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FeSiO4H2 stabilized at subducting slab conditions: A geologically viable water carrier
into the Earth’s lower mantle
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Hydrous minerals hold the key to unlocking the enduring mystery of the water cycle deep inside the Earth.
Tremendous efforts have been devoted to identifying geologically viable minerals meeting stringent pressure-
temperature-density stability requirements for descent into deep Earth, and such pursuits remain active. Here,
we identify two hydrous iron silicates, α- and β-FeSiO4H2, formed by a reaction of Earth-abundant FeSiO3

and H2O and stabilized at the pressure-temperature conditions in cold subducting slabs. These phases have a
sufficiently high density for a stable descent into the Earth’s lower mantle, and then decompose to release water
after reaching equilibrium with the mantle geotherm. Moreover, Mg(Fe)SiO4H2 solutions are found to be more
stable than the pure substances and can serve as effective carriers to transport substantial amounts of water to
lower-mantle regions via the cold subduction zones. These findings establish a viable and robust material basis
for the deep-Earth water cycle, with major implications for elucidation of many prominent geological processes.
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I. INTRODUCTION

Water (H2O) has tremendous influence on the physical and
chemical properties of the Earth’s constituent compositions
[1–3]. The knowledge about the transport of water into the
Earth’s interior is crucial to understanding its evolution and
dynamics. It was estimated that a large amount of water
(∼1011 kg/yr) is continuously transported into the Earth’s
interior through subduction zones, while only a fraction of the
water degasses to the Earth’s surface [4,5]. This imbalance
indicates that a large amount of water is delivered and stored
in the Earth’s interior by deep, global water circulation [6–11].
The transition zone is known to be a major water reservoir
[12,13]. There is also evidence of significant amounts of water
stored in the lower mantle; for example, the phenomenon
of partial melting that offers a reasonable interpretation of
the observed low-velocity regions near the top of the lower
mantle and at the core-mantle boundary can occur only in the
presence of abundant water [14].

It is widely accepted that water is carried into the Earth’s
interior by hydrous minerals in the uppermost of the de-
scending cold plate [15,16]. Extensive past studies focused on
various dense hydrous magnesium silicates, such as phase A
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(Mg7Si2O14H6), phase E (Mg2SiO6H4), superhydrous phase
B (Mg10Si3O18H4), phase D (MgSi2O6H2), and phase H
(MgSiO4H2) [17–27], as potential deep-Earth water carri-
ers [28]. However, these dense hydrous magnesium silicates
are not fully compatible with the stability requirements in
the geologically relevant environments, as some dissociate
into an assemblage of nominally anhydrous phases plus wa-
ter at the lower-mantle pressure and temperature conditions
(<1500 km) [16], while all of them possess lower density
compared to the preliminary reference Earth model (PREM)
data. When these low-density hydrous minerals are located
at the uppermost of the subducting slab, one possible sce-
nario might arise, wherein low-density hydrous minerals may
undergo upward transportation through geological activities,
encompassing diapirs [29–32]. As a result, certain portions
of the low-density hydrous minerals have the potential to be
recycled to the overriding plate instead of being further trans-
ported into the deep interior of the Earth. Recently, several
hydroxide phases [e.g., δ-AlOOH and Ca(OH)2] and their
solid solutions with hydrous silicates were found stable in
a wider pressure-temperature stability range [27,33–39], and
these hydrous minerals were proposed as potential carriers to
transport water into the lower-mantle depths. However, chal-
lenges remain in finding more minerals with high gravitational
stability and Earth abundance that have a major impact on
water transport into the deep lower mantle [40]. Therefore,
finding geologically viable carriers for deep water circulation
remains an outstanding problem that requires new insights and
further exploration from materials physics perspectives.
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Bridgmanite (Mg, Fe)SiO3 is considered the most abun-
dant mineral in Earth’s lower mantle, and it was thought to
have very low water storage capacities [41,42]. Previous stud-
ies revealed that the presence of Fe, which is an increasingly
more abundant element at greater depths, may significantly
change the stability of silicates and their water solubility
[43–47]. An important issue, therefore, is whether FeSiO3 can
react with water to form hydrous phases at relevant pressure
and temperature conditions. In this paper, we address this
issue by evaluating the stability of H2O-saturated FeSiO3 un-
der pressure, using an advanced structure prediction method
in conjunction with first-principles calculations. Our search
found two Fe-bearing hydrous silicate phases that are stable
at a wide range of pressures (18–61 GPa) and temperatures
(<1450 K). Moreover, these hydrous Fe silicates have a con-
sistently notable higher density compared to the PREM data,
giving them superior gravitational stability during a descent
into the lower-mantle depths. The stability at the pressure-
temperature-density conditions of the subducting slabs makes
FeSiO4H2 a geologically viable carrier for transporting signif-
icant amounts of water into the Earth’s deep interior.

II. COMPUTATIONAL DETAILS

To identify stable FeSiO4H2 phases, we employed an ad-
vanced structure search method and its same name code
CALYPSO [48–51], which has been successfully employed
in predicting the crystal structures of a variety of multiple-
component minerals [34,36,52]. We carried out variable-cell
calculations at 20, 50, and 100 GPa with one to four formula
units per simulated cell, where 60% lowest enthalpy structures
were retained to produce the next-generation structures by
a particle swarm optimization algorithm and the remaining
40% structures were randomly generated under the symmetry
constraint. Our ab initio calculations were performed in the
framework of density-functional theory within the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approximation
(GGA) [53], as implemented in the VASP code [54]. The
all-electron projector augmented-wave (PAW) method [55]
was adopted with 3p63d74s1, 3s23p2, 2s22p4, and 1s1 treated
as valence electrons for Fe, Si, O, and H atoms, respec-
tively. The GGA+U approach [56] was used to describe
the correlation effects among the localized Fe 3d electrons,
adopting the recently proposed values for the on-site Coulomb
interaction U = 5.0 eV and Hund’s coupling J = 0.8 eV
[39,57]. The plane-wave basis set cutoff energy of 1000 eV
and Monkhorst-Pack Brillouin zone sampling grid of 2π ×
0.03 Å−1 were used to ensure an enthalpy convergence of bet-
ter than 1 meV/atom. To establish the pressure-temperature
phase diagram, we calculated the Gibbs free energy in the
framework of a quasiharmonic approximation as implemented
in the PHONOPY code [58]. We simulated the Gibbs free en-
ergy of liquid water using the thermodynamic properties and
equations of states [see Supplemental Material (SM) [59]].

III. RESULTS AND DISCUSSION

Our structure search yielded two Fe-based hydrous sili-
cate phases, α- and β-FeSiO4H2 (see Table S1 for detailed
structural information [59]). The α-FeSiO4H2 is in an

FIG. 1. The crystal structure of (a) α-FeSiO4H2 and
(b) β-FeSiO4H2. The Fe, Si, O, and H atoms are represented
by brown, blue, red, and pink spheres, respectively.

antiferromagnetic ordering (Fig. S1) with the space group of
P21/c. The crystal lattice parameters are a = 5.12 Å, b =
4.69 Å, c = 9.36 Å, α = γ = 90◦, and β = 96.9◦ at 20 GPa.
This structure is similar to that of δ-AlOOH, where Al is
replaced by Fe and Si atoms, which are octahedrally coor-
dinated with six O atoms [Fig. 1(a)]. The SiO6 and FeO6

octahedrons are connected by edge or vertex sharing, and H
atoms occupy SiO6 and FeO6 octahedral interstices and bond
with O atoms to form OH dipoles in the crystal lattice. The
β-FeSiO4H2 phase also adopts an antiferromagnetic ordering
with the same space group, and its crystal lattice parameters
are a = 4.77 Å, b = 9.13 Å, c = 4.67 Å, α = γ = 90◦, and
β = 85.1◦ at 40 GPa. While β-FeSiO4H2 retains the main
structural features of α-FeSiO4H2 [Fig. 1(b)], the octahedrons
formed by SiO6 and FeO6 in β-FeSiO4H2 are only connected
by vertex sharing, leading to denser packing. These structures
of FeSiO4H2 do not contain symmetric hydrogen bonds, in
contrast to many hydrous minerals stable at lower-mantle
pressure conditions (e.g., MgSiO4H2, FeOOH, and AlOOH),
which all contain symmetric hydrogen bonds.

To evaluate the stability of FeSiO4H2, we constructed a
four-component convex hull, which takes into account all
known stable compounds formed by Fe, Si, O, and H ele-
ments. The convex hull results (Figs. S2 and S3) show that
FeSiO4H2 remains stable when many decomposing reaction
paths are taken into account. We also considered various
related minerals in assessing the stability of FeSiO4H2 with
respect to decomposition at high pressures [Figs. 2(a) and
S4]. In the current stability assessment, we considered only
the minerals known to be major components in the Earth,
including Fe2O3, FeO, SiO2, FeSiO3, Fe2SiO4, and H2O.
Our calculations show [Fig. 2(a)] that α-FeSiO4H2 becomes
energetically more favorable above 18 GPa, then transforms
at 35 GPa into β-FeSiO4H2, which remains stable up to
∼61 GPa, before decomposing to FeSiO3 and H2O. Further-
more, calculated phonon spectra show no imaginary modes
in the pressure range of 18–61 GPa (Fig. S6), confirming the
dynamic stability of FeSiO4H2 in the entire pressure range
where it is energetically stable.
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FIG. 2. (a) Calculated enthalpy as a function of pressure
of β-FeSiO4H2, Fe + Fe2O3 + 3SiO2 + 3H2O, FeO + SiO2 + H2O,
FeSiO3 + H2O, and Fe2SiO4 + H2O-FeO measured relative to
α-FeSiO4H2. Negative relative enthalpy indicates that FeSiO4H2 is
stable in the pressure ranges of 18–61 GPa, which spans the pres-
sures in the upper mantle (UM), mantle transition zone (MTZ), and
lower mantle (LM), as indicated by the distinct color-shaded zones.
(b) The pressure-temperature phase diagram of FeSiO4H2. The
boundary between α- and β-FeSiO4H2 phases is shown by the gray
solid line. Purple and orange dashed lines represent the dissociation
boundary where FeSiO4H2 decomposes into FeO + SiO2 + H2O and
FeSiO3 + H2O, respectively. The gray zone represents the geother-
mal conditions of the subducting slab, while the blue line indicates
the geothermal conditions of the mantle. The pressure boundary of
the mantle transition zone (MTZ) and the lower mantle (LM) is about
25 GPa, as indicated at the bottom of the panel.

Dense hydrous silicates are known to be thermodynami-
cally stable at pressure-temperature conditions relevant to the
subducting slabs, which are lower compared to those along
the normal mantle geotherm. To examine the stability fields
of FeSiO4H2, we calculated its Gibbs free energy, especially
along the following two possible routes for the dissociation of
FeSiO4H2 involving several minerals known to be among the
most abundant in the Earth’s mantle and H2O as reactants:

FeSiO4H2 = FeSiO3 + H2O, (1)

FeSiO4H2 = FeO + SiO2 + H2O. (2)

Water turns into a liquid phase at elevated temperatures, so
we simulated the Gibbs free energy of liquid water using the
thermodynamic properties and equations of states from pre-
vious work [59]. Results in Fig. 2(b) show that α-FeSiO4H2

is stabilized up to ∼35 GPa at 0 K, and a thermal stability
of α-FeSiO4H2 is achieved at 20, 25, 30, and 32 GPa around
1190, 1230, 1310, and 1350 K, respectively, indicating a pos-
itive Clapeyron slope. The threshold pressure for the phase
transition from α- to β-FeSiO4H2 decreases as the tempera-
ture rises. Meanwhile, the β-FeSiO4H2 phase spans a wider
pressure-temperature stability field, from 32 to 61 GPa and up
to 1450 K. The threshold temperature for the thermal stability
of the FeSiO4H2 phases first increases with rising pressure,
then decreases steeply when pressure exceeds 40 GPa, which
is similar to the behavior of phase H MgSiO4H2 under
pressure [24–26].

To further assess the structural stability of the hydrous Fe
silicates, we performed ab initio molecular dynamics sim-
ulations to evaluate the mean-square displacements (MSDs)
(Fig. S7), which indicate that all the atoms in α-FeSiO4H2 at
20 GPa and 1000 K and β-FeSiO4H2 at 40 GPa and 1500 K
fluctuate within a small range around the equilibrium posi-
tions, indicating that these atoms remain near their lattice
sites. These MSD results offer compelling evidence for the
structural stability of FeSiO4H2 at pertinent high-pressure
high-temperature conditions.

The existence of lower-mantle water reservoirs hinges on
the availability of hydrous minerals that can transport wa-
ter into the lower mantle without premature dehydration.
Our calculations show that the FeSiO4H2 phases are ther-
modynamically stable at pressures from 18 to 61 GPa and
temperatures up to 1450 K. The temperature for the dissoci-
ation boundary of FeSiO4H2 is lower than those of a typical
mantle geotherm and, as a result, these hydrous Fe silicates
cannot form the basis for long-term water storage in the lower
mantle. It is, however, important to note that FeSiO4H2, which
accommodates a much larger amount of water (∼12 wt %)
than the water carriers in the transition zone (∼1–3 wt %
water in wadsleyite and ringwoodite) [13,64], can serve as
an effective, albeit transient, water carrier deep into the lower
mantle via the transport of cold subducting slabs.

Thermodynamic stability is a widely considered key
requirement for minerals to serve as potential water carriers
into the deep Earth. Meanwhile, another equally important but
less considered requirement is gravitational stability, having
an influence on the depth to which hydrous minerals descend
into the deep Earth’s interior alongside the subducting slab.
In the uppermost of the subducting slab, a portion of hy-
drous minerals with densities smaller than that of PREM [65]
(Fig. 3) have the potential to form diapirs, which may facilitate
the return of some subducting materials to the overriding plate
[29–32]. In this crucial regard, FeSiO4H2 has the notable
advantage of possessing clearly a higher density compared to
that of the PREM, making it superior in gravitational stability
for descent into the deep lower-mantle regions.

The subducting slab is composed of ocean sediments,
basaltic oceanic crust, and the peridotitic mantle. The com-
position of the peridotitic mantle is similar to that of
the normal mantle, where magnesium silicates are preva-
lent, while the ocean sediments and basaltic oceanic crust
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FIG. 3. (a) Gibbs free energies of FexMg1−xSiO4H2 rela-
tive to those of pure substances MgSiO4H2 and MgSiO4H2 at
35 GPa and 0, 500, and 1000 K. (b) Density of hydrous min-
erals AlOOH, MgSiO4H2, FeSiO4H2, (Fe0.45Mg0.55)SiO4H2, and
(Fe0.7Mg0.3)SiO4H2 compared with that of Earth’s mantle according
to the preliminary reference Earth model [65].

(uppermost of the subducting slab) possess an Fe-rich en-
vironment [66,67]. Additional, previous investigations have
provided compelling evidence supporting the presence of
Fe-rich minerals in the Mg-rich environment interior of the
Earth [68–72]. It is therefore likely that Fe incorporated
hydrous mineral Mg(Fe)SiO4H2 will form in the uppermost
layer of the subducting slab. To assess the viability of this
scenario, we evaluated the Gibbs free energy for the for-
mation of solid solutions of MgSiO4H2 and FeSiO4H2 at
pertinent pressure-temperature conditions. It is noted that
configurational entropy exerts a dominant influence on the
thermodynamic stability in solution systems, while the elec-
tronic and vibrational entropies have negligible contributions
[73–75]. We calculated the relative Gibbs free energy (�G)
defined by

�G = �H − T Sconf, (3)

�H = HFexMg1−xSiO4H2 − xHFeSiO4H2

− (1 − x)HMgSiO4H2 , (4)

where T and Sconf in Eq. (3) are the temperature and config-
urational entropy of the FexMg1−xSiO4H2 solution, and the
three terms on the right-hand side in Eq. (4) are enthalpies
of the solution, MgSiO4H2 and FeSiO4H2, respectively. The
calculated �G is negative for the solution in a full range
of Fe/Mg ratios [Fig. 3(a)], indicating the stability of
Mg(Fe)SiO4H2 at rising temperatures.

We further evaluated the gravitational stability of
Mg(Fe)SiO4H2 solutions. The results in Fig. 3(b) show that
the density of Fe0.45Mg0.55SiO4H2 becomes comparable to
that of PREM at pressures corresponding to the depths of the
mantle transition zone and the uppermost zone of the lower
mantle; increasing Fe content in Fe0.7Mg0.3SiO4H2 extends its
gravitational stability at depths further inside the lower man-
tle. These results demonstrate that Fe-rich Mg(Fe)SiO4H2

solutions, serving as potential carriers in the uppermost of
the subducting slab, are likely to restrain their involvement in
the formation of diapirs and have a great advantage to trans-
port water into the Earth’s deep lower mantle. The Fe-poor
Mg(Fe)SiO4H2 solutions might exist in the peridotitic mantle
of a subducting slab and carry water in the deep interior of the
Earth for its good thermodynamic stability under subducting
slab conditions.

Geological studies suggest a nearly dry bridgmanite-
dominated environment in vast lower-mantle regions [41].
This scenario stems from a lack of known hydrous minerals
that can be stabilized in the deep lower-mantle geotherm
conditions [24–27]. There is, however, experimental evi-
dence showing that Al could enhance the thermal stability
of hydrous magnesium silicates [76,77]. For example, it was
observed that Al-bearing phase H MgSiO4H2 remains stable
at pressure and temperature conditions corresponding to the
depths greater than 2600 km in the subducting slab [76,77].
One may expect that the same phenomenon could occur in
Al incorporated FeSiO4H2 given its structural similarity with
hydrous magnesium silicate. An expanded range of thermo-
dynamic stability combined with the gravitational stability
makes hydrous Fe silicates geologically viable water carriers
into the deep lower mantle.

IV. CONCLUSION

In summary, we have pursued a rational design idea leading
to the identification of hydrous iron silicates as geologically
viable water carriers into the Earth’s lower mantle, based on
the consideration of both thermodynamic and gravitational
stabilities of the targeted minerals together with their Earth
abundance as key criteria. We employed a crystal structure
search in conjunction with first-principles energetic calcula-
tions to predict two distinct structural phases of FeSiO4H2

that are stabilized in the pressure range of 18–61 GPa and
temperatures up to ∼1450 K. The superior gravitational stabil-
ity and favorable thermodynamic stability make FeSiO4H2 a
promising carrier to transport this hydrous mineral in subduct-
ing slabs and then release water deep into the lower mantle.
Our study also suggests that a wide range of hydrous Fe/Mg
silicates may serve as a viable and robust material basis
for the water cycle in the Earth’s deep interior, with major
implications for understanding the evolution of constituent
compositions in deep Earth.
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