 �H xð Þx3 �H Dð Þð1� x1 � x2 � x3Þ:

(6)

where the end members are corners of a regular tetrahedron. In this case, the composition space is represented in three dimensions.
The composition space is divided into irregular tetrahedra which contain compositions that form linear mixtures of the four
surrounding compounds. Points on the faces of the tetrahedra represent ternary mixtures of the face corners and points on the edges
of the tetrahedra represent binary mixtures of the two endpoints.

3.12.5.2 Structural and mechanical properties

Often, partial structural information about an unknown compound exists. In particular, partial powder x-ray diffraction (XRD) data
might have been collected, but in insufficient detail or quality to fully solve the compound’s structure. In such a case, the fitness
function could be augmented by a term P � k1 � dfgk that contains the difference dfg between the measured and simulated XRD
patterns for predicted structures.139–141 This approach resembles a new type of XRD refinement procedure, based on first-
principles structure optimizations. In practice, the use case for this approach has so far been limited. More often, the partial infor-
mation from XRD (such as unit cell size or space group) is used to constrain conventional structure searches to the relevant regions
of configurational space142,143; the interactions between experimental and computational collaborators tend to beat explicit fitness
functions in those cases.

For a given structure, the response to external stresses via collective distortions away from equilibrium determines its mechanical
properties. The mechanical properties of materials are extremely important for potential technological applications. Superhard and
incompressible materials, for example, are sought after in various industrial and aerospace settings. While the bulk modulus, the
inverse of compressibility, determines a material’s resistance against compression, its shear modulus is a better descriptor for its
hardness, the resistance against indentation.144,145 Conventionally, elastic moduli of crystals are determined from a series of finite
strain calculations, but this is too computationally demanding for high-throughput calculations. The bulk modulus can be esti-
mated via an empirical relation to local bond lengths.146,147 For the hardness, several different microscopic models have been devel-
oped148–151 that (intrinsically or with small modifications) rely only on the atomic configurations and no additional electronic
structure information. These computationally cheap empirical models have been implemented in several crystal structure predic-
tion packages, and allow to include hardness in the fitness function.78,152

As an alternative,153 the shear modulus of the predicted structures has been estimated by a machine-learned model based on the
AFLOW materials database,85 from which the hardness itself can be estimated.145 We expect that machine-learned structure-
property relationships will become increasingly more important to quickly assess newly predicted structures with respect to
mechanical or other properties.

3.12.5.3 Electronic properties

For many applications of inorganic materials, their electronic properties are at least as important as mechanical or elastic properties
– are they insulators, semiconductors, or conductors? Is their fundamental band gap (the solid-state equivalent of the

Fig. 7 Examples of binary and ternary convex hulls with A, B and C end members, binary material (BM ¼ Ax B1 � x) and ternary material (TM ¼ Ax1
Bx2C1 � x1 � x2). In the binary case, the data is represented in two dimensions; one for relative enthalpy and one for composition. In the ternary case,
two dimensions are used to represent composition and the convex hull is projected onto the surface, dividing composition space into different
(triangular) regions labeled by the relevant decomposition reactions.
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HOMO-LUMO gap) suitable for matter-light interaction, e.g. sensing or photovoltaics? Are their transport properties amenable to
thermoelectric applications? Are they promising superconductors? Those properties are accessible in electronic structure calcula-
tions, but usually at (comparatively) large computational cost. For high-throughput scenarios such as crystal structure prediction,
fast approximations are required.

The optical band gap of materials determines their ability to absorb light of given wave lengths. For solar cell materials, the
optimal gap value is around 1.4 eV.154 Hence, a fitness function that uses the property P � (Eg � 1.4 eV)2 would be straightforward
to implement in a search process, where Eg is the band gap obtained from DFT. There are several issues that need to be considered in
such an approach. Firstly, the optical gap is different from the single-particle energy gap; it is the smallest direct band gap including
excitonic states, which are bound electron-hole pairs.155,156 Calculations of exciton binding energies are feasible but computation-
ally very demanding.157 Secondly, all DFT implementations systematically underestimate even the fundamental band gap.158

Exchange-correlation functionals can be chosen to closely mimic experimental data159 but again can be computationally expensive
(usually if they include exact exchange) and their appropriateness for new structure types discovered in a search is not always clear.
Finally, for photovoltaic applications the band gap needs to be direct, and that assessment requires full band structure calculations
instead of relying on the electronic density of states (DOS), which would be readily available within the structure search.

For metals, the potential of superconductivity is of interest. In fact, the prediction of conventional high-pressure polyhydride
superconductors is one of the most impressive examples of the successes of crystal structure prediction. The superconducting tran-
sition temperature Tc can be calculated via the electron-phonon coupling strength l, which is again computationally expen-
sive.160,161 Hence, the preferred modus operandi has been to sample a given system, and determine Tc for the most stable or
metastable structural candidates only. However, the electron-phonon coupling can be re-written in terms of single-site Hopfield
parameters hj,

162 which in turn can be estimated from scattering theory using only single-particle wave function information around
each atom.163,164 A fitness function to maximize the Hopfield parameters, P ¼ maxihi, could be used for prediction of high-Tc candi-
date materials. In a recent alternative,165 the Hopfield parameters were used as a secondary filter (after closeness to the convex hulls)
to identify high–Tc candidates, for which full calculations of l and Tc were then performed; the amount of structural candidates that
could afforded to be tested (in this approximate way) for superconducting behavior was several orders of magnitude higher than
before.

Materials where electrons localize in the interstitial spaces between atoms are called electrides; they are stoichiometric pseudo-
ionic compounds where the localized electrons take up the role of the anions.166 The electron sites can be occupied by electron pairs
or single electrons; the latter giving rise to interesting magnetic properties.167–169 Either way, the high electron mobility and low
work function make electrides valuable catalysts and reducing agents.170,171 They are readily identified from electronic structure
calculations by topological analyses of the electron density or derived measures, such as the electron localization function
(ELF)172,173: ELF maxima not associated with ionic cores or covalent bonds, or density maxima away from atomic positions, are
indicators for electride character that are obtained at very little computational cost during structure searching. A fitness function
that maximizes such regions in the unit cell, P ¼ Vinter/Vunit, has been used successfully to predict new electride materials.174

Thermoelectrics are energy materials where the thermoelectric effect, a voltage difference due to a thermal gradient, is exploited,
for instance for refrigeration or waste heat recovery. Thermoelectrics are most often characterized by their Seebeck coefficient
S ¼ DV/DT and their figure of merit ZT ¼ sST/k, which combines S with their electrical conductivity s and thermal conductivity
k. Accurately determining those transport coefficients is computationally expensive but reasonable approximations, such as the
constant relaxation time approximation, have been implemented175,176 that allow estimates of S and ZT based on standard DFT
band structure information. This allows for high-throughput screening for thermoelectric properties.177,178 For actual structure
prediction, both S and ZT have been used (next to total energy) as part of multi-objective optimization searches.179,180

3.12.6 Accelerating the search process

The techniques describes in Section 3.12.4 all require a series of first principles geometry optimisations, each of which consists of
tens of energy and force calculations. This presents a bottleneck for CSP. Here, we describe some techniques that can reduce the
number of expensive calculations and speed up the structure search.

3.12.6.1 Hard sphere potentials and volumes

Considering the vast size of the potential energy surface, it should be appreciated that a significant portion of the potential energy
landscape consists of unphysically dispersed or dense structures. Care should be taken to generate structures that are physically
reasonable before invoking the chosen energy calculator. Therefore, candidate structures should be generated based on realistic esti-
mates of the density and typical bond lengths. Any initial structures that deviate significantly from those should be discounted or
adjusted prior to calculation. A related, albeit extreme case is that pseudopotentials have a finite cut-off radius separating the frozen
core region and the Kohn-Sham valence electrons. When the core regions overlap too much, the ab initio calculation will often be
nonsense and should be avoided.

Reasonable atomic separations should be considered pair-wise in multispecies systems; for example, LiCoO2, which is used as
a cathode material, has crystal structures which are likely to have close LieO contacts but not LieLi or CoeLi.5 Each pair
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combination can have a different minimal allowed separation. This is sometimes input as a matrix or list of pair distances. In Fig. 8,
an example is shown for BaTiO3.

One approach, as implemented in AIRSS, is to apply hard-sphere pre-optimizations d with sphere radii determined by the ex-
pected bond length d to all proposed structures prior to first principles calculation. With a determined unit cell chosen, the atoms
can be placed inside and optimized with the simple potential.

In some cases, the ideal density and bond lengths are unknown a priori. In this case, while the search can begin with no restric-
tions, after some time ‘sensible’ low energy structures will emerge. From those, hard sphere radii and volumes can be determined
and used throughout the remaining searches. In a sense, when used to construct hard-sphere potentials, this is a basic d and
perhaps trivial d example of training a potential on ab initio data.

3.12.6.2 Modular decomposition

Complex crystal structures can often be decomposed into recognizable building blocks. A trivial example is that a random search of
stoichiometric H2O would find the low energy structures are networks of H2O molecules. The conclusion from this would be that
the dimensionality of the search space could be reduced by building structures with H2Omolecules from the beginning; the compo-
sition space of OH�and Hþis less relevant and should be explored less. On a larger scale, complex structures like the allotropes of
Boron can be decomposed into building blocks of clusters. Alpha Boron, a 12 atom rhombohedral structure is known to be formed
of connected B12 icosohedra. Gamma Boron, a 28 atom orthorhombic structure, found at high pressure, consists of B12 icosohedra
and B2 dimers.181 Ahnert et al. used this concept, conceiving a smart decomposition of structures with an emphasis on modularity,
to perform structure searches for other allotropes of Boron.182 The configuration space is reduced by building structures only con-
taining the expected ‘building blocks’. This modular decomposition was also used to accelerate searches to rediscover complex
fibrous Phosphorus crystal structures with a machine learned potential.183

In the Gamma Boron example, decomposing the structure into 12 atom icosahedra, the 3 N degrees of freedom reduce to just 5N12
degrees of freedom containing 3N

12 translational degrees of freedom and 2N
12 rotational degrees of freedom.

3.12.6.3 Orbital free DFT

Another approach is to use faster implementations of DFT to perform the geometry optimizations. The Kohn-Sham formalism of
DFT described in Section 3.12.3 uses orbitals to calculate the kinetic energy and the electron density, which is in turn used to calcu-
late the remaining energy contributions. In practice, this process requires a mesh sampling of the Brillouin zone to capture the
orbitals as they vary with wave vector, k. There is a trade-off between computational cost and accuracy depending on this sampling.
In the case of metals, this becomes problematic as poor sampling leads to overly rugged landscapes, and as such the smoothness of
the PES and hence surmountability of CSP described in Section 3.12.2 becomes less applicable.

Orbital free methods use a kinetic energy functional to determine the total energy using electronic density alone and as a result
should scale in theory linearly with the number of atoms in the unit cell. This has been demonstrated to recover low energy struc-
tures of Li, Na, Mg, and Al184 but requires a good functional to estimate the kinetic energy. Development of suitable kinetic energy
functionals is ongoing.185

3.12.6.4 Machine learned potentials

Interatomic potentials have been used widely for a range of purposes since calculations are fast and can be used to study large
systems. However, they will not describe well the novel environments seen in the candidate crystal structures. Hence, there is

Fig. 8 The crystal structure of BaTiO3. Pair distances are shown in the matrix. Sensible low-energy structures will have similar pair separations. In
AIRSS, this is given with the command, #MINSEP ¼ 1.0 O-O ¼ 2.81 O-Ti ¼ 1.88 O-Ba ¼ 2.80 Ti-Ti ¼ 4.06 Ti-Ba ¼ 3.44 Ba-Ba ¼ 4.06.
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a practical upper limit to the number of atoms used in first principles CSP. Machine learned (ML) potentials aim to describe the ab
initio PES but calculated at a fraction of the cost.

The concept of fitting interatomic potentials to ab initio data is not new, but historically restricted to datasets of a few atoms in
a small number of configurations.186 The increased availability of high-throughput ab initio data and the renewed interest in non-
linear fitting techniques such as artificial neural networks187 and Gaussian regression188 has garnered much interest in recent years.

Typically, ML potentials are effective because the model can “learn” local energies εi for each atomic environment, taking advan-
tage of the ‘shortsightedness’ of atomic interactions. The total energy is then a sum of each atoms contribution, E ¼Piεi. This means
the ab initio training data can use relatively low numbers of atoms, remaining computationally manageable but still capturing
a diverse set of local environments. The potential can then be used on much larger systems, previously inaccessible with DFT.

ML potentials generally consist of three components; a reference dataset, a descriptor, and a regression tool. The reference dataset
consists of several atomic configurations with known energies and forces calculated with high accuracy such as with DFT. The trans-
ferability of the resulting potential depends heavily on this dataset.

A descriptor is selected to accurately represent each atomic environment, and eventually return a local energy and forces. Hence,
the descriptor must be invariant to permutations, translations and rotations of atoms.189 Meaning, swapping two identical atoms,
should give an identical descriptor and hence an identical energy. For practicality, the descriptor only describes the environment
within a sphere with radius of a few Angstrom.

Finally, the regression tool is trained to predict total energies for previously unseen crystal structures. This can be a linear regres-
sion,190 artificial neural network187 or kernel methods.188

One example descriptor is the ‘Smooth Overlap of Atomic Positions’, or SOAP,191 which consists of an atomic density field
formed of gaussians placed at each neighboring atom site, expanded in a basis of spherical harmonics and radial basis functions.
This descriptor lends itself well to the Gaussian Approximation Potential (GAP) framework,188 which uses Gaussian process regres-
sion to estimate the atomic energy and forces of a given environment by comparison with known energies for environments present
in the reference dataset.

It can take a long time to generate potentials that are sufficiently transferable and accurate, often as a result of intuitive curation of
reference datasets. These potentials can then be used on their own going forward in a variety of applications. An alternative
approach is to routinely generate new potentials ‘on-the-fly’with minimal human input. The latter potentials will often be less accu-
rate but specific to the desired use. As an example, while silicon has been well studied and has very accurate machine learned inter-
atomic potentials,187,192 these would be of little use to study a less ubiquitous silicon-containing compound such as SiH4 or SiC for
which new potentials are required.

Crystal structure prediction, accelerated by MLPs, uses the ‘on-the-fly’ approach.193–195 The potential need only be accurate
enough to generate low energy structures, which can ultimately be refined using DFT. Generating potentials suitable for global opti-
mization requires a reference dataset that spans low energy and high energy configurations to capture the atomic environments seen
throughout the optimization. Training data for these potentials can be generated from single point energy calculations on randomly
generated crystal structures. It can also be effective to iteratively train the model by using the potential to optimize structures to local
minima and calculating ab initio energies for structures close to the predicted local minima. This enables structure discovery with
significantly fewer explicit ab initio calculations and can search unit cells with significantly more atoms. Recent applications of MLPs
with unit cells containing large numbers of atoms include a priori ‘rediscovering’ allotropes of Boron,13196 prediction of allotropes
of phosphorus197 and prediction of a novel 60 atom phase of SiH4 at high pressure.196

3.12.7 Visualizing the PES

The PES exists in a high dimensional space of all atomic configurations and so is inherently difficult to visualize. This represents
a well known task in data science, to project the high dimensional data into three dimensions or less. A few approaches have
been introduced to do this. However, as a first step the crystal structures must be ‘vectorized’ to define a consistent high dimensional
basis. This means rather than choosing a local descriptor to describe atomic environments, we seek a global descriptor that describes
the entire crystal structure. This is similar to the concept of collective variables discussed in Section 3.12.4.5.1. However, these
global descriptors are not constrained to just a few variables.

Earlier, we discussed the crystal fingerprintsd or global descriptorsd suggested by Valle and Oganov,77 which are histograms of
pair-wise atomic separations. These histograms are a 1 � N vector where N is the number of histogram bins. It is useful to define
a measure of how separated the structures are from each other based on this descriptor. Valle and Oganov use a cosine distance
measure d meaning the dot product of the descriptor vectors d and find that plotting energy against this distance measure gives
information about the potential energy landscape. In particular they show how local minima can appear as ‘funnels’ toward the
lower energy minima.198,199

An alternative vectorization is to, in some way, combine the local atomic environment descriptors in the unit cell to give a global
descriptor. The aforementioned SOAP descriptor vectors, for example, can be simply averaged over atoms in the unit cell to give
a global descriptor vector.200 Of course, averaging the descriptors in this way loses some information; two distinct crystal structures
could give similar averaged global fingerprints. Alternative but more complex global descriptors calculated from local environments
are described by De et al.200
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Several approaches have been used to reduce the dimensionality of this vector space, such as sketch maps201 and disconnectivity
graphs.202 However, the specific task relevant to crystal structure prediction of representing a range of local minimad as opposed to
a series of molecular dynamics snapshots d involves capturing information about the basin sizes, connectivity and separation. A
recent approach by Shires and Pickard203 does this by applying state-of-the-art dimension reduction techniques, such as t-SNE and
UMAP,204,205 to project the vectors on to three or fewer dimensions. The size of the basins are considered by combining similar
structures, where more repetitions are represented by larger symbols. The connectivity of the basins is retained by imposing
hard-sphere potentials to points in the reduced dimension projection. An example of this is shown in Fig. 9.

3.12.8 Examples

Thanks to the ubiquity of high-performance computing resources that can efficiently run multiple parallel instances of DFT codes,
CSP has become a burgeoning field. Below we collect examples from the literature from different fields where first principles CSP is
(or could be) a successful driving force of research.

3.12.8.1 Compositional complexity

In chapter 2, we introduced a combinatorial estimation of the number of atomic configurations for a single element system. Natu-
rally, introducing multi-element variation increases this number dramatically, making CSP more difficult. It is a challenge that is of
interest, since superconducting cuprate materials typically contain between four and five element types,206 and d as will be dis-
cussed d ternary superconducting hydrides are showing theoretical and experimental evidence for high temperature superconduc-
tivity.207–211

An application where compositional complexity dominates is in cathode materials. Particularly, with a desire to design next-
generation Lithium-ion batteries for electric vehicles or ubiquitous energy storage, featuring longer lifespans and storage capac-
ities.212 A prominent material and the first commercialized Lithium-ion battery is LiCoO2.

213 Since then, efforts have been made
to improve the capacity by substituting transition metals into the LiMO2 framework, again presenting a combinatorial problem.
This was explored initially through ab-initio calculations by Ceder et al.,214 with manual construction of LiMAlO2 derivates (where
M ¼ Ti, V, Fe, Co). Then, more ambitiously, using high-throughput screening of ternary oxide compounds using known crystal
structures from a database,83 and calculations of AxM(YO3)(XO4) (with A ¼ Na, Li; X ¼ Si, As, P; Y ¼ C, B; M ¼ a redox active
metal;) in the sidorenkite crystal structure.84

Fig. 9 SHEAP map of LiCoO2 structures generated from a random structure search. Circle sizes correspond to the number of structure repetitions
(hence the size of the local basins), colors represent energy scale from purple (most stable) to yellow (most unstable). Reproduced with permission
from Lu et al. Lu, Z.; Zhu, B.; Shires, B.W.B.; Scanlon, D.O.; Pickard, C.J. Ab Initio Random Structure Searching for Battery Cathode Materials.
J. Chem. Phys. 2021, 154(17): 174111, doi:10.1063/5.0049309.
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However, perhaps the next-generation material does not conform to a known structure type. Recently, calculations have attemp-
ted to generate novel structures for a wide range of stoichiometries using AIRSS,4,5 reproducing known polymorphs and suggesting
new stable and promising new materials in LiCoO2, LiFePO4, and the Lix1Cux2 Fx3 ternary. Due to the sheer scale of the computa-
tional problem, these efforts may have only scratched the surface and perhaps the best material is a quaternary or quinary structure
in an unknown structure type. Cathode materials will be at the cutting-edge of CSP in the coming years.

An entirely different proof-of-concept structure search by Pickard provides an unbiased sampling of the quaternary HeCeNeO
chemical space at 1 GPa pressure.215 While the pressure removes the dominance of dispersion interactions in the structures formed,
the dataset reflects an ambitious survey of the most dominant organic chemical space (the PubChem database lists close to 45
million compounds within this composition space216). The dataset contains many known thermodynamic sinks, and the quater-
nary nature of the space is well reflected if visualized using the SHEAPmapping introduced above203; it remains available for further
investigations. Unrelated studies of planetary ice mixtures, motivated by the unknown makeup of deep planetary interiors, pre-
sented quaternary HeCeNeO phase diagram at several Mbar pressures,217,218 implying that compositionally complex systems
can now be studied using first principles CSP.

3.12.8.2 High pressure

Energy landscapes of elements and compounds at high pressures often deviate from chemical intuition attuned to ambient condi-
tions.219,220 Due to the non-intuitive effects, the exploration of high pressure energy landscapes with crystal structure prediction
methods has proven extremely useful to reveal fundamental new physics and chemistry that governs materials’ stability and prop-
erties at high densities.221

3.12.8.2.1 Elements
The lightest element, hydrogen, retains immense interest due to its complex high-pressure phase diagram and the promise of high-
temperature superconductivity following its eventual metallization.222 One of the most intriguing effects is the appearance of
a strongly infrared-active vibron mode in its phase III above 150 GPa, implying the presence of polarized H2 molecules in an aniso-
tropic matrix of their peers.223 An early success of random structure searching was the discovery of a structure that fits this descrip-
tion16; while free energy calculations of the same dataset revealed a candidate structure for the high-temperature phase IV.224

Computational work on hydrogen continues, and its unique challenges due to the low nuclear mass drive methodological devel-
opments in structure prediction.133

Boron tends to form very complex crystal structures, with polyhedral motifs borne out of an electron deficiency that favors multi-
center bonding. This tests the ability of structure prediction methods to successfully perform searches with large numbers of atoms.
The g - B28 phase was found in evolutionary algorithm searches by exploiting experimental unit cell information.181 Boron provides
motivation for continued methodology development to scale up structure predictions, such as automated detection of atomic
motifs (making polyhedra instead of atoms the units of the search),182 or on-the-fly training of interatomic potentials to vastly
increase structure throughput.13196

Sodium is a textbook simple metal at ambient conditions but is also exemplar for non-trivial electronic transitions at high pres-
sure, most strikingly by taking up an insulating phase above 200 GPa that was found in evolutionary algorithm structure searches.22

The appearance of bad metals or insulators among most group I and II elements correlates with their tendencies to form high-
pressure electrides, including in complex incommensurate host-guest phases.225 Random structure searches predict that trivalent
aluminium will also take up such host-guest phases in the TPa pressure range.226

3.12.8.2.2 Hydrogen bonding
The evolution of hydrogen bonds under pressure is relevant to many fields beyond inorganic chemistry, including biology (bound-
aries of life at extremes), geosciences (water storage inside minerals) and planetary sciences (icy planet interiors).

Among hydrogen-bonded ices the pressure response varies significantly. Ammoniawas predicted from random structure search-
ing to self-ionize into (NH2)

�(NH4)
þ
,
15 which was later confirmed in experiment.227,228 Water is predicted to undergo a series of

phase transitions beyond hydrogen bond symmetrisation,21,229–231 ultimately decomposing in the TPa pressure range.232 Experi-
ments have not yet reached those pressure conditions, instead new ice phases are found at high temperatures, in the superionic
regime of hot dense water.233–235 Ammonia-water mixtures are again predicted to form ionic high pressure compounds,20,236

which has been confirmed by experiment.237 A cautionary tale is hydrogen chloride, where (post hydrogen bond symmetrization)
a series of low-symmetry ground state phases was predicted,238–240 whereas experiments and molecular dynamics simulations
found a high-symmetry, room-temperature superionic phase.241 The emergence of high-symmetry phases at elevated temperatures,
whether caused by quantum or entropic effects, continues to present challenges for crystal structure prediction methods that rely on
full structural optimizations toward local minima.

Metal hydroxides of formula MOH (for group I metals) or M(OH)2 (for group II metals) are another class of hydrogen-bonded
materials with rich structural variety under pressure. Crystal structure prediction was instrumental in both enabling and correcting
previous experimental structure assignments in dense alkali hydroxides.242–244

Hydrous minerals are compounds that store hydrogen at deep Earth conditions; the hydrogen bonding influences individual
phases’ stabilities and elastic properties. Computational predictions have successfully preceded experimental syntheses in this
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area,245,246 while crystal structure prediction has been applied to scenarios that range from Earth’s mantle transition zone to the
primordial core.247–250

3.12.8.2.3 Polyhydride superconductors
The theory of metallic and superconducting dense hydrogen evolved toward the concept of ‘chemically precompressed’ hydrogen in
hydride compounds.252 The very first published random structure search results were in this area, on silane,17 and since then the
field has seen an extraordinary sequence of crystal structure prediction followed by experimental synthesis and characterization. The
structure predictions usually follow the sequence of identifying low-enthalpy structures, nowadays across variable composition
ranges, before calculating superconducting properties for the best candidates. As a general theme, high pressure favors the formation
of polyhydrides with higher hydrogen content than at ambient or low pressure conditions, hence searches need to screen a wide
range of hydrogen compositions. Polyhydrides that have been predicted (all with superconducting Tc above 200 K) and subse-
quently synthesized (all above 150 GPa) include CaH6,

253–255 H3 S,
18,256 LaH10,

257–260 and YH6 � 9.
261–263 Full screening of ternary

composition spaces is now possible, and ternary polyhydrides have been predicted with even higher Tc, or with lower formation
pressures.207–210

3.12.8.3 Target properties

In Section 3.12.5 we discussed different types of fitness functions (other than total energy or enthalpy) that can be used to direct
structure searches toward specific properties, using multi-objective optimizations. In truth, those targeted approaches have not been
as prominent as one might expect – despite the need for new materials with specific properties. That is not to say that applications
do not exist: multi-objective searches have yielded superhard materials,264–266 electrides,174 and thermoelectrics.179,180 However,
a muchmore common approach is to search for low-energy or low-enthalpy structures first, and then investigate those for properties
of interest. This often includes expensive follow-up calculations, and is therefore restricted to a few candidate structures. There is
therefore merit in developing or adapting computationally cheaper predictive models, to enable pre-screening for interesting prop-
erties across a wider range of candidates – ideally the entire dataset of structures that emerge from a CSP search. The surrogate model
for superconducting Tc, based on single-electron wave functions, is an example, as it allows rapid qualitative statements on pros-
pects of superconductivity.165 Across materials informatics, a plethora of similar structure-property relationships have been codified
for all kinds of materials properties in recent years, often using machine learning techniques, which could be used in conjunction
with CSP.135,267–269

3.12.9 Challenges and conclusions

While first principles crystal structure prediction has been shown to be successful in materials discovery, challenges remain. Those
challenges can stem from deficiencies in the DFT calculations to describe particular compounds; or from inadequacy of total energy
calculations to deduce stability. The latter relates for example to the fact that DFT calculations of a material require well defined
atomic positions; disorder is not usually handled by CSP.

However, real materials can be intrinsically disordered. In fact, a large number of structures on the ICSD contain partial site
occupancy (SOF < 1), implying some disorder. This could be a structural disorder such as in H2O, where the molecules appear
to be tetrahedra with 0.5H atoms on each corner (see Fig. 10A). Crystal structure prediction will only discover the ordered approx-
imation of these structures. In this example, it can discover the ordered structure, ice XI, but not the isostructural disordered ice Ih.

Alloys can have well defined crystal structures with non-integer occupancies that would not be described well using DFT. The
stoichiometries accessible with CSP are limited by the number of atoms used in the search. Fig. 10B) shows an experimental deter-
mination of the crystal structure of an Mn0.95 � dFe1.05 � x þ dCox B alloy. However, the exact stoichiometry is not easily accessed in
calculations. Furthermore, it is not clear that CSP is the right tool for alloys: an analysis of metallic compounds within the AFLOW
materials library suggested that their formation is dominated by entropy rather than energy gains if they contain four or more
elements.270,271

Configurational entropy is but one contribution to a compound’s Gibbs free energy that DFT total energy calculations struggle
to quantify. The aim of first principles CSP, to find the global minimum of the potential energy landscape, does not give the
complete (or often, sufficient) picture. At finite temperatures, dynamic effects can change relative stabilities of different structures,
which has two major consequences. Firstly, CSP methods need to find and catalog the spectrum of metastable states, in addition to
the global minimum, and do this in an ergodic way, i.e. representing ensemble averages. For search methods with ‘memory’ this is
not a priori clear. For the ‘local’ approaches discussed in Section 3.12.4.5 the challenge is the opposite, as they need to ensure to
sample the local environment of the PES wide enough to encounter all relevant metastable states. For the ‘global’ survey approaches
introduced in Section 3.12.4 additional benefit would emerge from information on the connectivity of different basins within the
PES. Some progress is currently being made by visualizing the PES based on structural similarities, but identifying reaction pathways
and transitions states remains a big challenge.

The second consequence of dynamic effects is the stabilization of phases that are not even local minima on the PES, as they are
intrinsically stabilized by entropy. The prototypical cubic perovskite structure will not usually emerge from CSP of ABO3

compounds, because it often features a dynamical instability toward lower symmetry structures with rotated and tilted octahedra.
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Molecular crystals may have rotational (‘plastic’) states at elevated temperatures,272 which will not be uncovered from CSP alone.
Some materials display superionicity, ionic diffusion, or chain melting (in each case a subset of atoms becomes mobile against
a fixed lattice of the remaining atoms). Far below the characteristic temperature scales for these phenomena, free energies can be
estimated using vibrational entropies alone. This has led to a candidate structure for hydrogen’s phase IV.224 Those calculations
require expensive phonon calculations and are therefore not routinely accessible to CSP at the moment – but may be via
structure-property relationships or efficient interatomic potentials, if those can readily deliver phonon densities of states. An entirely
different issue with hydrogen, due to its very lowmass, is the large contribution of nuclear quantum effects,which arguably require
much more computationally intensive approaches than standard DFT to capture phase stabilities and transitions properly.

For some systems the periodic setup of DFT calculations for solids is insufficient. Some compounds contain periodicities that are
incommensurate with the lattice. This can manifest as a host-guest structure, where the periodicity of the ‘host atom’ lattice is
incommensurate with the ‘guest atom’ lattice. Known examples include the alkali metals, the heavier pnictogens, and predictions
for Al, all under pressure,225,226,273 while LiBx and Hg3 � dAsF6 have linear incommensurate chains at ambient conditions.274–276

Incommensurate structures can also manifest as charge density waves (CDW) or modulated crystal structures, where atoms are dis-
placed along a wave vector incommensurate with the average crystal structure. Examples of these include uranium at ambient and
the chalcogenides SeTe under pressure.277 Finally, there are compounds, such as NaNO2 and CaAu-II that display occupational
modulation where the site occupancies vary along an incommensurate wave vector. Those phases cannot be modelled in periodic
DFT, nor discovered directly using CSP. However, commensurate or ordered approximants of host-guest and CDW structures can be
constructed around a feasible superstructure that captures the two periodicities.226,278 Incommensurate structures may have an
ordered variant, stable above a transition temperature, where either the CDW amplitude vanishes (as in the high pressure SeIV
to SeV transition), or the periodicity becomes commensurate. An excellent review of incommensurate structures and the related
nomenclature has been given by Sander Van Smaalen.279

First principles CSP is also undermined in cases where DFT fails to capture significant portions of the electronic interactions.
This used to include weakly bound systems dominated by long-range dispersion interactions but the development of dispersion-
corrected exchange-correlation functionals in the last 10–15 years now allows accurate calculations of those. However, strongly
correlated electron systems still suffer from the inadequate formalism of electron correlation within DFT. This includes open-
shell systems (where DFT can struggle to reproduce magnetism) and Mott insulators (which tend to be metallic within vanilla
DFT), among others. In addition, the systematic underestimation of electronic band gaps within DFT means that even if the elec-
tronic structure is qualitatively correct, quantitative predictions, e.g. of metallization pressures or optical band gaps, remain difficult.
Corrections for these issues exist for specific systems, for example on-site Hubbard repulsion terms that penalize metallic states or
material-specific functionals to reproduce experimental band gaps, but introducing system-specific parameters terms is not ideal in
the spirit of automated CSP.

One main purpose of CSP is to uncover materials with desirable properties in silico, thereby bypassing expensive trial-and-error
synthesis efforts. As pointed out in Section 3.12.8.3, the direct search for specific properties has probably not reached its full poten-
tial. Partly, this might be due to the difficulty in capturing relevant physicochemical properties based on structural information
alone: catalytic activity, for instance, often relates to defects and surfaces of materials, rather than their bulk crystal structure. None-
theless, ongoing exploits in machine-learned structure-property relationships can hopefully be interfaced with CSP more often and
thus lead to more relevant predictions in materials science.

(A) (B) (C)

Fig. 10 Crystal structure prediction can be challenging on systems with partial occupancy (A, B) or incommensurate structures (C). (A) Ice Ih with
partial H occupancy and ordered ice XI. O/H atoms in red/blue. Partial occupancies given by partially filled spheres. (B) Mn0.95 � dFe1.05 � x þ dCox B
alloy with occupancies measured experimentally by XRD, and three ordered approximations in the same unit cell that may be found by CSP. Mn/Fe/
Co/B atoms in purple/bronze/blue/green. Partial occupancies given by partially filled spheres. (C) Incommensurate host-guest phase of K-IIIa at high
pressure, along the [001] (left) and the

	
11�0


directions. Reproduced with permission from Woolman, G.; Naden Robinson, V.; Marqués, M.; Loa, I.;

Ackland, G.J.; Hermann, A. Structural and Eelectronic Properties of the Alkali Metal Incommensurate Phases. Phys. Rev. Mater. 2018, 2(5), 053604,
doi:10.1103/PhysRevMaterials.2.053604.
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A final fundamental challenge is the combinatorial problem stated at the outset of this chapter. CSP (whether from first prin-
ciples or not) will always be limited in unit cell size and compositional variety that can be searched by the computational resources
necessary to sample configurational space. Even if the ground state minimum is the most likely structure to be found, in absolute
terms it might still take many thousands or millions of attempts to locate it. The modern approaches in CSP have had remarkable
success yet ongoing methodology developments aimed to speed up the searches, as discussed in this chapter, remain necessary to
allow even more relevant searches to take place.
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